The New Prime theorems (391) - (440)

Jiang, Chun-Xuan

Institute for Basic Research, Palm Harbor, FL34682-1577, USA
And: P. O. Box 3924, Beijing 100854, China
jiangchunxuan@sohu.com, cxjiang@mail.bcf.net.cn, jcxuan@,sina.com, Jiangchunxuan@,vip.sohu.com, jcxxxx@163.com

Abstract

Using Jiang function $J_{2}(\omega)$ we prove that the new prime theorems (341)- (390) contain infinitely many prime solutions and no prime solutions. Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach's conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false: (http://www.wbabin.net/math/xuan77.pdf) (http://vixra.org/pdf/1003.0234v1.pdf). Mathematicians do not speak advanced mathematical papers in ICM2010. ICM2010 is lower congress. [Jiang, Chun-Xuan. The New Prime theorems (391) - (440) . Researcher 2016;8(8):65-116]. ISSN 1553-9865 (print); ISSN 2163-8950 (online). http://www.sciencepub.net/researcher. 12. doi:10.7537/marsrsj080816.12.

Keywords: new; prime theorem; Jiang Chunxuan

The New Prime theorem (391)

$$
P, j P^{702}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{702}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{702}+k-j(j=1, \cdots, k-1)$
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{702}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{702}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]

If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{702}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(702)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) . \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,7,19,79,139$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,19,79,139$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,19,79,139$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7,19,79,139$,
(1) contain infinitely many prime solutions

The New Prime theorem (392)

$$
P, j P^{704}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{704}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{704}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{704}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{704}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]

If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]

$$
\begin{equation*}
\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{704}+k-j=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(704)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right. \tag{6}
\end{equation*}
$$

where

$$
\phi(\omega)=\prod_{P}(P-1)
$$

Example 1. Let $k=3,5,17,23,89,353$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,17,23,89,353$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,17,23,89,353$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,17,23,89,353$
(1) contain infinitely many prime solutions

The New Prime theorem (393)

$$
P, j P^{706}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that $j P^{706}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{706}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{706}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{706}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$

We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{706}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(706)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (394)

$$
P, j P^{708}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{708}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{708}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{708}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{708}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$

We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{708}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(708)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,5,7,13,709$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,7,13,709$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,13,709$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,13,709$
(1) contain infinitely many prime solutions

The New Prime theorem (395)

$$
P, j P^{710}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{710}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{710}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{710}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{710}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{710}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(710)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,11$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,11$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,11$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,11$
(1) contain infinitely many prime solutions

The New Prime theorem (396)

$$
P, j P^{712}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{712}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{712}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{712}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{712}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]

$$
\begin{equation*}
\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{712}+k-j=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(712)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right. \tag{6}
\end{equation*}
$$

where

$$
\phi(\omega)=\prod_{P}(P-1) .
$$

Example 1. Let $k=3,5$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5$,
(1) contain infinitely many prime solutions

The New Prime theorem (397)

$$
P, j P^{714}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{714}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{714}+k-j(j=1, \cdots, k-1) . \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{714}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{714}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{714}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(714)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,7,43,103$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,43,103$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,43,103$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7,43,103$,
(1) contain infinitely many prime solutions

The New Prime theorem (398)

$$
P, j P^{716}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{716}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{716}+k-j(j=1, \cdots, k-1) . \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{716}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$

We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{716}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]

$$
\begin{equation*}
\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{716}+k-j=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(716)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right. \tag{6}
\end{equation*}
$$

where

$$
\phi(\omega)=\prod_{P}(P-1)
$$

Example 1. Let $k=3,5,359$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,359$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,359$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,359$
(1) contain infinitely many prime solutions

The New Prime theorem (399)

$$
P, j P^{718}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{718}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{718}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{718}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{718}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{718}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(718)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (400)

$$
P, j P^{720}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{720}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{720}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{720}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{720}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{720}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(720)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,7,11,13,17,19,31,37,41,61,73,181,241$. From (2) and(3) we have $J_{2}(\omega)=0$
we prove that for $k=3,5,7,11,13,17,19,31,37,41,61,73,181,241$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,11,13,17,19,31,37,41,61,73,181,241$
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,11,13,17,19,31,37,41,61,73,181,241$,
(1) contain infinitely many prime solutions

The New Prime theorem (401)

$$
P, j P^{722}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{722}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{722}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{722}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$

If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{722}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{722}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(722)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (402)

$$
P, j P^{724}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{724}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{724}+k-j(j=1, \cdots, k-1) . \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{724}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$

If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{724}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{724}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(724)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>5$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>5$,
(1) contain infinitely many prime solutions

The New Prime theorem (403)

$$
P, j P^{726}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{726}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{726}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{726}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$

If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{726}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{726}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(726)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,7,23,67,727$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,23,67,727$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,23,67,727$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7,23,67,727$,
(1) contain infinitely many prime solutions

The New Prime theorem (404)

$$
P, j P^{728}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{728}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{728}+k-j(j=1, \cdots, k-1) . \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{728}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{728}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{728}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(728)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,29,53$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,29,53$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,29,53$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,29,53$,
(1) contain infinitely many prime solutions

The New Prime theorem (405)

$$
P, j P^{730}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{730}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{730}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{730}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{730}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{730}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(730)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,11$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,11$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,11$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,11$,
(1) contain infinitely many prime solutions

The New Prime theorem (406)

$$
P, j P^{732}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{732}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{732}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{732}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{732}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{732}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(732)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,5,7,13,367,733$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,7,13,367,733$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,13,367,733$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,13,367,733$,
(1) contain infinitely many prime solutions

The New Prime theorem (407)

$$
P, j P^{734}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{734}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{734}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\quad \omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{734}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{734}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{734}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(734)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (408)

$$
P, j P^{736}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{736}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{736}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\quad \omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{736}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{736}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{736}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(736)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,5,17,47$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,17,47$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,17,47$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,17,47$,
(1) contain infinitely many prime solutions

The New Prime theorem (409)

$$
P, j P^{738}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{738}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{738}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{738}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{738}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{738}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(738)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,7,19,739$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,19,739$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,19,739$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7,19,739$,
(1) contain infinitely many prime solutions

The New Prime theorem (410)

$$
P, j P^{740}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{740}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{740}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{740}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{740}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{740}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(740)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,5,11,149$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,11,149$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,11,149$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,11,149$,
(1) contain infinitely many prime solutions

The New Prime theorem (411)

$$
P, j P^{742}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{742}+k-j$ contain infinitely many prime solutions and no prime solutions.

Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{742}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{742}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{742}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{742}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(742)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,107,743$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,107,743$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,107,743$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,107,743$,
(1) contain infinitely many prime solutions

The New Prime theorem (412)

$$
P, j P^{744}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{744}+k-j$ contain infinitely many prime solutions and no prime
solutions.
Theorem. Let k be a given odd prime.
$P, j P^{744}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\quad \omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{744}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{744}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{744}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(744)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,7,13,373$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,7,13,373$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,13,373$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,13,373$,
(1) contain infinitely many prime solutions

The New Prime theorem (413)

$$
P, j P^{746}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract

Using Jiang function we prove that $j P^{746}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{746}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{746}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{746}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{746}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(746)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (414)

$$
P, j P^{748}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract

Using Jiang function we prove that $j P^{748}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{748}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{748}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{748}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{748}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(748)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,5,23$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,23$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,23$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,23$,
(1) contain infinitely many prime solutions

The New Prime theorem (415)

$$
P, j P^{750}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract

Using Jiang function we prove that $j P^{750}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{750}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{750}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{750}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{750}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(750)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,7,11,31,151,751$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,11,31,151,751$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,11,31,151,751$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7,11,31,151,751$,
(1) contain infinitely many prime solutions

The New Prime theorem (416)

$$
P, j P^{752}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we prove that $j P^{752}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{752}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{752}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{752}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{752}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(752)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,5,17$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,17$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,17$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,17$
(1) contain infinitely many prime solutions

The New Prime theorem (417)

$$
P, j P^{754}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we prove that $j P^{754}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{754}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{754}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{754}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{754}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(754)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,59$. From (2) and(3) we have $J_{2}(\omega)=0$
we prove that for $k=3,59$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,59$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,59$,
(1) contain infinitely many prime solutions

The New Prime theorem (418)

$$
P, j P^{756}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{756}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{756}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\quad \omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{756}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{756}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{756}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(756)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,7,13,19,29,37,43,127,379,757$. From (2) and(3) we have $J_{2}(\omega)=0$
we prove that for $k=3,5,7,13,19,29,37,43,127,379,757$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,13,19,29,37,43,127,379,757$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,13,19,29,37,43,127,379,757$,
(1) contain infinitely many prime solutions

The New Prime theorem (419)

$$
P, j P^{758}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{758}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{758}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{758}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{758}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{758}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(758)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (420)

$$
P, j P^{760}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{720}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{760}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{760}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{760}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{760}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(760)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,11,41,191,761$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,11,41,191,761$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,11,41,191,761$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,11,41,191,761$,
(1) contain infinitely many prime solutions

The New Prime theorem (421)

$$
P, j P^{762}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{762}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{762}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{762}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{762}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{762}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(762)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,7$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7$,
(1) contain infinitely many prime solutions

The New Prime theorem (422)

$$
P, j P^{764}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that $j P^{764}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{764}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{764}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{764}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{764}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(764)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,5,383$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,383$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,383$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,383$
(1) contain infinitely many prime solutions

The New Prime theorem (423)

$$
P, j P^{766}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{766}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{766}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{766}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
$P_{\text {such that each of } j p^{766}+k-j \text { is a prime. }}^{+}$
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{766}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(766)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (424)

$$
P, j P^{768}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{768}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{768}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{768}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{768}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{768}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(768)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,5,7,13,17,97,193,257,769$. From (2) and(3) we have $J_{2}(\omega)=0$
we prove that for $k=3,5,7,13,17,97,193,257,769$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,13,17,97,193,257,769$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,13,17,97,193,257,769$
(1) contain infinitely many prime solutions

The New Prime theorem (425)

$$
P, j P^{770}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{770}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{770}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{770}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{770}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{770}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(770)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,11,23,71$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,11,23,71$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,11,23,71$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,11,23,71$,
(1) contain infinitely many prime solutions

The New Prime theorem (426)

$$
P, j P^{772}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{772}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{772}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{772}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{772}{ }_{+} k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{772}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(772)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,5,773$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,773$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,773$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,773$
(1) contain infinitely many prime solutions

The New Prime theorem (427)

$$
P, j P^{774}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{774}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{774}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{774}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{774}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{774}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(774)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,7,19$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,19$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,19$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7,19$,
(1) contain infinitely many prime solutions

The New Prime theorem (428)

$$
P, j P^{776}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{776}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{776}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{776}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{776}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{776}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(776)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,389$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,389$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,389$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$

We prove that for $k \neq 3,5,389$
(1) contain infinitely many prime solutions

The New Prime theorem (429)

$$
P, j P^{778}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{778}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{778}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{778}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{778}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{778}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(778)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$

We prove that for $k>3$,
(1) contain infinitely many prime solutions

The New Prime theorem (430)

$$
P, j P^{780}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that $j P^{780}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{780}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{780}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{780}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{780}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(780)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where

$$
\begin{equation*}
\phi(\omega)=\prod_{P}(P-1) \tag{6}
\end{equation*}
$$

Example 1. Let $k=3,5,7,11,13,31,53,61,79,131,157$. From (2) and(3) we have $J_{2}(\omega)=0$
we prove that for $k=3,5,7,11,13,31,53,61,79,131,157$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,11,13,31,53,61,79,131,157$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,11,13,31,53,61,79,131,157$,
(1) contain infinitely many prime solutions

The New Prime theorem (431)

$$
P, j P^{782}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{782}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{782}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{782}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{782}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{782}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(782)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,47$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,47$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,47$.

From (2) and (3) we have

$$
\begin{equation*}
J_{2}(\omega) \neq 0 \tag{8}
\end{equation*}
$$

We prove that for $k \neq 3,47$,
(1) contain infinitely many prime solutions

The New Prime theorem (432)

$$
P, j P^{784}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{784}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{784}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{784}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
P such that each of $j p^{784}+k-j$ is a prime.
If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{784}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(784)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,5,17,29,113,197$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5,17,29,113,197$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,17,29,113,197$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,17,29,113,197$,
(1) contain infinitely many prime solutions

The New Prime theorem (433)

$$
P, j P^{786}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{786}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{786}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{786}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{786}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{786}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(786)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3,7,263,787$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,263,787$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,263,787$.

From (2) and (3) we have

$$
\begin{equation*}
J_{2}(\omega) \neq 0 \tag{8}
\end{equation*}
$$

We prove that for $k \neq 3,7,263,787$,
(1) contain infinitely many prime solutions

The New Prime theorem (434)

$$
P, j P^{788}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{788}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{788}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{788}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{788}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{788}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(788)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,5$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5$
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5$,
(1) contain infinitely many prime solutions

The New Prime theorem (435)

$$
P, j P^{790}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{790}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{790}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{790}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{790}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{790}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(790)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,11$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,11$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,11$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,11$,
(1) contain infinitely many prime solutions

The New Prime theorem (436)

$$
P, j P^{792}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{792}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{792}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\begin{aligned} & \omega=\prod_{P} P\end{aligned}, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{792}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{792}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{792}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(792)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,7,13,19,37,67,73,199,397$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for

$$
k=3,5,7,13,19,37,67,73,199,397
$$

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,7,13,19,37,67,73,199,397$
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,7,13,19,37,67,73,199,397$,
(1) contain infinitely many prime solutions

The New Prime theorem (437)

$$
P, j P^{794}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{794}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{794}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{794}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{794}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{794}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(794)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$
Example 1. Let $k=3$. From (2) and(3) we have

$$
\begin{equation*}
J_{2}(\omega)=0 \tag{7}
\end{equation*}
$$

we prove that for $k=3$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k>3$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k=3$,
(1) contain infinitely many prime solutions

The New Prime theorem (438)

$$
P, j P^{796}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{796}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{796}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{796}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{796}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{796}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(796)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,797$. From (2) and(3) we have

$$
\begin{equation*}
J_{2}(\omega)=0 \tag{7}
\end{equation*}
$$

we prove that for $k=3,5,797$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,5,797$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,797$,
(1) contain infinitely many prime solutions

The New Prime theorem (439)

$$
P, j P^{798}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{798}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.
$P, j P^{798}+k-j(j=1, \cdots, k-1)$.
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{798}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{798}+k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\mid\left\{P \leq N: j P^{798}+k-j=\right.$ prime $\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k-1}}{(798)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}\right.$
where $\phi(\omega)=\prod_{P}(P-1)$.

Example 1. Let $k=3,7,43$. From (2) and(3) we have
$J_{2}(\omega)=0$
we prove that for $k=3,7,43$,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let $k \neq 3,7,43$.
From (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,7,43$,
(1) contain infinitely many prime solutions

The New Prime theorem (440)

$$
P, j P^{800}+k-j(j=1, \cdots, k-1)
$$

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove that $j P^{800}+k-j$ contain infinitely many prime solutions and no prime solutions.
Theorem. Let k be a given odd prime.

$$
\begin{equation*}
P, j P^{800}+k-j(j=1, \cdots, k-1) \tag{1}
\end{equation*}
$$

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$
where $\omega=\prod_{P} P, \quad \chi(P)$ is the number of solutions of congruence
$\prod_{j=1}^{k-1}\left[j q^{800}+k-j\right] \equiv 0(\bmod P), q=1, \cdots, P-1$
If $\chi(P) \leq P-2$ then from (2) and (3) we have
$J_{2}(\omega) \neq 0$
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P such that each of $j p^{800}{ }_{+} k-j$ is a prime.

If $\chi(P)=P-1$ then from (2) and (3) we have
$J_{2}(\omega)=0$
We prove that (1) contain no prime solutions [1,2]
If $J_{2}(\omega) \neq 0$ then we have asymptotic formula [1,2]
$\pi_{k}(N, 2)=\left|\left\{P \leq N: j P^{800}+k-j=\operatorname{prime}\right\}\right| \sim \frac{J_{2}(\omega) \omega^{k-1}}{(800)^{k-1} \phi^{k}(\omega)} \frac{N}{\log ^{k} N}$
where $\phi(\omega)=\prod_{P}(P-1)$.
Example 1. Let $k=3,5,11,17,41,101,401$. From (2) and(3) we have

$$
\begin{equation*}
J_{2}(\omega)=0 \tag{7}
\end{equation*}
$$

we prove that for $k=3,5,11,17,41,101,401$ ，
（1）contain no prime solutions． 1 is not a prime．
Example 2．Let $k \neq 3,5,11,17,41,101,401$ ．
From（2）and（3）we have
$J_{2}(\omega) \neq 0$
We prove that for $k \neq 3,5,11,17,41,101,401$ ，
（1）contain infinitely many prime solutions
Remark．The prime number theory is basically to count the Jiang function $J_{n+1}(\omega)$ and Jiang prime $k_{\text {－tuple }}$ singular series $\sigma(J)=\frac{J_{2}(\omega) \omega^{k-1}}{\phi^{k}(\omega)}=\prod_{P}\left(1-\frac{1+\chi(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}$ ［1，2］，which can count the number of prime numbers．The prime distribution is not random．But Hardy－Littlewood prime k－tuple singular series $\sigma(H)=\prod_{P}\left(1-\frac{v(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}$ is false［3－17］，which cannot count the number of prime numbers［3］．

References

1．Chun－Xuan Jiang，Foundations of Santilli＇s isonumber theory with applications to new cryptograms，Fermat＇s theorem and Goldbach＇s conjecture．Inter．Acad．Press， 2002， MR2004c：11001， （http：／／www．i－b－r．org／docs／jiang．pdf）
（http：／／www．wbabin．net／math／xuan13．pdf）（http：／／vixra． org／numth／）．
2．Chun－Xuan Jiang，Jiang＇s function $J_{n+1}(\omega)$ in prime distribution．（http：／／www．wbabin．net／math／xuan2．pdf．） （http：／／wbabin．net／xuan．htm\＃chun－xuan．）（http：／／vixra．or g／numth／）
3．Chun－Xuan Jiang，The Hardy－Littlewood prime k
－tuple conjectnre
is
false．（http：／／wbabin．net／xuan．htm\＃ chun－xuan）（http：／／vixra．org／numth／）．
4．G．H．Hardy and J．E．Littlewood，Some problems of ＂Partitio Numerorum＂，III：On the expression of a number as a sum of primes．Acta Math．，44（1923）1－70．
5．W．Narkiewicz，The development of prime number theory．From Euclid to Hardy and Littlewood． Springer－Verlag，New York，NY．2000，333－353．
6．B．Green and T．Tao，Linear equations in primes．Ann． Math，171（2010）1753－1850．
7．D．Goldston，J．Pintz and C．Y．Yildirim，Primes in tuples I．Ann．Math．，170（2009）819－862．
8．T．Tao．Recent progress in additive prime number theory，preprint．2009．http：／／terrytao．files．wordpress． com／2009／08／prime－number－theory 1．pdf．
9．J．Bourgain，A．Gamburd，P．Sarnak，Affine linear sieve， expanders，and sum－product，Invent math， 179
（2010）559－644．
10．K．Soundararajan，The distribution of prime numbers， In：A．Granville and Z．Rudnik（eds），Equidistribution in number theory，an Introduction，59－83， 2007 Springer．
11．B．Kra，The Green－Tao theorem on arithmetic progressions in the primes：an ergodic point of view， Bull．Amer．Math．Soc．，43（2006）3－23．
12．K．Soundararajan，Small gaps between prime numbers： The work of Goldston－Pintz－Yildirim，Bull．Amer． Math．Soc．，44（2007）1－18．
13．D．A．Goldston，S．W．Graham，J．Pintz and C．Y． Yildirim，Small gaps between products of two primes， Proc．London Math．Soc．，98（2009）741－774．
14．B．Green and T．Tao，The primes contain arbitrarily long arithmetic progressions，Ann．Math．，167（2008） 481－547．
15．D．A．Goldston，J．Pintz and C．Y．Yildirim，Primes in tuples II，Acta Math．，204（2010），1－47．
16．B．Green，Generalising the Hardy－Littlewood method for primes，International congress of mathematicians， Vol，II，373－399，Eur．Math．Soc．，Zurich， 2006.
17．T．Tao，The dichotomy between structure and randomness，arithmetic progressions，and the primes， International congress of mathematicians Vol．I， 581－608，Eur．Math．Soc．，Zurich 2006.
18．Jiang，Chun－Xuan（蒋春暄）．The New Prime theorems （391）－（440）．Academ Arena 2016；8（1s）：141－193． （ISSN 1553－992X）． http：／／www．sciencepub．net／academia． 4. doi：10．7537／marsaaj0801s16．04．

