Abstract
An amplitude analysis of B0 → (π+π−)(K+π−) decays is performed in the two-body invariant mass regions 300 < m(π+π−) < 1100 MeV/c2, accounting for the ρ0, ω, f0(500), f0(980) and f0(1370) resonances, and 750 < m(K+π−) < 1200 MeV/c2, which is dominated by the K*(892)0 meson. The analysis uses 3 fb−1 of proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The CP averages and asymmetries are measured for the magnitudes and phase differences of the con- tributing amplitudes. The CP-averaged longitudinal polarisation fractions of the vector-vector modes are found to be \( {\tilde{f}}_{\rho {K}^{*}}^0 \) = 0.164 ± 0.015 ± 0.022 and \( {\tilde{f}}_{\omega {K}^{*}}^0 \) = 0.68 ± 0.17 ± 0.16, and their CP asymmetries, \( {\mathcal{A}}_{\rho {K}^{*}}^0 \) = −0.62 ± 0.09 ± 0.09 and \( {\mathcal{A}}_{\omega {K}^{*}}^0 \) = −0.13 ± 0.27 ± 0.13, where the first uncertainty is statistical and the second systematic.

Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
BaBar collaboration, Direct CP violating asymmetry in B 0 → K + π − decays, Phys. Rev. Lett. 93 (2004) 131801 [hep-ex/0407057] [INSPIRE].
Belle collaboration, Improved measurements of partial rate asymmetry in B → hh decays, Phys. Rev. D 71 (2005) 031502 [hep-ex/0407025] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
M. Beneke, J. Rohrer and D. Yang, Branching fractions, polarisation and asymmetries of B → VV decays, Nucl. Phys. B 774 (2007) 64 [hep-ph/0612290] [INSPIRE].
M. Gronau and J. Zupan, Isospin-breaking effects on α extracted in B → ππ, ρρ, ρπ, Phys. Rev. D 71 (2005) 074017 [hep-ph/0502139] [INSPIRE].
A. Datta and D. London, Triple-product correlations in B → V 1 V 2 decays and new physics, Int. J. Mod. Phys. A 19 (2004) 2505 [hep-ph/0303159] [INSPIRE].
Belle collaboration, Study of B 0 → ρ + ρ − decays and implications for the CKM angle ϕ 2, Phys. Rev. D 93 (2016) 032010 [arXiv:1510.01245] [INSPIRE].
BaBar collaboration, Study of B 0 → ρ + ρ − decays and constraints on the CKM angle α, Phys. Rev. D 76 (2007) 052007 [arXiv:0705.2157] [INSPIRE].
LHCb collaboration, First measurement of the CP-violating phase \( {\phi}_s^{d\overline{d}} \) in B 0 s → (K + π −)(K − π +) decays, JHEP 03 (2018) 140 [arXiv:1712.08683] [INSPIRE].
LHCb collaboration, Measurement of CP violation in B 0 s → ϕϕ decays, Phys. Rev. D 90 (2014) 052011 [arXiv:1407.2222] [INSPIRE].
CDF collaboration, Measurement of polarization and search for CP violation in B 0 s → ϕϕ decays, Phys. Rev. Lett. 107 (2011) 261802 [arXiv:1107.4999] [INSPIRE].
BaBar collaboration, Observation of \( {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \) and search for B 0 → K *0 K *0, Phys. Rev. Lett. 100 (2008) 081801 [arXiv:0708.2248] [INSPIRE].
Z.-T. Zou, A. Ali, C.-D. Lu, X. Liu and Y. Li, Improved estimates of the B (s) → VV decays in perturbative QCD approach, Phys. Rev. D 91 (2015) 054033 [arXiv:1501.00784] [INSPIRE].
S. Baek, A. Datta, P. Hamel, O.F. Hernandez and D. London, Polarization states in B → ρK * and new physics, Phys. Rev. D 72 (2005) 094008 [hep-ph/0508149] [INSPIRE].
A. Datta, M. Imbeault, D. London, V. Page, N. Sinha and R. Sinha, Methods for measuring new-physics parameters in B decays, Phys. Rev. D 71 (2005) 096002 [hep-ph/0406192] [INSPIRE].
BaBar collaboration, B 0 meson decays to ρ 0 K *0 , f 0 K *0 , and ρ − K *+ , including higher K * resonances, Phys. Rev. D 85 (2012) 072005 [arXiv:1112.3896] [INSPIRE].
Belle collaboration, Measurements of charmless hadronic b → s penguin decays in the π + π − K + π − final state and first observation of B 0 → ρ 0 K + π −, Phys. Rev. D 80 (2009) 051103 [arXiv:0905.0763] [INSPIRE].
BaBar collaboration, Observation of B meson decays to ωK * and improved measurements for ωρ and ωf 0, Phys. Rev. D 79 (2009) 052005 [arXiv:0901.3703] [INSPIRE].
