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Abstract: Herein, the conventional Adomian decomposition (CAD) and modified Adomian decomposition (MAD) 
methods are applied to solve the forth-order nonlinear deferential equation of nano electromechanical switches 
(NEMS). The pull-in instability parameters of the switch have been determined and compared with those of 
numerical solution. It is found that using conventional decomposition method in solving NEMS problems can lead 
to physically incorrect results. The values of instability parameters computed by CAD series might converge to the 
values which differ from that obtained by numerical methods. The inaccuracy becomes more highlighted in the case 
of doubly-supported NEMS compared to cantilever one. This shortcoming is not observed for MAD and therefore, 
modified decomposition method could easily utilize to simulate the pull-in performance of the beam-type NEMS. 
[Ali koochi, Asiehsadat Kazemi, Mohamadreza Abadyan. Limitations of Conventional Decomposition Method in 
Comparison with Modified Decomposition for Simulating the Instability of Nano-Switches. Researcher 
2017;9(2):57-63]. ISSN 1553-9865 (print); ISSN 2163-8950 (online). http://www.sciencepub.net/researcher. 6. 
doi:10.7537/marsrsj090217.06. 
 
Keywords: Nonlinear differential equation, Conventional Adomian decomposition, Modified Adomian 
decomposition, Nano electromechanical switch (NEMS), Instability 
 
1. Introduction 

It is well-established that the governing equation 
of most engineering and physical systems is nonlinear 
in its nature and hence, many efforts have been 
conducted by scientists to solve the mathematical 
nonlinear equations of the systems. Recently, various 
mathematical methods, such as Adomian 
decomposition [1,2], variational iteration [3,4], 
homotopy perturbation [5,6], exp function [7,8] and 
others [9,10] have been proposed for obtaining 
analytical approximation solutions of nonlinear 
problems. Among these methods, the decomposition 
method proposed by Adomian has been widely used 
to solve stochastic systems [11-13] and engineering 
problems such as oscillation [14-16], heat transfer 
[17,21], etc. due to the convenience of the 
computations. 

After introducing the conventional Adomian 
method, several investigators made attempt to 
improve the abilities and convergence speed of the 
decomposition method. Rach proposed a systematic 
formula for computing the Adomian's polynomials 
[22]. Further modification of the polynomials was also 
provided by Gabet [23]. The convergence and the 
generalization of Adomian series were addressed in 
other references [24,25]. Furthermore, comparison 
between the decomposition method and the Taylor 
series approximation shows that the decomposition 
method is much more efficient than the Taylor series 
method [26]. A modified Adomian decomposition 

method has been applied to simulate the static 
deflection of electrostatic micro-actuators [27]. 
Wazwaz proposed a powerful modification of the 
Adomian decomposition method [18]. This 
modification highly accelerates the convergence of the 
decomposition polynomials and has been applied for 
solving higher order boundary value problems 
[19,20]. 

With increasing growth of nanotechnology, nano 
electromechanical switches (NEMS) have become the 
center of interest for researchers. Many investigations 
have been focused on solving the nonlinear governing 
equation and modeling the instability of 
electromechanical switches. In this paper, the 
limitations/abilities of conventional and modified 
Adomian decomposition methods in solving 
constitutive equation of NEMS are investigated. In 
addition, numerical solution is obtained using 
MAPLE commercial software and Adomian solutions 
are compared with the numerical results. The 
precision and convergence speed of both methods are 
compared. 
 
2. Governing Equation of NEMS 

Figure (1) shows the typical cantilever and 
doubly-supported beam-type NEMS constructed from 
a conductive electrode suspended over a conductive 
substrate. Applying voltage difference between the 
electrode and ground causes the electrode to deflect 
towards the ground. At a critical voltage/deflection, 
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which is known as pull-in instability 
voltage/deflection, the electrode becomes unstable and 
pulls-in onto the substrate. The pull-in voltage and 
pull-in deflection of a NEMS are named as the pull-in 
parameters of the switches. Determining the electrode 
deflection and pull-in parameters of NEMS are crucial 
issues for engineers. Considering the van der Waals 
force, the governing equation of beam-type NEMS 
can be derived into [28]: 
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where W is the deflection of the electrode, Z is 
the distance from the clamped end and I is the 
moment of inertia of the electrode cross section, Eeff is 
the effective electrode material modulus,0 is the 
permittivity of vacuum, V is the applied voltage, g is 
the initial gap between the electrode and the substrate, 
d is the width of cross section and A is the Hamaker 
constant. Using the substitutions w=W/g and z=Z/L, 
equation (1) becomes: 
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w(0) = 0, w′(0) = 0 
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w′′(1) = 0, w′′′ (1) = 0 
(B.C for cantilever)   (2-c) 
w(1) = 0, w′(1) = 0 
(B.C for doubly-supported)   (2-d) 
 
