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ABSTRACT:-In this paper we consider the optimization problem and define the first order condition that holds the 
optimization problem.  Section 1.1 defines the first order conditions; section 1.2 gives the some example of unconstrained 
problem.  
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Introduction:- We consider optimization problems of the 
form  
           min    f(x) 
           subject to  x Є  Ω           (1) 
where f  is a real-valued function and Ω., the feasible set, is 
a subset of En.The first order conditions that must hold at a 
solution point of equation (1). These conditions are simply 
extensions to En of the well-known derivative conditions for 
a function of a single variable that hold at a maximum or a 
minimum point. 
 

1.1 FIRST-ORDER  CONDITIONS 
In an investigation of the general problem (1) we 
distinguish two kinds of solution points: local minimum 
points, and global minimum points. 
 
Definition.   A point x* Є  Ω is said to be a relative 
minimum point or a local minimum point of  f over  Ω if 
there is an  Q>0 such that f(x) ≥ f(x*) for all x Є Ω within a 
distance Q of  x* (that is , such that f(x) Є Ω and | x – x*| < 
Q.If f(x) >f(x*) 
for all x Є Ω, x ≠ x* ,within a distance Q of x*, then x* is 
said to be a strict relative minimum point of f over Ω. 
 
Definition.   A point x* Є  Ω is said to be a global 
minimum point of  f over  Ω if  f(x) ≥ f(x*) for all x Є Ω .If 
f(x) >f(x*) for all x Є Ω, x ≠ x* , then x* is said to be a 
strict global minimum point of f over Ω. In formulating and 
attacking   problem (1) we are, by definition, explicitly 
asking for a global minimum point of  f over set 
Ω..Practical reality , however, both from  
the theoretical and computational viewpoint ,dictates that 
we must in many circumstances  be content with a relative 
minimum point .In deriving necessary condition based on 
the differential calculus ,for instance ,or when searching for 
the minimum point by convergent stepwise 

procedure ,comparisons of the values of  nearby points is all 
that is possible and attention focuses on relative minimum 
points. Global conditions and global solutions can, as a 
rule ,only be found if the problem possesses certain 
convexity properties that is essentially guarantee that any 
relative minimum is global minimum .Thus ,in formulating 
and attacking problem (1) we shall , by the dictates of 
practicality ,usually consider ,implicitly ,that we are asking 
for a relative minimum point .If appropriate conditions hold, 
this will also be a global minimum point. 
 
Feasible Directions 
To derive necessary conditions satisfied by a relative 
minimum point  x*,the basic idea is to consider movement 
away from the point in some given direction. Along any 
given direction the objective function can be regarded as a 
function of a single variable , the parameter defining 
movement in this direction ,and hence the ordinary calculus 
of a single variable is applicable . Thus given x Є  Ω  we 
are motivated to say that a vector d is a feasible direction at 
x if there is an  ά >0  such that  x + αd Є Ω for all α,0 ≤ α  ≤ 
ά. With this simple concept we can state some simple 
conditions satisfied by relative minimum points. 
 
Proposition 1    ( First-order necessary conditions).  
Let Ω  be a subset of En  and  let f Є C1 be a function on  
Ω .If  x* is a relative minimum point of  f  over   Ω,then for 

d  Є En  that is a feasible direction at  x*, we have  
f( x*)d ≥ 0. 
 
Proof. For any α ,0 ≤ α  ≤ ά., the point x(α) =  x* + αd  Є 
Ω. . For 0 ≤ α  ≤ ά define The function  g(α) = f(x(α)). Then 
g has a relative minimum at α= 0.A typical g is shown  In 
Fig 1.1 . By ordinary calculus we have 
               g(α) - g(0)= g’(0)α  + o(α),                                        
    (2) 
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where  o(α)  denotes terms that go to zero faster then α. . If  
g’(0) < 0 then ,for sufficiently small values  of   α > 0 , the 
right side of  (2) will be negative ,and hence g(α) - g(0) < 0 , 
which contradicts the minimum nature of  g(0). 

 Thus  g’(0) =    f( x*)d ≥ 0. 
A very  important special case is where x* is in the interior 
of   Ω (as would be the case if Ω = En). In this case there are 
feasible directions emanating in every direction from x*, 

and hence  f( x*)d ≥ 0  for all d  Є En .This implies  
f( x*)= 0. We state this important result as corollary. 
Corollary. (Unconstrained case ). Let Ω be a subset of En , 
and let f Є C1  be a function’ On Ω . If x* is a relative 

minimum point of f over Ω and if x*is an  interior point of 

Ω then f(x*) = 0. 
The necessary condition in the pure unconstrained case lead 

to n equations ( one for each component of f ) in n 
unknown (the components of x* ),which in many cases can 
be solved to determine the solution.In practice however , an 
optimization problem is solved directly without explicitly 
attempting to solve the equation arising from necessary 
conditions.. Nevertheless , these conditions from a 
foundation for the theory.  

