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Abstract: The simplest of all the robots that can perform tasks in 2D kinematics is the 2-link manipulator, which 
has two-joint axles. One method of expressing the position of the 2-link manipulator is in joint space, which 
expresses the position of each joint. The other method uses coordinate data in Cartesian space (X, Y). In forward 
kinematics, data can be collected in the Cartesian space by using joint space; in inverse kinematics, the reverse is 
true. 
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The following diagram and formulas refer to 

forward kinematics: 
 

 
Figure 1. 2-link manipulator 

 
 
x = l� cos(��)+ �� cos(�� + ��)  (1) 
y = l� sin(��)+ �� sin(�� + ��)  (2) 
 
The following formula allows for Analytic 

inverse kinematics with the 2-link manipulator: 
 
x� + �� = ��
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In formula 3, x and y are given, and using cosine, 

��  can be calculated. Rearranging the equation, the 

following is obtained: 
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After �� is obtained using formula 6, �� can be 

obtained using formula 7. 
 

θ� = tan�� �
�

�
� − tan��

�� ���(��)

����� ���(��)
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There are several methods of performing inverse 

kinematics with the 2-link manipulator. Thus, the most 
appropriate formula for the application must be 
selected. By choosing the best formula for the 2-link 
manipulator’s current configuration, any discontinuity 
of movement can be prevented. 

A simulation created by using MATLAB can 
verify the kinematics and inverse kinematics of the 2-
link manipulator presented above. 

The initial conditions for the simulation are set as 
follows: 

 
l� = 1	[� ],�� = 1	[� ],�� = 0	[���],�� = 0	[���] 

 
Using these conditions, the position of the end-

effector of the manipulator, using kinematics, can be 
confirmed as [x, y] = [2,0]. 

If the final desired position is [x, y] = [0, 1], the 
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manipulator's end-effector must be moved from 0 to 1 
on the x-axis and from 2 to 0 on the y-axis. In the case 
of a real manipulator, there is a physical limitation of 
the actuator, so the manipulator cannot be moved from 
the current position to the target position in one step. 
Therefore, in the simulation, the manipulator must be 
operated by dividing the movement into 10 steps. In 
order to ensure the continuity of the motion, the target 
position is interpolated using the following function: 

 

x[k]= �� +
�������

�

��
���

�
(x� − ��)  (8) 

y[k]= �� +
�������

�

��
���

�
(y� − ��)  (9) 

 

 
Figure 2. The desired movement from the starting 
position to the target position obtained by interpolation. 

 
If the target position in the k-th step is (x [k], y 

[k]), the final trajectory of the manipulator can be 
obtained through inverse kinematics as follows: 

 

 
Figure 3. Moving trajectory of the manipulator using 
inverse kinematics. 

 
 
 

 
There are numerical inverse kinematics in 

addition to the analytic inverse kinematics summarized 
above for handling inverse kinematics. Numerical 
inverse kinematics is based on Jacobian. 

Jacobian describes the effect of movement in the 
joint space of a manipulator in a workspace by means 
of partial derivatives, and can be rearranged by 
differentiating the expression of forward kinematics. In 
other words, if x and y according to the joint angles are 
partially differentiated based on the respective joint 
values, the following can be summarized. 

 
 

∂x
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���
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At this time, Jacobian is named as J and 

summarized as follows. 
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Considering the above equation, if we express the 

velocity to move from the current position to the target 
position by and, the velocity satisfying the equation can 
be obtained using Jacobian's Inverse, which is shown 
below. 
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However, at this time, the angle of the joint 

suggests the direction to be changed, not the absolute 
value. Therefore, it is necessary to iteratively perform 
the process of updating the joint angle by multiplying 
the appropriate gain to converge the final joint angle. 

 
 
A simple algorithm is shown below. 
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Algorithm 1.  

x�  x� 
x�  x� 
 
q�0 
q�0 
 
for k = 0 to 10  
 
 while (1) 
 
 ẋ  x[k]-x� 
 ẏ  y[k]-y� 
 

 �
��̇
��̇
�  J(q�,q�)

�� �
�̇
�̇
� 

 
 q�  q� + ���̇  // K is the gain 
 q�  q� + ���̇  
 

 �
x�
��
�  F. K(q�,��) // F.K is 

forward kinematics of the manipulator 
 
 if ((�[�]− ��)

� + (�[�]− ��)
� < ϵ) 

// condition for termination 
  break 
 end if 
 
 end while 
 
end for 

 

 
Figure 4. Numerical inverse kinematics Movement 
trajectory of a manipulator usage 
 
Conclusion 

This research was done with a motive to 
understand forward kinematics and inverse kinematics, 
the basics of robotics. 