Belle collaboration, Evidence for neutral B meson decays to ωK *0, Phys. Rev. Lett. 101 (2008) 231801 [arXiv:0807.4271] [INSPIRE].
LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
LHCb RICH Group collaboration, Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
Geant4 collaboration,, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].
Geant4 collaboration, Geant4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, U.S.A. (1984).
Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119 [INSPIRE].
M. Pivk and F.R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].
LHCb collaboration, Measurement of CP asymmetries and polarisation fractions in \( {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \) decays, JHEP 07 (2015) 166 [arXiv:1503.05362] [INSPIRE].
D. Martínez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A 764 (2014) 150 [arXiv:1312.5000] [INSPIRE].
G.N. Fleming, Recoupling effects in the isobar model. 1. General formalism for three-pion Scattering, Phys. Rev. 135 (1964) B551 [INSPIRE].
D. Morgan, Phenomenological analysis of I=1/2 single-pion production processes in the energy range 500 to 700 MeV, Phys. Rev. 166 (1968) 1731 [INSPIRE].
D. Herndon, P. Soding and R.J. Cashmore, Generalized isobar model formalism, Phys. Rev. D 11 (1975) 3165 [INSPIRE].
J.M. Blatt and V.F. Weisskopf, Theoretical nuclear physics, Springer, New York (1952).
S.M. Flatte, Coupled-channel analysis of the πη and \( K\overline{K} \) systems near \( K\overline{K} \) threshold, Phys. Lett. 63B (1976) 224 [INSPIRE].
S.M. Flatte, On the nature of 0+ mesons, Phys. Lett. 63B (1976) 228 [INSPIRE].
G.J. Gounaris and J.J. Sakurai, Finite-width corrections to the vector-meson-dominance prediction for ρ → e + e −, Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].
D. Aston et al., A study of K − π + Scattering in the reaction K − p → K − π + n at 11 GeV/c, Nucl. Phys. B 296 (1988) 493 [INSPIRE].
T. du Pree, Search for a strange phase in beautiful oscillations, Ph.D. Thesis, Vrije Universiteit Amsterdam (2010) [CERN-THESIS-2010-124].
D. Martínez Santos et al., Ipanema-β: tools and examples for HEP analysis on GPU, arXiv:1706.01420 [INSPIRE].
F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].
A. Klöckner et al., PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation, Parallel Comput. 38 (2012) 157.
F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].
F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].
F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the MultiNest algorithm, arXiv:1306.2144 [INSPIRE].
J. García Pardiñas, Search for flavour anomalies at LHCb: decay-time-dependent CP violation in B 0 s → (K + π −)(K − π +) and lepton universality in \( {\overline{B}}^0\to {D}^{\left(\ast \right)+}l{\overline{\nu}}_l \), Ph.D. Thesis, Universidade de Santiago de Compostela (2018) [CERN-THESIS-2018-096].
LHCb collaboration, Measurement of resonant and CP components in \( {\overline{B}}_s^0 \) → J/ψπ + π − decays, Phys. Rev. D 89 (2014) 092006 [arXiv:1402.6248] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
ArXiv ePrint: 1812.07008
Deceased (Y. Shcheglov)
A. Hicheur, C. Göbel and V. Salustino Guimaraes are associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
N. Beliy, J. He, W. Huang, P.-R. Li, X. Lyu, W. Qian, J. Qin, M. Saur, M. Szymanski, D. Vieira, Q. Xu, Y. Zheng, G. Liu, H. Cai, L. Sun, B. Dey, W. Hu, M. Mukherjee, Y. Wang, D. Xiao, Y. Xie, M. Xu, H. Yin, J. Yu and D. Zhang are associated to Center for High Energy Physics, Tsinghua University, Beijing, China
D. A. Milanes, I. A. Monroy and J. A. Rodriguez Lopez are associated to LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
O. Grünberg, M. Heß, N. Meinert, H. Viemann and R. Waldi are associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
C. J. G. Onderwater is associated to Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
T. Likhomanenko, A. Malinin, O. Morgunova, A. Nogay, A. Petrov, V. Shevchenko, F. Baryshnikov, S. Didenko, A. Golutvin, N. Polukhina, E. Shmanin, G. Panshin, S. Strokov and A. Vagner are associated to Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
L. M. Garcia Martin, L. Henry, B. K. Jashal, F. Martinez Vidal, A. Oyanguren, C. Remon Alepuz, J. Ruiz Vidal and C. Sanchez Mayordomo are associated to ICCUB, Universitat de Barcelona, Barcelona, Spain
C. A. Aidala, C. L. Da Silva and J. M. Durham are associated to Syracuse University, Syracuse, NY, United States
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
The LHCb collaboration., Aaij, R., Abellán Beteta, C. et al. Study of the B0 → ρ(770)°K*(892)0 decay with an amplitude analysis of B0 → (π+π−)(K+π−) decays. J. High Energ. Phys. 2019, 26 (2019). https://doi.org/10.1007/JHEP05(2019)026
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2019)026