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Abstract: The target is to achieve some adaptive & robust controller for blood glucose regulation in presence of all 
sorts of disturbances in terms of physiological parameter variations,process and measurement noises. The state of 
the art in closed loop control of drug delivery using implant able has been reviewed & H controller for the device 
has been designed & tested. The designed of the controller is mainly based on non linear modeling & robust 
structure constrained controller & also related problems like sample data control etc. The robust closed loop control 
algorithms for insulin infusion to maintain normoglycaemia in patient have been developed in one important 
method, that is H∞ control for the state feed back design with parameter uncertainties & external disturbances to 
assure robust closed loop stability in all possible patient conditions. 
[A K Patra, R K Samantaray, P K Rout. Design & Analysis Of H Controller For Blood Glucose Regulation In 
Type-1 Diabetes Patient. Researcher 2013;5(5):26­34]. (ISSN: 1553­9865). http://www.sciencepub.net/researcher. 
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1. Introduction  

Diabetes Mellitus is one of the most 
common chronic diseases. The disease is caused by 
the inability of the pancreas to produce a sufficient 
amount of insulin, which leads to hyperglycemia or 
uncontrolled increase of blood glucose (BG) level 
exceeding 144 mg/dl, unless the patient administers 
insulin externally. For intensive treatment of 
diabetes, controlled release of insulin into the 
bloodstream at programmed rate is necessary for an 
extended period of time. The glucose metabolism of a 
diabetic patient is a complex nonlinear process 
closely linked to a number of internal factors, which 
are not easily accessible for measurement. Only with 
accessible information like occasional blood glucose 
measurements, information about food intake and 
physical exercise ­ the system appears highly 
stochastic and the quantity of interest, the BG 
concentration is difficult to model and predict. 
Different models of the diabetic patient has been used 
in several literature [1 ­ 7] to find the dynamics of 
various preparations of insulin to regulate BG. 

A suitable H controller for closed loop 
adjustments of discrete time insulin infusion rate is 
used. The following sections give the clinical 
background of glucose­insulin interaction, model 
description, anatomical basis and mathematical 
equations governing the physiological process, 
insulin dispenser system and the SIMULINK 
realization of the whole system. A linearized patient 
model has also been proposed for possible linear 
controller applications. 
 

 
2. Clinical background  

Diabetes Mellitus is a major chronic disease 
in industrial countries. It is group of clinical disorders 
of carbohydrate, fat & protein metabolism 
characterized by chronic high blood glucose level due 
to either deficiency of insulin in the body or 
resistance of it’s action or both. This occurs when the 
body is unable to use glucose effectively [4­6]. 
Glucose is the main source of energy, it is required to 
body for any type of function. The BG levels are 
closely regulated in health despite the varying 
demands of food, fasting and exercise. when we take 
meal our digestive system converts meal to glucose. 
That glucose is added to venous blood & hence 
glucose level in blood stream increases At that 
moment pancreas measures the glucose level in the 
venous blood, if the glucose is high (more than 
81mg/dl), it generates insulin & injects it to venous 
blood at programmable rate to maintain proper 
insulin level. Insulin is the key hormone, some 
peripheral cells use insulin as a key to open the cells 
door for glucose transport to cells & it converts 
glucose to energy. So that peripheral cells utilize 
glucose to get energy supply with help of insulin as 
shown in figure­1. 
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Figure 1: Insulin acting as a key to open the cell door. 
 

When the glucose level is high liver absorbs 
glucose from blood stream with help of insulin & 
store it in form of glycogen. When glucose level is 
low liver converts glycogen to glucose & that 
Glucose is added to venous blood. In this way 
pancreas controls the glucose concentration in the 
venous blood. If pancreas is damaged or unable to 
inject proper amount of insulin to venous blood, 
peripheral cells do not utilize the glucose to get 
energy supply, liver does not utilize glucose & it 
produces internal sugar resulting in uncontrolled 
increase of blood glucose concentration in human 
body, that is type ­1 diabetes. Extra glucose in blood 
stream is released through urine when glucose level 
is above the renal threshold level [8­12]. 
 

For treatment of diabetes controlled release 
of insulin into the blood stream at programmed rate is 
necessary. For treatment of diabetes doctors inject 
insulin externally by the help of injection time to 
time. That is not controllable, programmable and also 
very pain full treatment. To avoid this engineers 
design a H∞ controller for type ­1 diabetes patient. 
Just like pancreas H∞ controller can estimate the 
Glucose concentration & inject insulin to venous 
blood at programmable rate. H∞ controller has three 
sections. These are sensor, insulin capsule & pump. 
H∞ controller estimates the glucose level in blood 
stream with help of sensor, if Glucose level is high it 
opens the insulin capsule gate, sufficient amount of 
insulin is injected to the blood stream by help of 
pump at programmable rate to maintain the perfect 
insulin level (As shown in figure­2). 

