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Abstract: Two point resolution is not unambiguously defined, it is interpreted in many ways by many researchers. In 
this paper, which reviews the concept of optical resolution, a number of these interpretations are discussed. A 
discussion of resolution  preceded by the classical approach to the study of two-point resolution are dealt. The 
well-known resolution criterion of Sparrow and Rayleigh resolution criterion are surveyed, Only an  ideal imaging 
system can reproduce an infinitesimally small point object as an infinitesimally small point image. An ideal imaging 
system is one in which diffraction and aberrations are absent. A point-source object can be represented mathematically 
by a delta function called the “Point Spread Function (PSF)”. This spread of light in the image is determined jointly by 
diffraction, aberration and also the non-uniformity of amplitude and/or phase transmission specified by the pupil 
function, if, particularly, the optical system is apodised. Resolution also depends on the coherence conditions of 
illuminance. Light waves from two distinct self-luminous point sources are incoherent, as is true for double stars 
imaged by a telescope. Incoherent imaging is linear in intensity. Therefore the intensity distribution produced by two 
incoherent point sources is obtained by adding their separate intensity diffraction patterns. Apodization processes 
narrowing the main lobe of the point-spread function improve the resolution in the sense of the classical criteria. 
However, these criteria are based on calculated images for which in principle no obvious limit to resolution exists. It 
remains to be seen if apodization still enhances resolution if it is applied to detect images. 
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1. INTRODUCTION 
 Resolution has always been, and still is, an 
important issue in applied science. Since it is not 
unambiguously defined, it is interpreted in many ways. 
In this paper, which reviews the concept of optical 
resolution, a number of these interpretations are 
discussed.  
 A discussion of resolution has to be preceded by a 
discussion of what is actually understood by an ‘‘optical 
image.’’ In a remarkable paper, Ronchi[1] distinguished 
ethereal images, calculated images, and detected images. 
The term ethereal image was introduced only to represent 
the physical nature of the imaging phenomenon. 
Attempts have been made to give a mathematical 
representation of this phenomenon, both geometrically 
and algebraically. According to Ronchi, the images that 
have thus been calculated are mere mathematical 
constructions and should therefore be called calculated 
images. In the past, many approaches to the concept of 
resolution concerned these calculated images. This 
resulted in the so called classical resolution criteria, such 
as Rayleigh’s criterion and the associated reciprocal 
bandwidth of the image. These criteria provide resolution 
limits that are determined solely by the calculated shape 
of the point-spread function associated with the imaging 
aperture and the wavelength of the light. Calculated 

images are exactly describable by a mathematical model 
and thus noise free. Such images do not occur in practice. 
Therefore Ronchi stated that the resolution of detected 
images is much more important than the classical 
resolution,  since it provides practical information about 
the imaging system employed. Hence one should 
consider primarily the resolution of detected images 
instead of that of calculated images. This means a 
necessary introduction of some new quantities of interest, 
such as the energy of the source and the sensitivity 
properties of the detector. Since Ronchi’s paper, further 
research on resolution—concerning detected images 
instead of calculated ones— has shown that in the end, 
resolution is limited by systematic and random errors 
resulting in an inadequacy of the description of the 
observations by the mathematical model chosen. This 
important conclusion was independently drawn by many 
researchers who were approaching the concept of 
resolution from different points of view, which will be 
discussed in the subsequent sections.  
 The paper is organized as follows. Sections 2–5 
discuss two-point resolution in the sense of classical 
resolution criteria, image of a point object (Section 2), its 
dependence on the degree of coherence (Section 3), 
Resolution & coherence (section-4),attempts to increase 
the resolution by means of apodization (Section 5) and, 
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finally, in Section 6, conclusions have been drawn. 
 
2.    IMAGE OF A POINT OBJECT: 

The image of a point is never a point. Only an 
ideal imaging system can reproduce an infinitesimally 
small point object as an infinitesimally small point 
image. An ideal imaging system is one in which 
diffraction and aberrations are absent. An imaging 
system is perfect, if the aberrations are absent, but, real 
optical imaging system are neither ideal nor perfect. 
Due to this, the image of a point object, formed by any 
real optical system is never a point. It may also be noted 
that no physical source is actually a mathematical point, 
though a point is defined as a source having definite 
position and no extension in space. 

