The properties of semiconducting solids are determined by the imperfections they contain. Established physical phenomena can be converted into practical design principles for optimizing defects and doping in a broad range of technology-enabling materials.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics
Nature Communications Open Access 16 September 2024
-
The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond
Nature Communications Open Access 11 August 2022
-
Quantum point defects in 2D materials - the QPOD database
npj Computational Materials Open Access 04 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


References
Stoneham, A. M. Theory of Defects in Solids (Oxford Univ. Press, 1975).
Pantelides, S. T. Rev. Mod. Phys. 50, 797–858 (1978).
Koster, G. F. & Slater, J. C. Phys. Rev. 95, 1167–1176 (1954).
Baraff, G. A. & Schlüter, M. Phys. Rev. Lett. 41, 892–895 (1978).
Lindefelt, U. & Zunger, A. Phys. Rev. B 24, 5913–5931 (1981).
Lany, S. & Zunger, A. Phys. Rev. B 78, 235104 (2008).
Freysoldt, C. et al. Rev. Mod. Phys. 86, 253–305 (2014).
Zhang, S. B. & Northrup, J. E. Phys. Rev. Lett. 67, 2339–2342 (1991).
Wei, S.-H. Comput. Mater. Sci. 30, 337–348 (2004).
Hart, G. L. W. & Zunger, A. Phys. Rev. Lett. 87, 275508 (2001).
Wang, N. et al. Phys. Rev. B 89, 045142 (2014).
Yu, Y. G., Zhang, X. & Zunger, A. Phys. Rev. B 95, 085201 (2017).
Chen, S., Walsh, A., Gong, X.-G. & Wei, S.-H. Adv. Mater. 25, 1522–1539 (2013).
Zunger, A. Appl. Phys. Lett. 83, 57–59 (2003).
Walukiewicz, W. Physica B 302–303, 123–134 (2001).
Walukiewicz, W. Phys. Rev. B 37, 4760–4763 (1988).
Zhang, S. B., Wei, S.-H. & Zunger, A. J. Appl. Phys. 83, 3192–3196 (1998).
Zhang, S. B., Wei, S.-H. & Zunger, A. Phys. Rev. Lett. 84, 1232–1235 (2000).
Walsh, A. et al. Chem. Mater. 25, 2924–2926 (2013).
Lany, S. & Zunger, A. Phys. Rev. Lett. 98, 045501 (2007).
Horwat, D. et al. J. Phys. D: Appl. Phys. 43, 132003 (2010).
Buckeridge, J., Scanlon, D. O., Walsh, A. & Catlow, C. R. A. Comput. Phys. Commun. 185, 330–338 (2014).
Mazin, I. I. et al. Nat. Commun. 5, 4261 (2014).
Yang, W. S. et al. Science 356, 1376–1379 (2017).
Buckeridge, J. et al. Phys. Rev. Lett. 114, 016405 (2015).
Neumark, G. F. Mat. Sci. Eng. R 21, 1–46 (1997).
Fioretti, A. N. et al. Adv. Electron. Mater. 3, 1600544 (2017).
Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Phys. Rev. B 57, 9642–9656 (1998).
Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Chem. Soc. Rev. 40, 4455–4463 (2011).
Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. MRS Commun. 5, 265–275 (2015).
Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Angew. Chemie Int. Ed. 54, 1791–1794 (2015).
Steirer, K. X. et al. ACS Energy Lett. 1, 360–366 (2016).
Fröhlich, H. Adv. Phys. 3, 325–361 (1954).
Stoneham, A. M. et al. J. Phys. Condens. Matter 19, 255208 (2007).
Perkins, J. D. et al. Phys. Rev. B 84, 205207 (2011).
Zhang, S. B., Wei, S.-H. & Zunger, A. Phys. Rev. Lett. 78, 4059–4062 (1997).
Segev, D. & Wei, S.-H. Phys. Rev. Lett. 91, 126406 (2003).
Sokol, A. A. et al. Faraday Discuss. 134, 267–282 (2007).
Lyons, J. L., Janotti, A. & Van de Walle, C. G. Appl. Phys. Lett. 95, 252105 (2009).
Li, J., Wei, S.-H., Li, S.-S. & Xia, J.-B. Phys. Rev. B 74, 081201 (2006).
Buckeridge, J., Jevdokimovs, D., Catlow, C. R. A. & Sokol, A. A. Phys. Rev. B 94, 180101 (2016).
Lejaeghere, K. et al. Science 351, aad3000 (2016).
Kumagai, Y. & Oba, F. Phys. Rev. B 89, 195205 (2014).
Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. Comput. Mater. Sci. 130, 1–9 (2017).
Broberg, D. et al. Preprint at http://arxiv.org/abs/1611.07481 (2016).
Medasani, B. et al. npj Comput. Mater. 2, 1 (2016).
Berger, D. et al. J. Chem. Phys. 141, 024105 (2014).
Materials Genome Initiative for Global Competitiveness (National Science and Technology Council, 2011).
Gautier, R. et al. Nat. Chem. 7, 308–316 (2015).
Butler, K. T., Frost, J. M., Skelton, J. M., Svane, K. L. & Walsh, A. Chem. Soc. Rev. 45, 6138–6146 (2016).
Acknowledgements
A.W. acknowledges support from the Royal Society, the EPSRC (grant no. EP/K016288/1) and the EU Horizon2020 Framework (STARCELL, grant no. 720907). A.Z. is supported by the US Department of Energy, Office of Science, Basic Energy Science, MSE Division under grant no. DE-FG02-13ER46959, and by EERE Sun Shot initiative under DE-EE0007366.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Walsh, A., Zunger, A. Instilling defect tolerance in new compounds. Nature Mater 16, 964–967 (2017). https://doi.org/10.1038/nmat4973
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4973
This article is cited by
-
Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors
Nature Reviews Chemistry (2025)
-
Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics
Nature Communications (2024)
-
Electronic defects in metal oxide photocatalysts
Nature Reviews Materials (2022)
-
The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond
Nature Communications (2022)
-
Quantum point defects in 2D materials - the QPOD database
npj Computational Materials (2022)