In above equations, the dimensionless 

parameters, ,  and  are defined according to 
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Using numerical computations, the variation 

range of above parameters which satisfies physical 

considerations [28] approximately could be defined 
as: 

0 1.21, 0 1.68, 0 0.65         
For cantilever NEMS 
0 50.09, 0 70.06, 0 0.65          
For doubly-supported NEMS 
Note that at the onset of the instability, the 

maximum deflection of the electrode increases 
without requiring any further increase in voltage. In 
mathematical view, the slope of w- curve reaches 
infinity when instability occurs, i.e. dw/d(z=1)→∞ 
and dw/d(z=0.5)→∞ for cantilever and doubly-
supported NEMS, respectively. As a convenient 
approach, the pull-in instability voltage, PI, and 
pull-in deflection, uPI, of NEMS can be determined 
via plotting w(z=1) vs.  for cantilever and w(z=0.5) 
vs.  for doubly-supported NEMS. 

 

 
(a) 

 

 
(b) 

Figure 1. Schematic representation of (a) a cantilever 
NEMS and (b) doubly-supported NEMS 
 
3. Fundamentals of Decomposition Methods 

In order to explain the fundamental of Adomian 
decomposition methods, consider a differential 
equation of a fourth-order boundary-value problem 
[20], 

     ,Lx0,y,xfxy b
4 

 (4) 
With boundary conditions 
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  (5) 

Equation (4) can be represented as 
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      y,xfxyL 4    (6) 
Where L(4) is a differential operator, which is 

defined as: 
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The corresponding inverse operator L-(4) is 

defined as a 4-fold integral operator, that is 
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Employing the decomposition method [20], the 

dependent variable in equation (4) can be written as: 
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where constants C1 and C2 can be determined 

from the boundary condition at another boundary 
point. In above relations, function An approximates 
nonlinear function f(x,y) and is determined as a 
polynomial series [12]: 
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According to conventional Adomian 
decomposition (CAD), series An is obtained using the 
following formula [1] 
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On the other hands, according to modified 

Adomian decomposition (MAD), the following 
convenient equations can be utilized to obtain an 
appropriate solution for An [13, 22]: 
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and ki is the number of repetition of the pi, the values 
of pi are selected from the above range by 
combination without repetition. 

Now, according to decomposition methods, the 
recursive relations of equation (9) can be provided as 
follows: 
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In this study we compare the ability and 

limitations of both conventional and modified 

Adomian methods in solving the governing equation 
of NEMS. In order to apply decomposition methods 
for simulating deflection and pull-in behavior of 
NEMS, the substitution y=1-w is used to rewrite 
equation (2) into the following simpler form: 
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 (14-a) 
y(0) = 1, y′(0) = 0 
(B.C for cantilever and doubly-supported) (14-b) 
y”(1) = 1, y′”(1) = 0 
(B.C for Cantilever NEMS)  (14-c) 
y(1) = 0, y′(1) = 0 
(B.C for doubly-supported NEMS)   (14-d) 
According to what mentioned above and 

considering equation (9), he solution of equation (2) 
can be represented as: 
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where the constants C1 and C2 can be determined 

by solving the resulted simple algebraic equations 
from boundary conditions at z=1, i.e. using equation 
(14-c) and (14-d) for cantilever and doubly-supported 
NEMS, respectively. 

