Skip to main content
Log in

A Numerical Tool for the Coupled Mechanical Assessment of Anastomoses of PTFE Arterio-venous Access Grafts

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The anastomotic angle is assumed to affect the performance of arterio-venous (AV) access grafts by altering wall shear stress (WSS) and wall tension. The objective of this study was to develop a coupled numerical tool to assess fluid and structural anastomotic mechanics of a straight upper arm access graft. 3D computational fluid dynamics (CFD) and finite element (FE) models were developed for arterial and venous anastomoses with different graft attachment angles. The fluid simulations were executed using flow velocity profiles for anastomotic inlets obtained from a whole-graft CFD model. A mesh adaptation algorithm was developed to couple CFD and FE meshes and capture fluid structure interactions. The coupling algorithm enabled transfer of blood pressure (BP) and WSS predicted with the CFD models to the FE models as loadings. The deformations induced in the FE models were used to update the CFD geometries after which BP and WSS were recalculated and the process repeated until equilibrium between fluid and solid models. Maximum BP in the vein was 181 mmHg. WSS peaked at 2.3 and 0.7 Pa and the structural wall stress reached 3.38 and 3.36 kPa in arterial and venous anastomosis. Since flow-induced wall tension has been identified as a contributor to access graft failure along with WSS, the computational tool will be useful in studying the coupled mechanics in these grafts. Initial investigations of arterial and venous anastomotic end-to-side configuration indicated a slightly better performance of the 90° configuration over 135° arterial and 45° venous configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aguirre, A., M. Oliva, R. Schoephoerster, and V. Kasyanov (eds.). Static and dynamic mechanical testing of a polymer with potential use as heart valve material. In: Summer Bioengineering Conference, 2003, Key Biscayne, FL. New York: ASTM, 2003.

  2. B. Braun vascular systems: Vascugraft (http://www.Aesculap-extra.Net/public/frame_doc_index.Html?Med_id=100051022). Berlin: B. Braun Melsungen AG; 2010. p. 8.

  3. Cacho, F., M. Doblare, and G. A. Holzapfel. A procedure to simulate coronary artery bypass graft surgery. Med. Biol. Eng. Comput. 45(9):819–827, 2007.

    Article  Google Scholar 

  4. Chen, J., X.-Y. Lu, and W. Wang. Non-newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J. Biomech. 39(11):1983–1995, 2006.

    Article  Google Scholar 

  5. Cole, J. S., J. K. Watterson, and M. J. O’Reilly. Numerical investigation of the haemodynamics at a patched arterial bypass anastomosis. Med. Eng. Phys. 24(6):393–401, 2002.

    Article  Google Scholar 

  6. Dobrin, P. B., F. N. Littooy, and E. D. Endean. Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 105(3):393–400, 1989.

    Google Scholar 

  7. Ethier, C. R., and C. A. Simmons. Introductory Biomechanics: From Cells to Organisms. Cambridge Texts in Biomedical Engineering. Cambridge: Cambridge University Press, 2007.

    Google Scholar 

  8. Fisher, R. K., T. V. How, T. Carpenter, J. A. Brennan, and P. L. Harris. Optimising miller cuff dimensions. The influence of geometry on anastomotic flow patterns. Eur. J. Vasc. Endovasc. Surg. 21(3):251–260, 2001.

    Article  Google Scholar 

  9. Garcia-Pajares, R., J. R. Polo, A. Flores, E. Gonzalez-Tabares, and J. V. Solis. Upper arm polytetrafluoroethylene grafts for dialysis access. Analysis of two different graft sizes: 6 mm and 6–8 mm. Vasc. Endovasc. Surg. 37(5):335–343, 2003.

    Article  Google Scholar 

  10. Gay, D., S. V. Hoa, and S. W. Tsai. Composite Materials: Design and Applications. Boca Raton: CRC Press, 2003.

    Google Scholar 

  11. Golledge, J. Vein grafts: haemodynamic forces on the endothelium—a review. Eur. J. Vasc. Endovasc. Surg. 14(5):333–343, 1997.

    Article  Google Scholar 

  12. Golledge, J., R. J. Tumer, S. L. Harley, D. R. Springall, and J. T. Powell. Development of an in vitro model to study the response of saphenous vein endothelium to pulsatile arterial flow and circumferential deformation. Eur. J. Vasc. Endovasc. Surg. 13(6):605–612, 1997.

