Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Critical behaviour of hydrodynamic series

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 31 May 2021
  • Volume 2021, article number 287, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Critical behaviour of hydrodynamic series
Download PDF
  • M. Asadi1,
  • H. Soltanpanahi  ORCID: orcid.org/0000-0002-8475-78812,3,4 &
  • F. Taghinavaz  ORCID: orcid.org/0000-0002-3223-79991 
  • 375 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We investigate the time-dependent perturbations of strongly coupled \( \mathcal{N} \) = 4 SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS5×S5. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point θ = \( \frac{1}{2} \). Moreover, we propose a relation between symmetry enhancement of the underlying theory and vanishing of the only third order hydrodynamic transport coefficient θ1, which appears in the shear dispersion relation of a conformal theory on a flat background.

Article PDF

Download to read the full article text

Similar content being viewed by others

Relativistic hydrodynamics with phase transition

Article Open access 19 August 2024

On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections

Article Open access 04 January 2019

The complex life of hydrodynamic modes

Article Open access 18 November 2019

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Criticality
  • Geodynamics
  • Phase Transition and Critical Phenomena
  • String Theory
  • Plasma Physics
  • Waves, instabilities and nonlinear plasma dynamics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.H. Rischke, The Quark gluon plasma in equilibrium, Prog. Part. Nucl. Phys. 52 (2004) 197 [nucl-th/0305030] [INSPIRE].

  2. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

  3. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].

  4. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2019) [DOI].

  6. W. Florkowski, M.P. Heller and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Noronha-Hostler, J. Noronha and M. Gyulassy, The unreasonable effectiveness of hydrodynamics in heavy ion collisions, Nucl. Phys. A 956 (2016) 890 [arXiv:1512.07135] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.P. Heller, R.A. Janik and P. Witaszczyk, Hydrodynamic Gradient Expansion in Gauge Theory Plasmas, Phys. Rev. Lett. 110 (2013) 211602 [arXiv:1302.0697] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M.P. Heller and M. Spalinski, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M.P. Heller, A. Kurkela, M. Spaliński and V. Svensson, Hydrodynamization in kinetic theory: Transient modes and the gradient expansion, Phys. Rev. D 97 (2018) 091503 [arXiv:1609.04803] [INSPIRE].

    Article  ADS  Google Scholar 

  17. I. Aniceto and M. Spaliński, Resurgence in Extended Hydrodynamics, Phys. Rev. D 93 (2016) 085008 [arXiv:1511.06358] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. I. Aniceto, B. Meiring, J. Jankowski and M. Spaliński, The large proper-time expansion of Yang-Mills plasma as a resurgent transseries, JHEP 02 (2019) 073 [arXiv:1810.07130] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Shokri and F. Taghinavaz, Conformal Bjorken flow in the general frame and its attractor: Similarities and discrepancies with the Müller-Israel-Stewart formalism, Phys. Rev. D 102 (2020) 036022 [arXiv:2002.04719] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. M.P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, The hydrodynamic gradient expansion in linear response theory, arXiv:2007.05524 [INSPIRE].

  21. M.P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, Transseries for causal diffusive systems, JHEP 04 (2021) 192 [arXiv:2011.13864] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Romatschke, Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions, Eur. Phys. J. C 76 (2016) 352 [arXiv:1512.02641] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M.P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, Convergence of hydrodynamic modes: insights from kinetic theory and holography, arXiv:2012.15393 [INSPIRE].

  24. B. Withers, Short-lived modes from hydrodynamic dispersion relations, JHEP 06 (2018) 059 [arXiv:1803.08058] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. N. Abbasi and S. Tahery, Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential, JHEP 10 (2020) 076 [arXiv:2007.10024] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Jansen and C. Pantelidou, Quasinormal modes in charged fluids at complex momentum, JHEP 10 (2020) 121 [arXiv:2007.14418] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadić, Convergence of the Gradient Expansion in Hydrodynamics, Phys. Rev. Lett. 122 (2019) 251601 [arXiv:1904.01018] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadić, The complex life of hydrodynamic modes, JHEP 11 (2019) 097 [arXiv:1904.12862] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Baggioli, How small hydrodynamics can go, Phys. Rev. D 103 (2021) 086001 [arXiv:2010.05916] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. N. Wu, M. Baggioli and W.-J. Li, On the universality of AdS2 diffusion bounds and the breakdown of linearized hydrodynamics, JHEP 05 (2021) 014 [arXiv:2102.05810] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S.S. Gubser, Thermodynamics of spinning D3-branes, Nucl. Phys. B 551 (1999) 667 [hep-th/9810225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. K. Behrndt, M. Cvetič and W.A. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, JHEP 03 (1999) 003 [hep-th/9811120] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. R.-G. Cai and K.-S. Soh, Critical behavior in the rotating D-branes, Mod. Phys. Lett. A 14 (1999) 1895 [hep-th/9812121] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. M. Cvetič and S.S. Gubser, Thermodynamic stability and phases of general spinning branes, JHEP 07 (1999) 010 [hep-th/9903132] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. P.C. Hohenberg and B.I. Halperin, Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49 (1977) 435 [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Buchel, Critical phenomena in N = 4 SYM plasma, Nucl. Phys. B 841 (2010) 59 [arXiv:1005.0819] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. M. Natsuume and T. Okamura, Dynamic universality class of large-N gauge theories, Phys. Rev. D 83 (2011) 046008 [arXiv:1012.0575] [INSPIRE].

    Article  ADS  Google Scholar 

  40. O. DeWolfe, S.S. Gubser and C. Rosen, Dynamic critical phenomena at a holographic critical point, Phys. Rev. D 84 (2011) 126014 [arXiv:1108.2029] [INSPIRE].