3.1 Conventional Adomian method (CAD) 
In order to solve equation (15) using CAD, 

formula (11) is expanded to obtain 
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Substituting relation (16) in recursive equation 
(13), we obtain: 
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Therefore the solution of equation (2) is obtained 

as: 
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3.2 Modified Adomian method (MAD) 
In the case of modified domain methods 

(equation (12)), it is obtained: 
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Substituting relation (19) in equation (13), we 

obtain:  
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Therefore, the solution of equation (2) can be 
summarized to: 
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3.3. Case studies and comparing of the methods 
In order to compare decomposition methods, 

typical cantilever and a doubly-supported NEMS are 
simulated and the results are compared with numerical 
data. 
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Figure 2. Convergence check for the NEMS tip 
deflection (β=γ=0.5) vs. number of series terms for 
three typical cantilever cases: (a) and (b) α=0, (c) and 
(d) α=0.25 (e) and (f) α=0.5 
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Figure 3. Variation of PI for typical cantilever 
NEMS (α=0.5 and = 0.65) 

 
Figures (2a-2c) shows the variation of tip 

deflection as a function of series terms for three 
typical cantilever NEMS (β=γ=0.5) with different van 
der Waals coefficients (α=0, 0.25 and 0.5). This figure 
reveals that the value of  coefficient has a great 
influence on the convergence of the conventional 
series. As seen, the CAD series might not converge 
for large values. However, this shortcoming is 
not observed in the case of the MAD series (Figures 
(2d-2f)) where the series solution rapidly converges to 
the numerical solution. Figure (3) shows the 
convergence of pull-in value for typical cantilever 
NEMS obtained by various series terms. This figure 
reveals that CAD converges to a pull-in value which 



 Researcher 2017;9(2)          http://www.sciencepub.net/researcher 

 

62 

is different from numerical values. However the pull-
in value obtained by modified method converges to 
that of the numerical value. Figure (4) shows the 
variations of pull-in voltage for cantilever NEMS as a 
function of van der Waals force parameter (α). This 
figure shows that the difference between Adomian 
and numerical solutions increases by increasing the α 
value. As seen, no solution exist, when α exceeds its 
critical value. 
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Figure 4. Variation of pull-in voltage (PI) of 
cantilever NEMS as a function of van der Waals force 
(α) (γ=0.65) 
 

Figure (5) shows the variation of tip deflection 
for typical doubly-supported NEMS (α=β=5, γ=0.5) as 
a function of series terms. This figure reveals that 
conventional decomposition cannot be applied for 
modeling pull-in performance of doubly-supported 
NEMS. As seen, while the MAD method rapidly 
converges to the numerical solution, CAD series 

converges to an unacceptable value. Furthermore, 
Table 1 shows the convergence of pull-in voltage of 
typical doubly-supported NEMS obtained by 
Adomian method using various series terms. As seen 
PI values obtained by MAD series converge to that 
of numerical value, i.e. PI=43.575. In Table 1, only 
the PI values obtained by MAD have been presented 
since the CAD method is not reliable for simulating 
double-supported NEMS. Note that the MAD series 
which are not able to capture the instability of the 
switch are physically meaningless and cannot be used 
for investigating the pull-in performance of the 
NEMS. 
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Figure 5. Convergence check for the tip deflection of 
a typical doubly-supported NEMS (α=β=5, γ=0.5) vs. 
number of series terms 

 
Table 1. Convergence check of pull-in voltage for typical NEMS (=5 and =0.65). As seen, PI values obtained by 
Adomian series converge to that of numerical value (i.e. PI=43.575) 

 2 Terms 3 Terms 4 Terms 5 Terms 6 Terms 
Value of PI obtained by Modified Adomian Can’t determine pull-in 61.701 Can’t determine pull-in 45.298 Can’t determine pull-in 
Difference with Numerical (%) Can’t determine pull-in 41.6 Can’t determine pull-in 3.95 Can’t determine pull-in 

 
4. Conclusions 

Modified and conventional Adomian 
decomposition methods were applied to solve 
nonlinear governing equation of beam-type NEMS. 
The deflection and pull-in parameters of cantilever 
and doubly-supported NEMS were computed and the 
result was compared with the numerical solution. 

It was observed that conventional Adomian 
method provides computational errors in modeling 
deflection and pull-in instability of NEMS. It is found 
that the convergence of the conventional series highly 
depends on the values of constant coefficients in the 
NEMS governing equation. Specially, for doubly-
supported NEMS, the deflection value computed by 

conventional decomposition series is very different 
from that of numerical method. 

Interestingly, none of the mentioned 
shortcomings was observed for modified Adomian 
decomposition series. Compared to conventional 
decomposition method, the modified Adomian 
method provides acceptable results and converges 
rapidly to numerical solution. 
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