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Abstract: The mathematical discipline devoted to the theory and methods of finding the maxima and minima of 
functions on sets defined by linear and nonlinear constraints (equalities and inequalities).Mathematical programming 
is a branch of operations research, encompassing a wide class of control problems, the mathematical models of 
which are finite-dimensional extremal problems. Mathematical programming problems are used in various fields of 
man’s activity where it is necessary to choose one course of action from several possible courses, for example, in the 
solution of the numerous problems of projection and of process control and planning.  
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Introduction:  

The Fritz John theorem is one of the most 
important results in mathematical programming. When 
there are, besides inequality constraints, also equality 
constraints, the existing proofs are usually quite long 
and intricated. This is the case, for example, of the 
paper of Mangasarian and Fromovitz (1967), perhaps 
the first paper dealing with this topic, of the book of 
Bazaraa and Shetty (1967) and of Bazaraa, Sherali and 
Shetty (1993), of the paper of Still and Streng (1996), 
etc. An interesting paper of McShane (1973) uses the 
penalty approach and therefore it is useful in those 
courses on optimization, where also the computational 
aspects are treated[1]. 

In mathematical programming it is customary 
to distinguish linear and convex programming. In 
nonlinear programming the objective function becomes 
nonlinear or one or more of the constraints inequalities 
have non-linear inequalities have non-linear 
relationship or both. Non-linear programming which 
has the problem of minimizing a convex objective 
function in the convex set of points is called convex 
programming where the constraints may taken to be 
non-linear. 
            In linear programming the objective function 
and constraints are linear, in convex programming the 
objective functions admissible set are convex. Convex 
optimization problems are far more general than linear 
programming problems, but they share the desirable 
properties of LP problems:  They can be solved quickly 
and reliably up to very large size up to hundreds of 
thousands of variables and constraints.  
            Nonlinear programming presents different 
perspective on mathematical programming problems in 
which the objective function and the constraint 
functions are not necessarily linear. There are many 

real world problems which have more than one 
conflicting objective functions. Such programming 
problems are called multiobjective programming 
problems. The mathematical discipline devoted to the 
theory and methods of finding the maximization and 
minimization of functions on sets defined by linear and 
nonlinear constraints. Mathematical Programming is a 
branch of optimization. It is used in various fields of 
man’s activity where it is necessary to choose one 
course of action from several possible courses. 
 
HYPOTHESES FORMULATION 
(a) The general mathematical programming problem 
can be formulated as: 
 
Max (or min) f(x) 

Subject to 
,0),,()x(g j 
    j=1,2,...,m 

                 Sx   
 
Where f and gj, j=1,2,...,m  are real valued functions 

defined on 
nRS  . The function f(x) is called the 

objective function and gj(x), j=1,2,...,m are called 
constraint functions. 
 
(b) A general multiobjective programming problem 

having k
)2(

objectives is of the form: 
 
(MP)  min f(x) = (f1(x), f2(x), ... fk(x)  )     

Subject to 
,0)x(g j 
    j=1,2,...,m 

                    Sx   
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Where fi, i=1, 2,..., k and gj, j=1,2,...,m  are real valued 

functions defined on 
nRS   . 

 
(c)The mathematical representation of non-linear 
programming problem is as follows:  
            (P) Minimize f(x)  

                  Subject to 
( ) 0,  j=1,2,...,mjg x 

 

                                      x S  
 

where f and  jg ,j=1,2,…,m are real valued functions 

defined on 
.nS R      

 
(d) In non-linear fractional programming we maximize 
(minimize) the ratio of two non-linear functions subject 
to linear or non-linear constraints. It is of the form; 
 

 (FP)    maximize 

( )

( )

f x

g x  

           subject to   
  0,   1, 2, ...,jh x j m 

  

                              x S   
 
(FP ) is said to be concave-convex fractional program, 
if f(x) is concave, g(x)is convex on the convex set S, if 
g is non-affine, then f is required to be non-negative. If 
f and g are differentiable, then concave convex 
fractional program has a pseudoconcave objective 
function. 
 
              Fritz-John [2] established necessary 
optimality conditions for the nonlinear programming 
problems without imposing any constraint qualification. 
Mangasarian[3] obtained necessary and sufficient 
conditions of optimality for nonlinear programming 
problems without assuming differentiability of the 
functions involved. He further derived Kuhn-Tucker’s 
necessary optimality conditions under the weaker 
constraint qualification for pseudo-convex objective 
function and quasi-convex constraints. 
             In fractional programming problem if objective 
function is differentiable then cancave-convex 
fractional programming has a pseudoconcave objective 
function. Since the Kuhn-Tucker optimality conditions 
are often sufficient for a global optimal solution, 
therefore, cancave-convex fractional programming 
problem can be solved by various algorithms of convex 
programming. For Frank-Wolfe’s method [4], 
Jagannathan [5], Dinkelbach [6] and Geoffrion[7] 
have shown that a fractional program can also be 
represented by a parametric program. Dinkelbach [6] 
proposed an iterative procedure that solves the 

equivalent parametric program. Schaible [8] modified 
Dinkelbach’s algorithm and gave an algorithm similar 
to Dinkelbach’s procedure and is based on a theorem 
by Jagannathan [5] concerning the relationship 
between fractional and parametric programming. 
              Proper efficiency of the solution of multi-
objective programming problem is a strengthened 
solution concept. It eliminates unbounded trade-offs 
between the objectives. It was originally introduced by 
Kuhn-Tucker[9] and later followed by Klinger[10], 
Geoffrion [11] and White[12] for the usual 
multiobjective programming problem. The concept of 
efficiency was generalized to cone efficiency by 
Yu[13]. Subsequently, proper efficiency was 
generalized by Browien[14]. Later the definition was 
strengthened by Benson[15] to assure equivalence to 
the Geoffrion definition even when the decision set is 
non-convex. 
 
Conclusion 

The mathematical programming problem with 
equilibrium constraints is a good example of a problem 
where the new condition is useful. In the usual 

formulation the constraints take the form 0i ix g   

which implies that all the feasible points are Fritz-John 
points; however it can be shown that few points satisfy 
the approximate gradient projection (AGP) condition. 
There may be further approach in order to extend the 
new optimality condition to nonsmooth optimization, 
bilevel programming and vector optimization. 
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