
 Researcher 2017;9(11) http://www.sciencepub.net/researcher

36

Forward and inverse kinematics for the 2-link manipulator (Two-Dimensional Kinematics)

Jaesung Oh 1, Yoonsung Joshua Ryu 2, Christi Kim 3, Yeji Cho 4

1 PhD Candidate, Hubo Lab, KAIST Korea Advanced Institute of Science and Technology, Seoul South Korea
2 Yongsan International School of Seoul, Seoul, South Korea

3 The Bronx High School of Science, Bronx NY
4 Hunter College Campus School, New York, NY

yejicho3800@gmail.com

Abstract: The simplest of all the robots that can perform tasks in 2D kinematics is the 2-link manipulator, which
has two-joint axles. One method of expressing the position of the 2-link manipulator is in joint space, which
expresses the position of each joint. The other method uses coordinate data in Cartesian space (X, Y). In forward
kinematics, data can be collected in the Cartesian space by using joint space; in inverse kinematics, the reverse is
true.
[Jaesung Oh, Yoonsung Joshua Ryu, Christi Kim, Yeji Cho . Forward and inverse kinematics for the 2-link
manipulator (Two-Dimensional Kinematics). Researcher 2017;9(11):36-39]. ISSN 1553-9865 (print); ISSN
2163-8950 (online). http://www.sciencepub.net/researcher. 5. doi:10.7537/marsrsj091117.05.

Keywords: robots: kinematics; manipulator

The following diagram and formulas refer to

forward kinematics:

Figure 1. 2-link manipulator

x = l� cos(��)+ �� cos(�� + ��) (1)
y = l� sin(��)+ �� sin(�� + ��) (2)

The following formula allows for Analytic

inverse kinematics with the 2-link manipulator:

x� + �� = ��

� + ��
� − 2���� cos(� − ��) (3)

In formula 3, x and y are given, and using cosine,

�� can be calculated. Rearranging the equation, the

following is obtained:

cos(��)=
��������

����
�

�����
 (4)

tan� �
��

�
� =

�����(��)

�����(��)
=

���
����

��
�
��������

(�����)����
����

��
� (5)

θ� = ±2tan�� ��
���
����

��
�
�(�����)

(�����)����
����

��
�� (6)

After �� is obtained using formula 6, �� can be

obtained using formula 7.

θ� = tan�� �
�

�
� − tan��

�� ���(��)

����� ���(��)
 (7)

There are several methods of performing inverse

kinematics with the 2-link manipulator. Thus, the most
appropriate formula for the application must be
selected. By choosing the best formula for the 2-link
manipulator’s current configuration, any discontinuity
of movement can be prevented.

A simulation created by using MATLAB can
verify the kinematics and inverse kinematics of the 2-
link manipulator presented above.

The initial conditions for the simulation are set as
follows:

l� = 1	[�],�� = 1	[�],�� = 0	[���],�� = 0	[���]

Using these conditions, the position of the end-

effector of the manipulator, using kinematics, can be
confirmed as [x, y] = [2,0].

If the final desired position is [x, y] = [0, 1], the

 Researcher 2017;9(11) http://www.sciencepub.net/researcher

37

manipulator's end-effector must be moved from 0 to 1
on the x-axis and from 2 to 0 on the y-axis. In the case
of a real manipulator, there is a physical limitation of
the actuator, so the manipulator cannot be moved from
the current position to the target position in one step.
Therefore, in the simulation, the manipulator must be
operated by dividing the movement into 10 steps. In
order to ensure the continuity of the motion, the target
position is interpolated using the following function:

x[k]= �� +
�������

�

��
���

�
(x� − ��) (8)

y[k]= �� +
�������

�

��
���

�
(y� − ��) (9)

Figure 2. The desired movement from the starting
position to the target position obtained by interpolation.

If the target position in the k-th step is (x [k], y

[k]), the final trajectory of the manipulator can be
obtained through inverse kinematics as follows:

Figure 3. Moving trajectory of the manipulator using
inverse kinematics.

There are numerical inverse kinematics in

addition to the analytic inverse kinematics summarized
above for handling inverse kinematics. Numerical
inverse kinematics is based on Jacobian.

Jacobian describes the effect of movement in the
joint space of a manipulator in a workspace by means
of partial derivatives, and can be rearranged by
differentiating the expression of forward kinematics. In
other words, if x and y according to the joint angles are
partially differentiated based on the respective joint
values, the following can be summarized.

∂x

���
= −�� sin(��)− ��sin	(θ� + θ�)

∂x

���
= −�� sin(�� + ��)

∂y

���
= �� cos(��)+ ��cos	(θ� + θ�)

∂y

���
= �� cos(�� + ��)

At this time, Jacobian is named as J and

summarized as follows.

�
�̇
�̇
� = �(��,��)�

��
��
�

= �
= −�� sin(��)− ��sin	(θ� + θ�) −�� sin(�� + ��)

�� cos(��)+ ��cos	(θ� + θ�) �� cos(�� + ��)
� �
��̇
��̇
�

Considering the above equation, if we express the

velocity to move from the current position to the target
position by and, the velocity satisfying the equation can
be obtained using Jacobian's Inverse, which is shown
below.

�
��̇
��̇
� = J�� �

�̇
�̇
�

However, at this time, the angle of the joint

suggests the direction to be changed, not the absolute
value. Therefore, it is necessary to iteratively perform
the process of updating the joint angle by multiplying
the appropriate gain to converge the final joint angle.

A simple algorithm is shown below.

x
&

 y

 Researcher 2017;9(11) http://www.sciencepub.net/researcher

38

Algorithm 1.

x� x�
x� x�

q�0
q�0

for k = 0 to 10

 while (1)

 ẋ x[k]-x�
 ẏ y[k]-y�

 �
��̇
��̇
� J(q�,q�)

�� �
�̇
�̇
�

 q� q� + ���̇ // K is the gain
 q� q� + ���̇

 �
x�
��
� F. K(q�,��) // F.K is

forward kinematics of the manipulator

 if ((�[�]− ��)

� + (�[�]− ��)
� < ϵ)

// condition for termination
 break
 end if

 end while

end for

Figure 4. Numerical inverse kinematics Movement
trajectory of a manipulator usage

Conclusion

This research was done with a motive to
understand forward kinematics and inverse kinematics,
the basics of robotics.

By using forward kinematics, information such as
the manipulator's joint position and length of the link
can be used to determine information such as the
position and angle of the end-effector.

Through the use of inverse kinematics, movement
in the joint space can be determined when work is
given in the space. Most of the work that requires the
manipulator is given within the Cartesian space, and
thus becomes an essential part to the robot's movement.
Inverse kinematics can be approached by two ways: an
analytical approach and a numerical approach.

The analytical approach is typically used when
the degree of freedom of the Cartesian space and the
degree of freedom of the joint space are the same.
Here, there may be multiple answers depending on the
manipulator's structural characteristics. For this reason,
the user must choose the answer.

The numerical approach is typically used when
the degree of freedom of the Cartesian space and the
degree of freedom of the joint space are different, and
an iteration process is needed in order to accept the
answer. The formula of forward kinematics can be
replaced with simply a partial derivative, without need
to use various mathematical calculations to find the
answer. This method can thus be implemented into
various types of systems.

Simulations of forward kinematics and inverse
kinematics were processed through MATLAB
Simulation, which was used to visually confirm the
manipulator's movements.

Appendix – MATLAB code

close all
clear all
clc

q1 = 0;
q2 = 0;
l1 = 1;
l2 = 1;

k = 0:10;

xs = 2;
ys = 0;

xd = 0;
yd = 1;

x = xs + (1-cos (k/10*pi))/2*(xd-xs);
y = ys + (1-cos (k/10*pi))/2*(yd-ys);

figure (1)
hold on

 Researcher 2017;9(11) http://www.sciencepub.net/researcher

39

plot (k,x,k,y)
xlabel ('step')
ylabel ('x & y')
legend ('x','y')

for k = 1:1:11

q2 = 2*atan (sqrt (((l1^2+l2^2)^2 - (x (k)^2 + y
(k)^2)) / ((x (k)^2+y (k)^2)-(l1^2-l2^2)^2)));
q1 = atan (y (k)/x (k)) - atan (l2*sin
(q2)/(l1+l2*cos (q2)));

link1x = [0 l1*cos (q1)];
link1y = [0 l1*sin (q1)];

link2x = [l1*cos (q1) l1*cos (q1) + l2*cos
(q1+q2)];
link2y = [l1*sin (q1) l1*sin (q1) + l2*sin
(q1+q2)];

figure (2);
hold on

plot (link1x,link1y,'r')
plot (link2x,link2y,'b')
plot (l1*cos (q1) +

l2*cos (q1+q2),l1*sin (q1) + l2*sin (q1+q2),'oc')

end

q1 = 0;
q2 = 0;

tempx = 2;
tempy = 0;

for i = 1:11

while (1)

J = [-l1*sin (q1) -l1*sin (q1)-l2*sin (q1+q2);
l1*cos (q1) l1*cos (q1) + l2*cos (q1+q2)]

xdot = x (i)-tempx;
ydot = y (i)-tempy;

qdot = pinv (J)*[xdot; ydot]/10;

q1 = q1+qdot (1);
q2 = q2+qdot (2);

tempx = l1*cos (q1) + l2*cos (q1+q2);
tempy = l1*sin (q1) + l2*sin (q1+q2);

if (norm ([x (i)- tempx, y (i)-tempy]) < 0.0001)
 break;
 end

end

link1x = [0 l1*cos (q1)];
link1y = [0 l1*sin (q1)];

link2x = [l1*cos (q1) l1*cos (q1) + l2*cos
(q1+q2)];
link2y = [l1*sin (q1) l1*sin (q1) + l2*sin
(q1+q2)];

figure (3);
hold on

plot (link1x,link1y,'r')
plot (link2x,link2y,'b')
plot (l1*cos (q1) + l2*cos (q1+q2),l1*sin (q1) +
l2*sin (q1+q2),'oc')

end

Reference
1. Craig, John J. Introduction to robotics: mechanics

and control. Vol. 3. Upper Saddle River: Pearson
Prentice Hall, 2005.

2. Sciavicco, Lorenzo, and Bruno Siciliano.
Modelling and control of robot manipulators.
Springer Science & Business Media, 2012.

10/29/2017