 
Figure 2: Schematic diagram of the micro­insulin 
dispenser 
 
3. Physiological model of glucose-insulin 
interaction process  

Figure­3 shows the flow­limited model of 
the physiological process of glucose­insulin 
interaction. In this model, the regulated output is the 
arterial glucose concentration and control input is the 
continuous insulin infusion at a regular interval of 5 
minutes from the pump in closed loop. The variables 
'glucose meal' to the 'gut' compartment and 'exercise 
condition' to periphery are added to the model as 
disturbances. 

 

  
Figure­3: compartmental model of glucose insulin 
interaction with closed loop control 
 
4. Linearized state space model of physiological 
process  

The ‘patient ­ model’ of glucose ­ insulin 
process of figure ­ 3 is a non ­ linear one with three 
inputs & one output. Our purpose in this section is to 
find a linear state space model for blood glucose 
regulation process [13] & compare with figure – 4 to 
response with that of non linear model. 
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Figure ­ 4: Patient ­ model’ block showing inputs & 
outputs with closed loop control 

 
The state­space model of the corresponding 

LTI system is expressed as:  
 

        x A x B u G w    
        y C x D u               (1) 

 
Where x is the state vector of the process, u is the 
insulin infusion inputs, w is the meal ( ) and 
exercise ( ) disturbance input vector. y is the 
measured output glucose level as shown in figure 4. 
A, B, G, C and D are the system matrices of 
appropriate order. The linearrized model of the 
system is obtained by using linmod command of 
MATLAB on the SIMULINK block ‘patient_model’ 
with three inputs and one output. The continuous 
time system matrices of equation (1) for the linear 
model of present process and implantable pump with 
fixed parameters, thus obtained are: 
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5. ‘patient model’ block diagram in algebraic 
framework 
 
 The plant transfer matrix P can be expressed as  

       
zw zu

yw yu

p p
p

p p

 
  
 

 

Where, the elements of the matrix are the transfer 
functions between inputs and outputs as shown in 
figure 4. 
 

 
Figure 5. algebraic frame work  
 
A transfer function representation of the system is 
given by  
       w + u 
        w + u                    (2) 

        u = k y 
The closed loop transfer function between the 
regulated outputs and the exogenous inputs is 
obtained as follows. First we substitute for u in the 
equation for y. 
           w  +    k y                           (3) 

          
and solve for y. 
   (1- ) y =  w → y =  w 

 
Therefore, u becomes 
u = k y = k  w                      (4) 

 
Substituting this into the equation for z, we get 
 
Z   w + k  w        

] w 

 
Finally  
 

z wZ T w , Where 

1(1 )zw z w zu yu ywT P P K P K P             (5) 

     
The above expression for the closed loop transfer 
function Tzw is called the linear fractional 
transformation (LFT). The plant can also be 
represented in state space form as 
 

 = A x +  w  +  u 
z = x +  w + u                                     (6) 
y = x  +  w + u 
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Using the packed­matrix notation, we get. 
 
 
                   
    P(s)  =    
 
 
                                  
      
6.  Problem Formulation and Assumption  
 
             The H control problem is formulated as 
follows: For stabilizing controller K(s) for the plant 
P(s) such that the ­norm of the closed loop transfer 
function Tzw is below a given level γ (a positive 
scalar). The problem is called the standard H 
control problem [14-16].The optimal H control 
problem is 
 
 
Optimal Problem  
 
 
 
Standard Problem    
 
       
For the problem to have a solution, certain 
assumptions must be satisfied. They are listed below 
after the dimensions of the various variables are 
given. 
 
Dimensions: dim x = n, dim w = , dim u = , dim 
z = , dim y =  
 
1. The pair (A, ) is stabilizable and ( , A) is 
detectable. This assumption is necessary for a 
stabilizing controller to exist. It simply guarantees 
that the controller can reach all unstable states, and 
these states show up on the measurements. 
2. rank  = ,  rank  = . These conditions are 
needed to ensure that the controllers are proper. It 
also implies that the transfer function from w to y is 
nonzero at high frequencies. Unlike the first 
assumption, which is usually satisfied, this 
assumption is frequently violated (for example if the 
original plant is strictly proper; i.e if it has more poles 
than zeros, this condition will be violated) unless the 
problem is formulated such that this condition is 
satisfied.   

 

3. 2
2

1 12

A jwI B
rank n m

C D

 
  

 
  

      For all frequencies. 