    Article  Google Scholar 

  13. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3):1–48, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kanterman, R. Y., T. M. Vesely, T. K. Pilgram, B. W. Guy, D. W. Windus, and D. Picus. Dialysis access grafts: anatomic location of venous stenosis and results of angioplasty. Radiology 195(1):135–139, 1995.

    Google Scholar 

  15. Kharboutly, Z., V. Deplano, E. Bertrand, and C. Legallais. Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med. Eng. Phys. 32(2):111–118, 2010.

    Article  Google Scholar 

  16. Kharboutly, Z., M. Fenech, J. M. Treutenaere, I. Claude, and C. Legallais. Investigations into the relationship between hemodynamics and vascular alterations in an established arteriovenous fistula. Med. Eng. Phys. 29(9):999–1007, 2007.

    Article  Google Scholar 

  17. Kim, Y. H., K. B. Chandran, T. J. Bower, and J. D. Corson. Flow dynamics across end-to-end vascular bypass graft anastomoses. Ann. Biomed. Eng. 21(4):311–320, 1993.

    Article  Google Scholar 

  18. Koch, T. M., B. D. Reddy, P. Zilla, and T. Franz. Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput. Methods Biomech. Biomed. Eng. 13(2):225–234, 2010.

    Article  Google Scholar 

  19. Kohler, T., T. Kirkman, and A. Clowes. The effect of rigid external support on vein graft adaptation to the arterial circulation. J. Vasc. Surg. 9(2):277–285, 1989.

    Google Scholar 

  20. Kundu, P. K., and I. M. Cohen. Fluid Mechanics (4th ed.). Amsterdam: Academic Press, 2008.

    Google Scholar 

  21. Lee, S. W., P. F. Fischer, F. Loth, T. J. Royston, J. K. Grogan, and H. S. Bassiouny. Flow-induced vein-wall vibration in an arteriovenous graft. J Fluids Struct. 20(6):837–852, 2005.

    Article  Google Scholar 

  22. Lee, S.-W., D. S. Smith, F. Loth, P. F. Fischer, and H. S. Bassiouny. Importance of flow division on transition to turbulence within an arteriovenous graft. J. Biomech. 40(5):981–992, 2007.

    Article  Google Scholar 

  23. Li, X.-M., and S. Rittgers. Computational simulation of biomechanics in e-PTFE and venous miller’s cuffs: implications for intimal hyperplasia. J. Med. Eng. Technol. 29(4):187–196, 2005.

    Article  Google Scholar 

  24. Li, L., C. M. Terry, Y. T. Shiu, and A. K. Cheung. Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int. 74(10):1247–1261, 2008.

    Article  Google Scholar 

  25. Longest, P. W., and C. Kleinstreuer. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses. J. Biomech. Eng. 125(5):671–681, 2003.

    Article  Google Scholar 

  26. Loth, F., P. F. Fischer, N. Arslan, C. D. Bertram, S. E. Lee, T. J. Royston, et al. Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the erk1/2 mechanotransduction pathway. J. Biomech. Eng. 125(1):49–61, 2003.

    Article  Google Scholar 

  27. Malik, J., V. Tuka, and V. Tesar. Local hemodynamics of the vascular access for hemodialysis. Kidney Blood Press Res. 32(1):59–66, 2009.

    Article  Google Scholar 

  28. Martinez, R., C. Fierro, P. Shireman, and H.-C. Han. Mechanical buckling of veins under internal pressure. Ann. Biomed. Eng. 38(4):1345–1353, 2010.

    Article  Google Scholar 

  29. Mitrovic, I. Cardiovascular disorders: vascular disease. Chapter 11. In: Pathophysiology of Disease: An Introduction to Clinical Medicine, 6th ed., edited by S. J. McPhee and G. D. Hammer. McGraw-Hill, 2010.

  30. Morinaga, K., H. Eguchi, T. Miyazaki, K. Okadome, and K. Sugimachi. Development and regression of intimal thickening of arterially transplanted autologous vein grafts in dogs. J. Vasc. Surg. 5(5):719–730, 1987.