 
 
 
                         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
                 
 
                 

 
Fig 1.1. Construction for proof 

 
 
 
Example 1. Consider the problem 

minimize f(x1,x2) =  x2
1  - x1x2  +  x

2
2  - 3 x2. 

There are no constraints , so Ω = E2 . Setting the partial derivatives of  f  equal to zero yields the two equations 
                                      2x1   -   x2     =  0 
                                         x1  +  2 x2   =   3 . 
These have the unique solution    x1   =  1 ,  x2 =  2,. which is a global minimum point of  f. 
Example 2. Consider the problem 
                                         minimize  f(x1,x2) =  x2

1  - x1 +  x2  +x1 x2. 

                                         subject to  x1    ≥  0  ,    x2  ≥  0 
This problem has a global minimum at   x1    = 1/2   ,    x2 = 0. At this point  
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Thus ,the partial derivatives do not both vanish at the solution, but since any feasible direction must have     x2 component 

greater than or equal  to zero, we have  f( x*)d ≥ 0 
for all  d  Є E2  such that d  is a feasible direction at point (1/2,0). 
 

1.2 EXAMPLES OF UNCONSTRAINED PROBLEMS 
Unconstrained optimization problems occur in a variety of contexts, but most frequently when the problem formulation is 
simple. More complex formulations often involve explicit functional constraints. However, many problems with constraints 
are frequently converted to unconstrained problems by using the constraints to establish relations among variables, thereby 
reducing the effective number of variables. We present a few examples here that should begin to indicate the wide scope to 
which the theory applies. 
 
Example  1 (Production ). A common problem  in economic theory is the determination of the best way to combine various 
inputs in order to produce a certain  commodity. There is known production function  f(x1,x2…….   , xn.) that gives the amount 
of the commodity produced as a function of the amount   xi  of the inputs, i = 1,2,3………,n.  The unit price of the produced 
commodity is q, and the unit prices of the inputs are  p1 ,p2 , ………. pn.. .The producer wishing to maximize profit must solve 
the problem 

  maximize    q f(x1 ,x2  ………  , xn  )  - p1,x1   - p2,x2 …..  - pn, xn. 
      The first-order necessary conditions are that the partial derivatives with respect to the  ,xi’s each vanish. This leads 
directly to the  n  equations 

  1 2, 3 1( , ....... ) 1, 2,3...., .
f

q x x x x i n
x

∂
=

∂
 

These equations can be interpreted as stating that, at the solution, the marginal value due to a small increase in the ith input 
must be equal to the price   pi. 

 
Example 2 (Approximation).A common use of optimization for the purpose of function approximation .Suppose ,for 
example , that through an experiment the value of a function  g is observed at  m points ,  x1 ,x2…….   , xm .Thus ,values 
g(x1 ),g(x2)……. ….., g(xm.) are known .We wish to approximate the function by a polynomial. 
                        h(x) =  an x

n  +  an-1 x
n-1+ …………..   +  a0 

     of degree n (or less) ,where   n< m. Corresponding to any choice  of the approximating  polynomial , there will be a set of 
errors   εk =g(xk.) -  h(xk.) . We define the best approximation as the polynomial that minimizes the sum of the squares of these 
errors; that is ,minimizes 
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This in turn means that we minimize    
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with respect  to a=(a0  ,a1…….   , an.) to find the best coefficients.This is a quadratic 
expression in the coefficient a. To find a compact representation for this objective 
we define    
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Then  after a bit of algebra it can be shown that     
                                    f(a) =  aTQa  -  2 bTa + c    

where Q = [qij] , b=((b1  ,b2…….   , bn+1)  

The first–order necessary conditions state that gradient of f must vanish. This leads directly to the system of n+1 equations 
                                                  Qa = b 

.This can be solved to determine a. 
 
Conclusion :-In this paper we consider the optimization problems in equation  (1).In equation (1) function  is real-valued and 
Ω., the feasible set, is a subset of En.The first order conditions that must hold at a solution point of equation (1). These 
conditions are simply extensions to En of the well-known derivative conditions for a function of a single variable that hold at 
a maximum or a minimum point. 
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