By using forward kinematics, information such as 
the manipulator's joint position and length of the link 
can be used to determine information such as the 
position and angle of the end-effector. 

Through the use of inverse kinematics, movement 
in the joint space can be determined when work is 
given in the space. Most of the work that requires the 
manipulator is given within the Cartesian space, and 
thus becomes an essential part to the robot's movement. 
Inverse kinematics can be approached by two ways: an 
analytical approach and a numerical approach. 

The analytical approach is typically used when 
the degree of freedom of the Cartesian space and the 
degree of freedom of the joint space are the same. 
Here, there may be multiple answers depending on the 
manipulator's structural characteristics. For this reason, 
the user must choose the answer. 

The numerical approach is typically used when 
the degree of freedom of the Cartesian space and the 
degree of freedom of the joint space are different, and 
an iteration process is needed in order to accept the 
answer. The formula of forward kinematics can be 
replaced with simply a partial derivative, without need 
to use various mathematical calculations to find the 
answer. This method can thus be implemented into 
various types of systems. 

Simulations of forward kinematics and inverse 
kinematics were processed through MATLAB 
Simulation, which was used to visually confirm the 
manipulator's movements. 

 
Appendix – MATLAB code 

 
close all 
clear all 
clc 
 
q1 = 0; 
q2 = 0; 
l1 = 1; 
l2 = 1; 
 
  
k = 0:10; 
 
xs = 2; 
ys = 0; 
 
xd = 0; 
yd = 1; 
 
x = xs + (1-cos (k/10*pi))/2*(xd-xs); 
y = ys + (1-cos (k/10*pi))/2*(yd-ys); 
 
figure (1) 
hold on 
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plot (k,x,k,y) 
xlabel ('step') 
ylabel ('x & y') 
legend ('x','y') 
 
  
 
for k = 1:1:11 
 
q2 = 2*atan (sqrt ( ((l1^2+l2^2)^2 - (x (k)^2 + y 
(k)^2)) / ((x (k)^2+y (k)^2)-(l1^2-l2^2)^2 ) )); 
q1 = atan (y (k)/x (k)) - atan (l2*sin 
(q2)/(l1+l2*cos (q2))); 
 
link1x = [0 l1*cos (q1)]; 
link1y = [0 l1*sin (q1)]; 
 
link2x = [l1*cos (q1) l1*cos (q1) + l2*cos 
(q1+q2)]; 
link2y = [l1*sin (q1) l1*sin (q1) + l2*sin 
(q1+q2)]; 
 
figure (2); 
hold on 
 
plot (link1x,link1y,'r') 
plot (link2x,link2y,'b') 
plot (l1*cos (q1) +  
 
l2*cos (q1+q2),l1*sin (q1) + l2*sin (q1+q2),'oc') 
 
  
end 
 
  
 
q1 = 0; 
q2 = 0; 
 
tempx = 2; 
tempy = 0; 
 
for i = 1:11 
 
while (1) 
 
  

J = [-l1*sin (q1) -l1*sin (q1)-l2*sin (q1+q2); 
l1*cos (q1) l1*cos (q1) + l2*cos (q1+q2)] 
 
xdot = x (i)-tempx; 
ydot = y (i)-tempy; 
 
qdot = pinv (J)*[xdot; ydot]/10; 
 
  
q1 = q1+qdot (1); 
q2 = q2+qdot (2); 
 
tempx = l1*cos (q1) + l2*cos (q1+q2); 
tempy = l1*sin (q1) + l2*sin (q1+q2); 
 
if (norm ([x (i)- tempx, y (i)-tempy]) < 0.0001) 
  break; 
 end 
 
end 
 
link1x = [0 l1*cos (q1)]; 
link1y = [0 l1*sin (q1)]; 
 
link2x = [l1*cos (q1) l1*cos (q1) + l2*cos 
(q1+q2)]; 
link2y = [l1*sin (q1) l1*sin (q1) + l2*sin 
(q1+q2)]; 
 
figure (3); 
hold on 
 
plot (link1x,link1y,'r') 
plot (link2x,link2y,'b') 
plot (l1*cos (q1) + l2*cos (q1+q2),l1*sin (q1) + 
l2*sin (q1+q2),'oc') 
 
end 
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