    Article  ADS  Google Scholar 

  41. H. Ebrahim, M. Asadi and M. Ali-Akbari, Evolution of Holographic Complexity Near Critical Point, JHEP 09 (2019) 023 [arXiv:1811.12002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. H. Ebrahim and G.-M. Nafisi, Holographic Mutual Information and Critical Exponents of the Strongly Coupled Plasma, Phys. Rev. D 102 (2020) 106007 [arXiv:2002.09993] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. B. Amrahi, M. Ali-Akbari and M. Asadi, Holographic entanglement of purification near a critical point, Eur. Phys. J. C 80 (2020) 1152 [arXiv:2004.02856] [INSPIRE].

    Article  ADS  Google Scholar 

  44. B. Amrahi, M. Ali-Akbari and M. Asadi, Temperature dependence of entanglement of purification in the presence of a chemical potential, Phys. Rev. D 103 (2021) 086019 [arXiv:2101.03994] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. S.I. Finazzo, R. Rougemont, M. Zaniboni, R. Critelli and J. Noronha, Critical behavior of non-hydrodynamic quasinormal modes in a strongly coupled plasma, JHEP 01 (2017) 137 [arXiv:1610.01519] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. H. Ebrahim and M. Ali-Akbari, Dynamically probing strongly-coupled field theories with critical point, Phys. Lett. B 783 (2018) 43 [arXiv:1712.08777] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D.T. Son and A.O. Starinets, Viscosity, Black Holes, and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

    Article  ADS  Google Scholar 

  52. H. Kodama and A. Ishibashi, A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701 [hep-th/0305147] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. A. Jansen, A. Rostworowski and M. Rutkowski, Master equations and stability of Einstein-Maxwell-scalar black holes, JHEP 12 (2019) 036 [arXiv:1909.04049] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order, Phys. Rev. D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. S.M. Diles, L.A.H. Mamani, A.S. Miranda and V.T. Zanchin, Third-order relativistic hydrodynamics: dispersion relations and transport coefficients of a dual plasma, JHEP 05 (2020) 019 [arXiv:1909.05199] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. A. Jaiswal, Relativistic third-order dissipative fluid dynamics from kinetic theory, Phys. Rev. C 88 (2013) 021903 [arXiv:1305.3480] [INSPIRE].

    Article  ADS  Google Scholar 

  59. H. Elvang and M. Hadjiantonis, A Practical Approach to the Hamilton-Jacobi Formulation of Holographic Renormalization, JHEP 06 (2016) 046 [arXiv:1603.04485] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  61. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. R. Critelli, R. Rougemont and J. Noronha, Homogeneous isotropization and equilibration of a strongly coupled plasma with a critical point, JHEP 12 (2017) 029 [arXiv:1709.03131] [INSPIRE].

    Article  ADS  Google Scholar 

  63. C.T.C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, Cambridge University Press (2004) [DOI].

  64. N. Abbasi and M. Kaminski, Constraints on quasinormal modes and bounds for critical points from pole-skipping, JHEP 03 (2021) 265 [arXiv:2012.15820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. C. Ecker, D. Grumiller, H. Soltanpanahi and P. Stanzer, QNEC2 in deformed holographic CFTs, JHEP 03 (2021) 213 [arXiv:2007.10367] [INSPIRE].

    Article  ADS  Google Scholar 

  66. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. M. Haack and A. Yarom, Universality of second order transport coefficients from the gauge-string duality, Nucl. Phys. B 813 (2009) 140 [arXiv:0811.1794] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. O. DeWolfe, S.S. Gubser and C. Rosen, A holographic critical point, Phys. Rev. D 83 (2011) 086005 [arXiv:1012.1864] [INSPIRE].

    Article  ADS  Google Scholar 

  70. R.A. Janik, J. Jankowski and H. Soltanpanahi, Nonequilibrium Dynamics and Phase Transitions in Holographic Models, Phys. Rev. Lett. 117 (2016) 091603 [arXiv:1512.06871] [INSPIRE].

    Article  ADS  Google Scholar 

  71. R.A. Janik, J. Jankowski and H. Soltanpanahi, Quasinormal modes and the phase structure of strongly coupled matter, JHEP 06 (2016) 047 [arXiv:1603.05950] [INSPIRE].

    Article  ADS  Google Scholar 

  72. S. Grozdanov and A.O. Starinets, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP 03 (2017) 166 [arXiv:1611.07053] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. G. Kristensson, Second Order Differential Equation: Special Functions and Their Classification, Springer (2010) [DOI].

Download references

Author information

Authors and Affiliations

  1. IPM, School of Particles and Accelerators, P.O. Box 19395-5531, Tehran, Iran

    M. Asadi & F. Taghinavaz

  2. Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, 510006, China

    H. Soltanpanahi

  3. Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou, 510006, China

    H. Soltanpanahi

  4. Institute of Theoretical Physics, Jagiellonian University, S. Lojasiewicza 11, PL 30-348, Krakow, Poland

    H. Soltanpanahi

Authors
  1. M. Asadi
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. H. Soltanpanahi
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. F. Taghinavaz
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to H. Soltanpanahi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2102.03584

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, M., Soltanpanahi, H. & Taghinavaz, F. Critical behaviour of hydrodynamic series. J. High Energ. Phys. 2021, 287 (2021). https://doi.org/10.1007/JHEP05(2021)287

Download citation

  • Received: 15 February 2021

  • Revised: 01 May 2021

  • Accepted: 21 May 2021

  • Published: 31 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)287

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge-gravity correspondence
  • Black Holes in String Theory
  • Effective Field Theories
  • Holography and quark-gluon plasmas

Profiles

  1. F. Taghinavaz View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature