Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Spacetime as a quantum circuit

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 April 2021
  • Volume 2021, article number 207, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Spacetime as a quantum circuit
Download PDF
  • A. Ramesh Chandra1,
  • Jan de Boer1,
  • Mario Flory2,3,
  • Michal P. Heller4,
  • Sergio Hörtner1 &
  • …
  • Andrew Rolph  ORCID: orcid.org/0000-0002-8014-95471 
  • 683 Accesses

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the “complexity equals volume” conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic \( T\overline{T} \), we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.

Article PDF

Download to read the full article text

Similar content being viewed by others

Holographic spacetimes as quantum circuits of path-integrations

Article Open access 10 December 2018

Sewing spacetime with Lorentzian threads: complexity and the emergence of time in quantum gravity

Article Open access 11 February 2022

Holographic entanglement entropy is cutoff-covariant

Article Open access 03 October 2019

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Classical and Quantum Gravity
  • Complexity
  • General Relativity
  • Genetic Circuit Engineering
  • Optical processing and Holography
  • Quantum Computing
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 111 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  3. L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Orus, A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States, Annals Phys. 349 (2014) 117 [arXiv:1306.2164] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

    Article  Google Scholar 

  6. B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].

  7. G. Vidal, Class of Quantum Many-Body States That Can Be Efficiently Simulated, Phys. Rev. Lett. 101 (2008) 110501 [quant-ph/0610099] [INSPIRE].

    Article  Google Scholar 

  8. D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

    Article  Google Scholar 

  9. A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

    Article  Google Scholar 

  10. A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  11. J. Couch, W. Fischler and P. H. Nguyen, Noether charge, black hole volume and complexity, JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Haegeman, T. J. Osborne, H. Verschelde and F. Verstraete, Entanglement Renormalization for Quantum Fields in Real Space, Phys. Rev. Lett. 110 (2013) 100402 [arXiv:1102.5524] [INSPIRE].

    Article  Google Scholar 

  13. R. Jefferson and R. C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Chapman, M. P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  15. M. A. Nielsen, M. R. Dowling, M. Gu and A. C. Doherty, Quantum computation as geometry, Science 311 (2006) 1133, [quant-ph/0603161].

  16. L. Susskind and E. Witten, The Holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].

  17. L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Jafari, A. Naseh and H. Zolfi, Path Integral Optimization for \( T\overline{T} \) Deformation, Phys. Rev. D 101 (2020) 026007 [arXiv:1909.02357] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  19. H. Geng, \( T\overline{T} \) Deformation and the Complexity=Volume Conjecture, Fortsch. Phys. 68 (2020) 2000036 [arXiv:1910.08082] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  20. B. Chen, L. Chen and C.-Y. Zhang, Surface/state correspondence and \( T\overline{T} \) deformation, Phys. Rev. D 101 (2020) 106011 [arXiv:1907.12110] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  21. S. Chakraborty, G. Katoch and S. R. Roy, Holographic complexity of LST and single trace \( T\overline{T} \), JHEP 03 (2021) 275 [arXiv:2012.11644] [INSPIRE].

    Article  MATH  Google Scholar 

  22. P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 071602 [arXiv:1703.00456] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11 (2017) 097 [arXiv:1706.07056] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Czech, Einstein Equations from Varying Complexity, Phys. Rev. Lett. 120 (2018) 031601 [arXiv:1706.00965] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  25. T. Takayanagi, Holographic Spacetimes as Quantum Circuits of Path-Integrations, JHEP 12 (2018) 048 [arXiv:1808.09072] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  26. H. A. Camargo, M. P. Heller, R. Jefferson and J. Knaute, Path integral optimization as circuit complexity, Phys. Rev. Lett. 123 (2019) 011601 [arXiv:1904.02713] [INSPIRE].

    Article  Google Scholar 

  27. A. M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  28. G. Evenbly and G. Vidal, Tensor network renormalization yields the multiscale entanglement renormalization ansatz, Phys. Rev. Lett. 115 (2015) [arXiv:1502.05385].

  29. A. Milsted and G. Vidal, Tensor networks as path integral geometry, arXiv:1807.02501 [INSPIRE].

  30. A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE].

  31. J. Kruthoff and O. Parrikar, On the flow of states under \( T\overline{T} \), arXiv:2006.03054 [INSPIRE].

  32. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Tensor Networks from Kinematic Space, JHEP 07 (2016) 100 [arXiv:1512.01548] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Beny, Causal structure of the entanglement renormalization ansatz, New J. Phys. 15 (2013) 023020 [arXiv:1110.4872] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  36. J. de Boer, F. M. Haehl, M. P. Heller and R. C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Bao, G. Penington, J. Sorce and A. C. Wall, Beyond Toy Models: Distilling Tensor Networks in Full AdS/CFT, JHEP 11 (2019) 069 [arXiv:1812.01171] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Bao, G. Penington, J. Sorce and A. C. Wall, Holographic Tensor Networks in Full AdS/CFT, arXiv:1902.10157 [INSPIRE].

  39. J. B. Hartle and S. W. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 174] [INSPIRE].

  40. M. Nozaki, S. Ryu and T. Takayanagi, Holographic Geometry of Entanglement Renormalization in Quantum Field Theories, JHEP 10 (2012) 193 [arXiv:1208.3469] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State Correspondence, Phys. Rev. Lett. 115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].

    Article  Google Scholar 

  42. A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Belin, A. Lewkowycz and G. Sarosi, Gravitational path integral from the T2 deformation, JHEP 09 (2020) 156 [arXiv:2006.01835] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Boruch, P. Caputa and T. Takayanagi, Path-Integral Optimization from Hartle-Hawking Wave Function, Phys. Rev. D 103 (2021) 046017 [arXiv:2011.08188] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  45. P. Caputa, J. Kruthoff and O. Parrikar, Building Tensor Networks for Holographic States, arXiv:2012.05247 [INSPIRE].

  46. F. A. Smirnov and A. B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Cavaglià, S. Negro, I. M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D Quantum Field Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  48. G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D 47 (1993) 3275 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  49. D. Brill and G. Hayward, Is the gravitational action additive?, Phys. Rev. D 50 (1994) 4914 [gr-qc/9403018] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  50. J. B. Hartle and R. Sorkin, Boundary Terms in the Action for the Regge Calculus, Gen. Rel. Grav. 13 (1981) 541 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  51. L. Lehner, R. C. Myers, E. Poisson and R. D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  52. J. D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  53. T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    Article  Google Scholar 

  54. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Erdmenger, M. Flory and M.-N. Newrzella, Bending branes for DCFT in two dimensions, JHEP 01 (2015) 058 [arXiv:1410.7811] [INSPIRE].

    Article  MATH  Google Scholar 

  56. M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].

  57. T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  58. R. Arnowitt, S. Deser and W. Misner, The dynamics of General Relativity, in Gravitation: an introduction to current research, L. Witten ed., chapter 7, 227, Wiley, New York, U.S.A. (1962).

  59. J. D. Brown and J. W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  60. M. Guica and R. Monten, \( T\overline{T} \) and the mirage of a bulk cutoff, SciPost Phys. 10 (2021) 024 [arXiv:1906.11251] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  61. V. Balasubramanian, B. D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

    Article  MATH  Google Scholar 

  62. R. Abt, J. Erdmenger, H. Hinrichsen, C. M. Melby-Thompson, R. Meyer, C. Northe et al., Topological Complexity in AdS3/CFT2, Fortsch. Phys. 66 (2018) 1800034 [arXiv:1710.01327] [INSPIRE].

    Article  Google Scholar 

  63. B. Chen, B. Czech and Z.-z. Wang, Query complexity and cutoff dependence of the CFT2 ground state, Phys. Rev. D 103 (2021) 026015 [arXiv:2004.11377] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  64. C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  65. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    Article  Google Scholar 

  66. D. J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, \( T\overline{T} \) in AdS2 and Quantum Mechanics, Phys. Rev. D 101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  67. D. J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, Hamiltonian deformations in quantum mechanics, \( T\overline{T} \) and the SYK model, Phys. Rev. D 102 (2020) 046019 [arXiv:1912.06132] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  68. L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].

  69. D. Carmi, S. Chapman, H. Marrochio, R. C. Myers and S. Sugishita, On the Time Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  70. J. Hernandez, R. C. Myers and S.-M. Ruan, Quantum extremal islands made easy. Part III. Complexity on the brane, JHEP 02 (2021) 173 [arXiv:2010.16398] [INSPIRE].

    Article  MATH  Google Scholar 

  71. S. C. Davis, Generalized Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D 67 (2003) 024030 [hep-th/0208205] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  72. A. C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  73. B. Czech, J. L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  74. C. Akers, J. Koeller, S. Leichenauer and A. Levine, Geometric Constraints from Subregion Duality Beyond the Classical Regime, arXiv:1610.08968 [INSPIRE].

  75. J. Camps, The Parts of the Gravitational Field, arXiv:1905.10121 [INSPIRE].

  76. N. Engelhardt and A. C. Wall, Extremal Surface Barriers, JHEP 03 (2014) 068 [arXiv:1312.3699] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, University of Amsterdam, PO Box 94485, 1090 GL, Amsterdam, The Netherlands

    A. Ramesh Chandra, Jan de Boer, Sergio Hörtner & Andrew Rolph

  2. Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland

    Mario Flory

  3. Instituto de Física Téorica IFT-UAM/CSIC, Universidad Autonoma de Madrid, 28049, Madrid, Spain

    Mario Flory

  4. Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476, Potsdam-Golm, Germany

    Michal P. Heller

Authors
  1. A. Ramesh Chandra
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Jan de Boer
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Mario Flory
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Michal P. Heller
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Sergio Hörtner
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Andrew Rolph
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Andrew Rolph.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.01185

On leave of absence from: National Centre for Nuclear Research, 02-093 Warsaw, Poland (Michal P. Heller)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, A.R., de Boer, J., Flory, M. et al. Spacetime as a quantum circuit. J. High Energ. Phys. 2021, 207 (2021). https://doi.org/10.1007/JHEP04(2021)207

Download citation

  • Received: 23 January 2021

  • Accepted: 30 March 2021

  • Published: 21 April 2021

  • DOI: https://doi.org/10.1007/JHEP04(2021)207

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature