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However, the interpolated datasets of bioclimatic variables are known to cause over-fitting of the models mainly due 
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South East Asia region are screened regarding the presence of multicollinearity or redundancy to serve as a 
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1. Introduction 

Bioclimatic variables represent important 
explanatory variables to understand species 
distribution (Busby 1986, Nix 1986). They express 
spatial variation in annual means, seasonality and 
extreme or limiting climatic factors and represent 
biologically meaningful parameters for characterizing 
species distributions (Saatchi et al., 2008). The advent 
of ecological niche modeling/ species distribution 
modeling/ habitat suitability modeling has opened an 
array of utility of bioclimatic variables. However, 
being derived from interpolated datasets, these 19 
bioclimatic variables are not free from drawbacks, one 
of them being redundancy/ multicollinearity (Arif, 
Adams and Wicknick, 2007). 

For modeling ENM/SDM if the explanatory 
variables are used without screening then it may 
inadvertently lead to inclusion of those variables also 
which are highly correlated and have basically same 
set of information. In such instance, these variables 
may incline statistical weight towards themselves, and 
when it happens, it may undesirably lead to over-
fitting of the model (Anderson and Gonzales, 2011; 
van Gils et al., 2014). 

However, there are methods to counter such 
anomaly by selecting few explanatory/ predictor 
variables making the resultant models more 
‘parsimonius’ yet less ‘over-fitted’. The methods/ 
tools to minimize redundancy of explanatory 
bioclimatic variables include the three-way Mantel 

test where the relationship between the two variables 
are evaluated while holding geographic distance 
constant (Legendre and Legendre, 1998); ENFA 
analysis with BIOMAPPER 4.0 (Hirzel, Hausser and 
Perrin, 2007); MaxEnt-based stepwise selection of 
variables (Parolo, Rossi and Ferrarini, 2008); 
Correlation analysis through ENM Tools (Warren, 
Glor and Turelli, 2010); Principal Component 
Analysis of variables (Rangel, Diniz-Filho and Bini, 
2010; Fourcade et al., 2014); Maxent Variable 
Selection package in R platform (Jueterbock et al., 
2016); VIF function in the vegan package in R 
(Oksanen et al., 2016); SDM toolbox for ArcGIS 
(ESRI) ver 10, etc. 

The current analysis makes use of ENM Tools 
(Warren, Glor and Turelli, 2010) for correlative 
screening of bioclimatic variables, principally due to 
its integrative capacity to MaxEnt program, ease of its 
graphic user interface (knowledge of programming 
language not necessary), integrated capacity of 
criterion-based model selection using AIC, AICc, and 
BIC (Burnham and Anderson, 2002), and ability to 
handle and output large data size. 

The current work is to screen the redundant 
bioclimatic variables of South and South East Asia 
and to suggest a working set of bioclimatic variables 
for easy reference to those involved in ENM/ SDM/ 
habitat suitability modeling in the region and to set a 
protocol to screen explanatory variables for model 
building elsewhere. 
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2. Material and Methods 
Worldclim (Hijmans et al., 2005) hosts the 

interpolated climatic records from a global network of 
4000 climate stations, with time series of 1950-2000. 
Bioclimatic variables (Busby 1986; Nix 1986; 
Hijmans et al. 2005) are one of the output of 
worldclim which are available in tiles and for South 
and South East Asia, tiles of 18, 19, 28 and 29 at a 
spatial resolution of 30 arc seconds (~1 × 1 km 
resolution) were obtained following Pradhan 
(2015).The current investigation doesn’t incorporate 
climatic information of tile 110 and 210, hence 
geographic space of East Asian countries like Taiwan, 
Japan etc. could not be included in the current 
analysis. 

Each of the 19 downloaded bioclimatic variables 
of each tile was merged with same variable of the 
other three tile (i.e. bio 1 of tile 18 with bio 1 of 19, 28 
and 29) to obtain variable for larger coverage (South 
and South East Asia; Latitude 0˚ to 60˚, Longitude 60˚ 
to 120˚). They were then converted to ESRI ASC (or 
ESRI ASCII) in DIVA-GIS version 7.5 (Hijmans et 
al., 2001) for analyzing correlation in ENM Tools 
(Warren, Glor and Turelli, 2010). Various margin of 
Pearson correlation coefficient ‘r’ for screening of 
variables has been suggested viz. >0.5 by Václavík 
and Meentemeyer (2009), r>0.7 by Dormann et al. 
(2013) and Rotllan-Puig and Traveset (2016); >0.9 by 
Jueterbock et al. (2016). However, the current analysis 
uses the standardized values of r>0.8, r2>0.8 and VIF 
value of >10 for screening. After obtaining Pearson 
correlation coefficient ‘r’ values for individual set of 
correlation, coefficient of determination ‘r2’ values 
(r×r) were derived, followed by the derivation of the 
VIF by the formula [1/ (1-r2)] (Zuur, Ieno and Elphick, 
2010). VIF indicates the degree to which the standard 
errors are inflated due to the levels of 
multicollinearity. VIF values of 10 were taken as 
indicative of problematic collinearity/ redundancy 
(Montgomery and Peck, 1992). 
 
3. Results 

The correlation was performed amongst 19 
bioclimatic variables and the values of r are presented 
in Table 1, values of the corresponding r2 are 
presented in Table 2 and values of the corresponding 
VIF are presented in Table 3. Individual details of 
correlation analysis of the 19 bioclimatic variables are 
as follows. 

Bio 1 (Annual Mean Temperature): Bio 1 is 
correlated with bio 5 (Max Temperature of Warmest 
Month) via r>0.8, while it is correlated with bio 9 
(Mean Temperature of Driest Quarter) and bio 10 
(Mean Temperature of Warmest Quarter) via r>0.8, 
r2>0.8, and it is correlated with bio 6 (Min 
Temperature of Coldest Month) and bio 11 (Mean 

Temperature of Coldest Quarter) via r>0.8, r2>0.8, 
VIF>10. Considering negative effects of VIF and 
notwithstanding any major necessity of inclusion, bio 
1 is not to be used alongside bio 6 or bio 11 for a 
modeling procedure. 

Bio 2 (Mean Monthly Temperature Range): Bio 
2 is not correlated (r<0.8, r2<0.8, VIF<10) with any 
other variable hence could be used in any combination 
with other bioclimatic variables. 

Bio 3 (Isothermality): Bio 3 is not correlated 
(r<0.8, r2<0.8, VIF<10) with any other variable hence 
could be used in any combination with other 
bioclimatic variables. 

Bio 4 (Temperature Seasonality): Bio 4 is 
correlated with bio 6 (Min Temperature of Coldest 
Month) and bio 11 (Mean Temperature of Coldest 
Quarter) via r2>0.8, while it is correlated with bio 7 
(Temperature Annual Range) via r>0.8, r2>0.8, 
VIF>10. Considering negative effects of VIF and 
notwithstanding any major necessity of inclusion, bio 
4 is not to be used alongside bio 7 for a modeling 
procedure. 

Bio 5 (Max Temperature of Warmest Month): 
Bio 5 is correlated with bio 1 (Annual Mean 
Temperature) via r2>0.8, while it is correlated with bio 
10 (Mean Temperature of Warmest Quarter) via r>0.8, 
r2>0.8, VIF>10. Considering negative effects of VIF 
and notwithstanding any major necessity of inclusion, 
bio 5 is not to be used alongside bio 10 for a modeling 
procedure. 

Bio 6 (Min Temperature of Coldest Month): Bio 
6 is correlated with bio 9 (Mean Temperature of 
Driest Quarter) via r>0.8, r2>0.8; with bio 4 
(Temperature Seasonality) and bio 7 (Temperature 
Annual Range) via r2>0.8, while it is correlated with 
bio 1 (Annual Mean Temperature) and bio 11 (Mean 
Temperature of Coldest Quarter) via r>0.8, r2>0.8, 
VIF>10. Considering negative effects of VIF and 
notwithstanding any major necessity of inclusion, bio 
6 is not to be used alongside bio 1 or bio 11 for a 
modeling procedure. 

Bio 7 (Temperature Annual Range): Bio 7 is 
correlated with bio 6 (Min Temperature of Coldest 
Month) via r2>0.8, while it is correlated with bio 4 
(Temperature Seasonality) via r>0.8, r2>0.8, VIF>10. 
Considering negative effects of VIF and 
notwithstanding any major necessity of inclusion, bio 
7 is not to be used alongside bio 4 for a modeling 
procedure. 

Bio 8 (Mean Temperature of Wettest Quarter): 
Bio 8 is not correlated (r<0.8, r2<0.8, VIF<10) with 
any other variable hence could be used in any 
combination with other bioclimatic variables. 

Bio 9 (Mean Temperature of Driest Quarter): 
Bio 9 is correlated with bio 1 (Annual Mean 
Temperature), bio 6 (Min Temperature of Coldest 
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Month) and bio 11 (Mean Temperature of Coldest 
Quarter) via r>0.8, r2>0.8. 

Bio 10 (Mean Temperature of Warmest Quarter): 
Bio 10 is correlated with bio 1 (Annual Mean 
Temperature) via r>0.8, r2>0.8; while it is correlated 
with bio 5 (Max Temperature of Warmest Month) via 
r>0.8, r2>0.8, VIF>10. Considering negative effects of 
VIF and notwithstanding any major necessity of 
inclusion, bio 10 is not to be used alongside bio 5 for a 
modeling procedure. 

Bio 11 (Mean Temperature of Coldest Quarter): 
Bio 11 is correlated with bio 9 (Mean Temperature of 
Driest Quarter) via r>0.8, r2>0.8; with bio 4 
(Temperature Seasonality) via r2>0.8, while it is 
correlated with bio 1 (Annual Mean Temperature) and 
bio 6 (Min Temperature of Coldest Month) via r>0.8, 
r2>0.8, VIF>10. Considering negative effects of VIF 
and notwithstanding any major necessity of inclusion, 
bio 11 is not to be used alongside bio 1 or bio 6 for a 
modeling procedure. 

Bio 12 (Annual Precipitation): Bio 12 is 
correlated with bio 13 (Precipitation of Wettest 
Month) and bio 16 (Precipitation of Wettest Quarter) 
via r>0.8, r2>0.8; while it is correlated with bio 18 via 
r2>0.8. 

Bio 13 (Precipitation of Wettest Month): Bio 13 
is correlated with bio 12 (Annual Precipitation) via 
r>0.8, r2>0.8; while it is correlated with bio 16 
(Precipitation of Wettest Quarter) via r>0.8, r2>0.8, 
VIF>10. Considering negative effects of VIF and 
notwithstanding any major necessity of inclusion, bio 
13 is not to be used alongside bio 16 for a modeling 
procedure. 

Bio 14 (Precipitation of Driest Month): Bio 14 is 
correlated with bio 17 (Precipitation of Driest Quarter) 
via r>0.8, r2>0.8, VIF>10. Considering negative 
effects of VIF and notwithstanding any major 
necessity of inclusion, bio 14 is not to be used 
alongside bio 17 for a modeling procedure. 

Bio 15 (Precipitation Seasonality): Bio 15 is not 
correlated (r<0.8, r2<0.8, VIF<10) with any other 
variable hence could be used in any combination with 
other bioclimatic variables. 

Bio 16 (Precipitation of Wettest Quarter): Bio 16 
is correlated with bio 12 (Annual Precipitation) via 
r>0.8, r2>0.8, while it is correlated with bio 13 
(Precipitation of Wettest Month) via r>0.8, r2>0.8, 
VIF>10. Considering negative effects of VIF and 
notwithstanding any major necessity of inclusion, bio 
16 is not to be used alongside bio 13 for a modeling 
procedure. 

Bio 17 (Precipitation of Driest Quarter): Bio 17 
is correlated with bio 14 (Precipitation of Driest 
Month) via r>0.8, r2>0.8, VIF>10. Considering 
negative effects of VIF and notwithstanding any major 

necessity of inclusion, bio 17 is not to be used 
alongside bio 14 for a modeling procedure. 

Bio 18 (Precipitation of Warmest Quarter): Bio 
18 is correlated with bio 12 (Annual Precipitation) via 
r>0.8. 

Bio 19 (Precipitation of Coldest Quarter): Bio 
19 is not correlated (r<0.8, r2<0.8, VIF<10) with any 
other variable hence could be used in any combination 
with other bioclimatic variables. 
 
4. Discussions 

Through the current analysis, an array of 
multicollinearity has been observed among the 
bioclimatic variables of South and South East Asia. 
Whenever there is a necessity of removal from each 
pair of redundant variables, the first choice should be 
to remove the variable from pairs having VIF values 
>10. The second choice should be from the pair of 
variables with both r and r2 having value of >0.8 
(though they may not have VIF>10); thirdly the 
variables from the pair having only r>0.8 should be 
removed (though they may not have r2>0.8 and 
VIF>10). 

Variable pairs with the value of only r2>0.8 
(r<0.8, VIF<10) should be considered with care as r2 

represent the proportion/ percentage of variation 
(fluctuation) of one variable that is predictable from 
another variable. As evident from Table 1 and Table 
2, the r values of some of the negatively correlated 
variables like bio 4 and bio 6 (r=-0.90155831752501); 
bio 4 and bio 11 (r= -0.909186862266398); bio 6 and 
bio 7 (r= -0.896997609716365) when multiplied by 
the power of 2, return their values (i.e. r2) as 0.81281, 
0.82662 and 0.8046 respectively. It may be suggested 
to keep biologically meaningful yet negatively 
correlated variables because they may possess some 
unmeasured information not present in other variables. 

The preliminary MaxEnt runs (minimum of 
triplicate runs), may be helpful to identify the least 
significant variables which may further be removed 
based upon the individual response of variable versus 
the species occurrence/ percentage contribution to the 
model (Jueterbock et al., 2016). 

Even though the explanatory variables are 
screened, it may be very helpful to take advice from 
the expert of the species/ genera/ family regarding 
choice of variables for model building of a particular 
species, which may add to the incorporation of the 
variables that are limiting/ extreme events/ have more 
biological meaning to the distribution of the target 
species (Mbatudde et al. 2012; Pradhan et al. 2012). 
In this regard ‘annual average’ factors like average 
temperatures and precipitations may have little 
meaning. Composite variables based on the 
precipitation of the warmest or coldest period or 
temperature of the wettest or driest period could be 
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avoided as these datasets may be internally flawed. 
Therefore, the average temperature of the warmest 
period, the maximum temperature of the warmest 
month, minimum temperature of the coldest period, 

temperature variability, precipitation variability, 
precipitation of the wettest and driest periods etc may 
be used in combination unless otherwise VIF and r 
values restrict them.  

 
 
Table 1. Table showing values of Pearson correlation coefficient 'r' of the pairs of bioclimatic variables. Values 
more than 0.8 and indicated as bold. 
Variables Bio 19 Bio 1 Bio 2 Bio 3 Bio 4 Bio 5 Bio 6 Bio 7 Bio 8 Bio 9 Bio 10 Bio 11 Bio 12 Bio 13 Bio 14 Bio 15 Bio 16 Bio 17 Bio 18 
Bio 19 1.000 0.294 -0.386 0.556 -0.376 0.107 0.379 -0.438 0.129 0.311 0.175 0.342 0.595 0.399 0.753 -0.309 0.401 0.768 0.283 

Bio 1 
  

-0.280 0.659 -0.795 0.839 0.971 -0.773 0.709 0.907 0.906 0.975 0.580 0.587 0.223 0.176 0.590 0.257 0.346 

Bio 2 
   

-0.133 0.332 -0.050 -0.395 0.494 -0.266 -0.202 -0.183 -0.317 -0.615 -0.468 -0.457 0.491 -0.493 -0.485 -0.526 
Bio 3 

    
-0.861 0.276 0.752 -0.829 0.348 0.643 0.362 0.765 0.664 0.549 0.520 0.159 0.562 0.544 0.406 

Bio 4 
     

-0.355 -0.902 0.980 -0.407 -0.774 -0.465 -0.909 -0.697 -0.667 -0.306 -0.223 -0.680 -0.344 -0.487 
Bio 5 

      
0.700 -0.312 0.678 0.749 0.981 0.706 0.231 0.282 0.035 0.108 0.274 0.052 0.005 

Bio 6 
       

-0.897 0.626 0.905 0.792 0.995 0.678 0.650 0.311 0.127 0.659 0.349 0.429 

Bio 7 
        

-0.414 -0.740 -0.446 -0.887 -0.759 -0.690 -0.392 -0.102 -0.707 -0.432 -0.567 
Bio 8 

         
0.395 0.741 0.631 0.444 0.466 0.176 0.182 0.464 0.196 0.363 

Bio 9 
          

0.791 0.906 0.484 0.479 0.189 0.106 0.484 0.221 0.215 

Bio 10 
           

0.791 0.360 0.389 0.117 0.095 0.385 0.139 0.151 
Bio 11 

            
0.651 0.644 0.267 0.195 0.651 0.304 0.410 

Bio 12 
             

0.898 0.600 -0.077 0.927 0.639 0.811 

Bio 13 
              

0.266 0.210 0.991 0.308 0.729 
Bio 14 

               
-0.455 0.299 0.994 0.407 

Bio 15 
                

0.172 -0.452 -0.017 

Bio 16 
                 

0.341 0.766 
Bio 17 

                  
0.440 

Bio 18 
                  

1.000 

 
Table 2. Table showing values of Pearson coefficient of determination ‘r2’ for the bioclimatic variable pairs. Values 
more than 0.8 and indicated as bold. 

Variables 
Bio 
19 

Bio 1 Bio 2 Bio 3 Bio 4 Bio5 Bio 6 Bio 7 Bio 8 Bio 9 
Bio 
10 

Bio 
11 

Bio 
12 

Bio 
13 

Bio 
14 

Bio 
15 

Bio 
16 

Bio 
17 

Bio 
18 

Bio 19 1.000 0.086 0.149 0.309 0.141 0.011 0.144 0.192 0.017 0.097 0.030 0.117 0.354 0.159 0.567 0.095 0.161 0.590 0.080 
Bio 1 

  
0.079 0.434 0.632 0.704 0.943 0.597 0.502 0.822 0.821 0.951 0.337 0.344 0.050 0.031 0.348 0.066 0.120 

Bio 2 
   

0.018 0.110 0.003 0.156 0.244 0.071 0.041 0.033 0.100 0.379 0.219 0.209 0.241 0.243 0.235 0.277 
Bio 3 

    
0.741 0.076 0.565 0.688 0.121 0.414 0.131 0.585 0.441 0.301 0.271 0.025 0.316 0.296 0.165 

Bio 4 
     

0.126 0.813 0.960 0.166 0.600 0.216 0.827 0.486 0.444 0.094 0.050 0.462 0.118 0.238 
Bio 5 

      
0.490 0.098 0.460 0.560 0.963 0.498 0.053 0.080 0.001 0.012 0.075 0.003 0.000 

Bio 6 
       

0.805 0.392 0.818 0.627 0.991 0.459 0.423 0.097 0.016 0.435 0.121 0.184 
Bio 7 

        
0.171 0.548 0.199 0.787 0.575 0.477 0.154 0.010 0.500 0.186 0.321 

Bio 8 
         

0.156 0.549 0.398 0.197 0.218 0.031 0.033 0.215 0.038 0.132 
Bio 9 

          
0.625 0.821 0.234 0.230 0.036 0.011 0.234 0.049 0.046 

Bio 10 
           

0.626 0.129 0.151 0.014 0.009 0.148 0.019 0.023 
Bio 11 

            
0.424 0.414 0.071 0.038 0.424 0.092 0.168 

Bio 12 
             

0.806 0.360 0.006 0.859 0.408 0.658 
Bio 13 

              
0.071 0.044 0.982 0.095 0.532 

Bio 14 
               

0.207 0.089 0.988 0.166 
Bio 15 

                
0.030 0.204 0.000 

Bio 16 
                 

0.117 0.586 
Bio 17 

                  
0.194 

Bio 18 
                  

1.000 

 
Table 3. Table showing values of Variance Inflation Factor (VIF) of the pairs of bioclimatic variables. Values more 
than 10 are indicated in bold. 

Variables Bio 1 Bio 2 Bio 3 Bio 4 Bio 5 Bio 6 Bio 7 Bio 8 Bio 9 Bio 10 Bio 11 
Bio 
12 

Bio 
13 

Bio 
14 

Bio 
15 

Bio 16 Bio 17 
Bio 
18 

Bio 19 1.095 1.175 1.448 1.164 1.012 1.168 1.238 1.017 1.107 1.031 1.132 1.549 1.189 2.308 1.105 1.192 2.441 1.087 
Bio 1 

 
1.085 1.767 2.714 3.377 17.515 2.480 2.009 5.619 5.581 20.208 1.508 1.525 1.052 1.032 1.535 1.071 1.136 

Bio 2 
  

1.018 1.124 1.003 1.185 1.323 1.076 1.043 1.035 1.112 1.609 1.281 1.264 1.317 1.321 1.307 1.383 
Bio 3 

   
3.863 1.083 2.300 3.202 1.138 1.706 1.151 2.409 1.789 1.431 1.371 1.026 1.463 1.420 1.198 

Bio 4 
    

1.144 5.342 25.092 1.198 2.498 1.276 5.768 1.945 1.800 1.103 1.052 1.859 1.134 1.312 
Bio 5 

     
1.962 1.108 1.851 2.275 26.877 1.992 1.056 1.087 1.001 1.012 1.081 1.003 1.000 

Bio 6 
      

5.118 1.646 5.503 2.684 106.662 1.849 1.733 1.107 1.016 1.769 1.138 1.225 
Bio 7 

       
1.206 2.211 1.249 4.702 2.355 1.911 1.181 1.011 2.002 1.229 1.473 

Bio 8 
        

1.185 2.218 1.660 1.245 1.278 1.032 1.034 1.275 1.040 1.151 
Bio 9 

         
2.667 5.587 1.306 1.298 1.037 1.011 1.306 1.052 1.049 

Bio 10 
          

2.674 1.149 1.178 1.014 1.009 1.174 1.020 1.023 
Bio 11 

           
1.737 1.707 1.077 1.040 1.735 1.102 1.202 

Bio 12 
            

5.164 1.564 1.006 7.078 1.690 2.921 
Bio 13 

             
1.076 1.046 56.443 1.105 2.136 

Bio 14 
              

1.261 1.098 82.397 1.199 
Bio 15 

               
1.031 1.256 1.000 

Bio 16 
                

1.132 2.415 
Bio 17 

                 
1.240 

 
 

However, working only with non-redundant ones 
may not always yield good results as some of the 
redundant variables may act as good ecological 
descriptors. It should be noted that sometimes over-

fitting may be the result of selecting too much 
aggregate sampling sites (sample/observation bias). In 
this regard, mantel test with SAM 4.0 (Rangel, Diniz-
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Filho and Bini, 2010) may be performed to check 
spatial autocorrelation, if any. 

In any case, if multiple models (randomly 
subsampled) are built for the same species (with RAW 
output in ASC format) utilizing multiple sets of non 
redundant bioclimatic variables, the final model may 
be selected based upon lowest AICc score, highest 
AUC value and incorporating lesser number of 
correlated variables (r>0.8, r2>0.8) (Warren, Glor and 
Turelli, 2010). The methodology of the current work 
may be extended to other areas of the world and the 
future climate scenarios as well for the screening of 
possible redundancy and decreasing over-fitting of 
ecological niche models. 
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