    Google Scholar 

  31. O’Callaghan, S., M. Walsh, and T. McGloughlin. Numerical modelling of Newtonian and non-newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. Med. Eng. Phys. 28(1):70–74, 2006.

    Article  Google Scholar 

  32. Ogden, R. W. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Math. Phys. Sci. 326(1567):565–584, 1972.

    Article  MATH  Google Scholar 

  33. Politis, A. K., G. P. Stavropoulos, M. N. Christolis, F. G. Panagopoulos, N. S. Vlachos, and N. C. Markatos. Numerical modeling of simulated blood flow in idealized composite arterial coronary grafts: steady state simulations. J. Biomech. 40(5):1125–1136, 2007.

    Article  Google Scholar 

  34. Porter, K. E., S. Nydahl, P. Dunlop, K. Varty, A. J. Thrush, and N. J. London. The development of an in vitro flow model of human saphenous vein graft intimal hyperplasia. Cardiovasc. Res. 31(4):607–614, 1996.

    Google Scholar 

  35. Rhoades, R. A., and D. R. Bell. Medical Physiology: Principles for Clinical Medicine (3rd ed.). Baltimore: Lippincott Williams and Wilkins, 2009.

    Google Scholar 

  36. Schiller, N. K., T. Franz, N. S. Weerasekara, P. Zilla, and B. D. Reddy. A simple fluid–structure coupling algorithm for the study of the anastomotic mechanics of vascular grafts. Comput. Methods Biomech. Biomed. Eng. 13(6):773–781, 2010.

    Article  Google Scholar 

  37. Schwartz, L. B., M. K. O’Donohoe, C. M. Purut, E. M. Mikat, P. O. Hagen, and R. L. McCann. Myointimal thickening in experimental vein grafts is dependent on wall tension. J. Vasc. Surg. 15(1):176–186, 1992.

    Article  Google Scholar 

  38. Su, C. M., D. Lee, R. Tran-Son-Tay, and W. Shyy. Fluid flow structure in arterial bypass anastomosis. J. Biomech. Eng. 127(4):611–618, 2005.

    Article  Google Scholar 

  39. Van Doormaal, J. P., and G. D. Raithby. Enhancements of the simple method for predicting incompressible fluid flows. Numer. Heat Transfer 7(2):147–163, 1984.

    Article  MATH  Google Scholar 

  40. Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Hemodynamics and complications encountered with arteriovenous fistulas and grafts as vascular access for hemodialysis: a review. Ann. Biomed. Eng. 33(9):1142–1157, 2005.

    Article  Google Scholar 

  41. Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Comparison of the hemodynamics in 6 mm and 4–7 mm hemodialysis grafts by means of CFD. J. Biomech. 39(2):226–236, 2006.

    Article  Google Scholar 

  42. Vazquez, M. A. Vascular access for dialysis: recent lessons and new insights. Curr. Opin. Nephrol. Hypertens. 18(2):116–121, 2009.

    Article  Google Scholar 

  43. Winsor, T., and G. E. Burch. Use of the phlebomanometer: normal venous pressure values and a study of certain clinical aspects of venous hypertension in man. Am. Heart J. 31(4):387–406, 1946.

    Article  Google Scholar 

  44. Zilla, P., M. Wolf, N. Rafiee, L. Moodley, D. Bezuidenhout, M. Black, et al. Utilization of shape memory in external vein-graft meshes allows extreme diameter constriction for suppressing intimal hyperplasia: a non-human primate study. J. Vasc. Surg. 49(6):1532–1542, 2009.

    Article  Google Scholar 

  45. Zwolak, R., M. Adams, and A. Clowes. Kinetics of vein graft hyperplasia: association with tangential stress. J. Vasc. Surg. 5(1):126–136, 1987.

    Google Scholar 

Download references

Acknowledgments

B.D.R. acknowledges the support for the South African Research Chair in Computational Mechanics by the Department of Science and Technology and the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Franz.

Additional information

Associate Editor Peter McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngoepe, M.N., Reddy, B.D., Kahn, D. et al. A Numerical Tool for the Coupled Mechanical Assessment of Anastomoses of PTFE Arterio-venous Access Grafts. Cardiovasc Eng Tech 2, 160–172 (2011). https://doi.org/10.1007/s13239-011-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0045-7

Keywords

Navigation