 

4. 1
2

2 21

A jwI B
rank n p

C D
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 
 

     For all frequencies  
 

5. 1 1 0D   and 2 2 0D    

 
This assumption is not needed, but it will simplify the 
equations for the solution. It also implies that the 
transfer functions from w to z and u to y roll off at 
high frequencies, respectively. 
 
7. Problem Solution   

The controller is given by (Kc corresponds 
to K, the controller gain in the LQG case) 
 

           cu K x 


     

And the state estimator is given by 

2 1 ( )ex Ax B u B w Z K y y    
     

   

 Where 2
1w B X x 




   and  

 
2

2 21 1y C x D B X x  
 

                         (7) 

            
The extra term  ŵ  is an estimate of the worst case 
input disturbance to the system  and ŷ is the output of 
the estimator.  The controller gain Kc and estimator 
gain Ke are given by 
 

12 2 12 1( )cK D B X D C                      (8) 

 Where     =   
 
  = (  + )  
  Where    =    
The term Z is given by  
 

2 1( )Z I Y X  
                           (9) 

 
The terms X and Y are solutions to the controller 
and estimator Riccati equations; i.e 
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  Where  1 12 12 12 1( )C I D D D C       

  and   1 1 2 1 2 1 2 1( )B B I D D D    

 

A         B1         B2 
 
C1      D11      D12 
 
C2      D21      D22     

  Min      ||Tzw || 
K(s) stabilizing 

       Min      ||Tzw ||  ≤ γ 
K(s) stabilizing 
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The closed loop system becomes  
 

 

1 12

2 21

0

0
cC D Kz x

w
C Dy x

      
       
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

 

 
As we had promised, the equations are quite 
complicated and messy! Finally, it can be proved that 
there exists a stabilizing compensator if and only if 
there exist positive semi­definite solutions to the two 
Rickety equations and the following conditions:  
 

2( )X Y                            (10) 

 
Where ρ ( , ) = spectral radius of ( , ) = 
largest Eigen value of ( , ) = λmax ( , ). H 
control systems are shown in figure 6. Compare these 
diagrams to see the similarities and difference 
between them. It should be fairly obvious that H 
problems cannot be solved manually. Computer 
programs such as MATLAB, programs CC, 
MATRIX and CTRL­C have special functions and 
utilities for solving these problems. For every value 
of γ two Riccati equations must be solved and  in 
addition even if the plant is first order, we still may 
need to add weighs to the system to either satisfy 
design requirements or satisfy the necessary 
assumptions for a feasible solution. This increases the 
order of the equations and makes manual solution 
almost impossible. A summary of steps is given 
below. 
 

1. Set up the problem to obtain the state space 
representation for P(s). 

2. Check if the assumptions (the rank 
conditions) are satisfied. If they are not, 
reformulate the problem by adding weighs 
or adding (fictitious) inputs or outputs. 

 
3. Select a large positive value for γ. 
4. Solve the two Riccati equations. Determine 

if the solutions are positive semi­definite; 
also verify that the spectral radius condition 
is met. 

If all the above conditions are satisfied, lower the 
value of γ. otherwise increase it. Repeat steps 3 and 4 
until either an optimal or satisfactory solution is 
obtained.  
              

 
Fig 6. Block diagram showing the structure of H 
controller system   
 
8. H∞ Controller design for insulin delivery 
system in diabetic patient  

Here we consider that linearized model of 
the physiological process glucose insulin interaction 
has linear ordinary differential equations. Hear the 
deterministic control input is the insulin infusion and 
we have identified at least two disturbance inputs as 
the meal disturbance ( ) and exercise disturbance 
( ). Let us consider the state space representation of 
plant with x state vector; u the control input, w the 
identified process disturbance vector and n the 
measurement noise with zero mean as: 
 
 x A x B u G w    
 y C x D u                                                  (11)  

  
For design of H∞ controller we have to convert given 
9th order physiological system to following state 
space form 
                 = A x  +  w   +  u 
                z = x  +  w + u                        (12) 
                y = x  +  w + u 
 
 

 
Figure 7. Block diagram of blood glucose regulation 
by H control 
 

The exogenous input vector that is denoted 
by w, where w1 is the disturbance of meal, w2 is the 
disturbance of exercise, n is the sensor noise. Po is 
the plant output (glucose level), u is the actuator 
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signal  (insulin dose). These are mentioned in matrix 
form.       
    
 
             
         w =                  z =   
  
 
   Step-1 : 
 
     = A x  +  w   +  u 
 

  
 
 
Step-2: 
 
 

  
 
 

 y = x  +  w + u = 0p n   

 

   1x n   

   0p n        So that  Po = ,  where  = 0      

 
Step-3: 

0 1p x
z

u u

   
    
   

 

 
 
 
 
 
 
 

 
 

 z = x  +  w + u    
 

 
Using the packed matrix notation, we will get  
 
 
 
   P(S) = 
 
 
In this section, this problem is solved using H­infinity 
program. After several trials, we found that the value 
of γ could not be reduced below 649.164436497. 
hence we conclude that 649.164436497 is the optimal 
value (Note that the solution of the optimal H∞ 
control problem involves a search over γ and we can 
get as close to it as possible but not achieve it. I 
found these values of X∞, Y∞, Kc, Ke, K(s) through 
the MATLAB program.     
 
9. Performance study with H∞ control  

In the following sections we will study the 
response of the glucose­insulin process with H∞ 
control for the process disturbance of 60gm meal 
(carbohydrate) ingestion at t = 40000 sec and a half­
an­hour exercise of 0.005 arbitrary unit at t = 90000 
sec along with the additive sensor noise. In this 
section H controller design has been applied on the 
simulated non ­ linear ‘patient - model’ and the data 
from linearized system matrices have been used for 
on line design of closed loop estimator [18,20,21] 
and  controller as shown in figure 15. The H control 
gains have been computed by using MATLAB 
routines.  The ‘patient_ model’ block in figure 16 
represents combination of the physiological process 
and the implanted insulin delivery device. The closed 
loop system compares the output plasma BG level 
with a reference glucose level of 4.5 mmol/l 
(81mg/dl) and H controller generates insulin 
correction over the nominal (basal) rate 22.3mU/min 

 
 

 n 

Po 
 u 

1

2

3

4 1

5 2

6

7

8

9

1 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0

0 0

x

x

x

x W

x W u

x n

x

x

x

x x p

u u u

 
 
 
 
 

  
                      

   
 
 
 
 
 

         
             
         

      

 



Researcher 2013;5(5)                                                                             http://www.sciencepub.net/researcher 

 

32 
 

to maintain normoglycalmia. The model has been 
tested in closed loop by varying glucose intake and 
exercise. In this section we study the transient 
response of blood glucose level for an controlled 
process with constant insulin infusion of 22.3 m 
U/min (basal dose) for the selected disturbances.      

         
Figure 15. SIMULINK diagram of off line H 
controller design on non ­ linear patient model. 
 
The response of Glucose level (mg/dl), Insulin dose 
(mU/min), N H G B rate (mmol/s), Gren rate 
(mmol/s), Glucose utilization rate (mmol/s) in 
periphery, Glucose utilization rate (mmol/s) in the 
brain (CNS), Gout rate (mmol/s) with 60 gram meal 
injected at t=40000s & exercise noise is applied at 
t=80000s are  shown in figure 16 at γ 
=649.164436497 (optimal value).  Only at the 
optimal value of gamma the glucose level is low in 
the diabetes patient. Since H controller is a robust, 
it is observed that the response of the model produce 
steady state glucose level and plasma insulin profile 
independent of initial value of simulation.              
       

       
                     Time (second) 
Figure 16 (a).Response of glucose level (mg/dl) with 
60 gm  meal injected at   t=40000s & exercised is 
applied at t=80000s when γ =649.164436497.     
         
 
 
 

 

         
                     Time (second) 
Figure 16 (b).Response of insulin dose (m U/min) 
with  60 gm meal  injected at  t= 40000s & Exercise 
is applied at  =80000s   when  γ =649.164436497.   
 

         
                      Time (second) 
Figure  16 (c).Response of N H G B rate (mmol/s) 
with 60  gm meal injected at t=400000s & Exe is 
applied at t= 80000s when γ = 649.164436497.     
 

         
                        Time (second) 
Figure 16 (d). Response of Gren rate (mmol/s)  when  
γ =649.164436497. 
  
 

          
                          Time (second) 
Figure 16 (e).Response of P G U rate with 60 gm 
meal injected at t=40000s & Exe is applied at 
t=80000s when γ =649.164436497.  
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                             Time (second) 
 Figure 16 (f). Response of glucose utilization rate in 
C N  
 
 
 

             
                             Time (second) 
Figure 16.(g) Response of Gout rate with 60 gm     
meal is injected  at t=40000s& Exe is applied at t= 
80000s when  
γ = 649.164436497. 
 
9. Conclusion 
           The present investigation attempts to solve 
some major issues related to the complex control 
problems of implant able insulin delivery systems. 
Concentration is given on the problem of establishing 
a normal operating state and optimum setting of a 
robust controller for implantable insulin delivery 
systems. Which will produce optimal output at every 
possible physiological condition and disturbances. 
The present study is focused on the modeling and 
identification of the physiological process of glucose 
insulin interaction in type-1 diabetes patient and 
design of adaptive controllers for implant able insulin 
delivery system in all possible physiological 
conditions and disturbances of a type­1 diabetic 
patient  
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