However, a point-source object can be 
represented mathematically by a delta function. A small 
bright point in the object produces an image field that is 
much more spread out. This image field is known as the 
“Point Spread Function (PSF)”. This spread of light 
in the image is determined jointly by diffraction, 
aberration and also the non-uniformity of amplitude 
and/or phase transmission specified by the pupil 
function, if, particularly, the optical system is apodised. 

The PSF approach and the OTF approach are 
both used to specify the performance of a wide variety 
of systems. These two approaches are just two different 
ways of tackling the same problem. Both contain the 
same information, but located in two different planes, 
spatial and frequency. The OTF of an optical system 
describes the ability of the system to transfer the spatial 
distribution of light in an object to its image, through the 
transmission of modified spatial frequency components. 

The OTF of an optical system is the Fourier 
transforms of the PSF of the system. The physical 
significance of the PSF is that the output of a system due 
to an input is obtained by convolving the input with the 
PSF of the system. It can be said that every image is a 
superposition of weighted and shifted PSF’s. In other 
words, it means that for an imaging system, the image is 
the result of the convolution of the object with the PSF 
of the system. That is, if we know the amplitude of each 
point in the object field, then we can convolve this 
amplitude with the PSF in order to find the amplitude at 
each point in the image field, if there are no phase shifts. 
The PSF characterizes the imaging performance of an 
optical system for a point object. Consequently, it may 
be said that the PSF is the basic “building block” for 
constructing images of all extended objects. In this 
paper, however, we will not consider the images of 
extended objects. We shall study the images of binary 
stars and a star. However big they may be, they acts as a 
point objects to an observer on earth. 

The PSF, in general, is a three dimensional 
function. Keeping in view the fact that optical signals 
deal with two dimensional functions, the PSF 

considered in this dissertation is restricted to be two 
dimensional. Further, it should be noted that throughout 
this dissertation, quasi-monochromatic PSF is used. The 
amplitude of PSF is used for coherent illumination and 
the intensity or the irradiance PSF is used for incoherent 
illumination. We would like to mention that, ultimately, 
the PSF turns out to be the “optical analogue” of the 
more general term, the “impulse response function” 
used in other physical systems. 

The expression for the output from a physical 
device, to which an impulse (delta function) signal is 
applied, is called the “impulse response function” of the 
system. In mathematics, this is called the “Green’s 
Function” of the system. In the appropriate context, the 
PSF is also known as the “smoothing” or “blurring 
function”, since the operation of convolution, in 
physical terms, means that the object distribution is 
“blurred” or “smeared out” by the Point Spread 
Function. 

Since the point spread function represents the 
contribution of the optical instrument alone to the 
formation of the image, it can also be called the 
“instrument function”. Since, the PSF carries 
information from a point object from the object space to 
the corresponding image space, in the field of medical 
imaging, it is also known as the Point Source Response 
Function (PSRF). 

From what has been stated above, the Point 
Spread Function can be visualized as an optical 
analogue of the impulse response function used in 
communication theory. We have also stated that only an 
ideal imaging system can reproduce an infinitesimally 
small point object as an infinitesimally small point 
image. Further, no physical real source is actually a 
point, though a point source has to be defined as a 
source having a definite position and no extension in 
space (McALLISTER HULL, [2]). However, a point 
source object can be represented mathematically by a δ 
- function (BORN and WOLF, [3]) defined as  

 
δ (x) = 0  when x ≠ 0 
 
        = k  when x = 0        … (1) 
 

and   
  

 A small bright point object produces an image 
field that is much more spread out. This image  field 
we have referred to as the Point Spread Function 
(JONES, [4]). 

The physical significance of the PSF finally 
amounts to as that “the output of a system for any input 
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can be obtained by convolving the input with the PSF of 
the system”. A detailed study of the PSF of the system 
explains the effect of the diffraction or the aberrations or 
both on the final image and this study can be extended 
further to include the effects of image motion, 
atmospheric turbulence and other factors external to the 
optical system (SURENDER et al)[5]. 

 
3. TWO-POINT RESOLUTION: CLASSICAL 
RESOLUTION CRITERIA 

Two-point resolution, which is defined as the 
system’ stability to resolve two point sources of equal 
intensity, is a widely used measure of the overall 
resolving capabilities of an imaging system. In 
astronomical applications, two point resolution is not 
only a resolution measure but also has direct practical 
significance, since in this case many objects are 
effectively point sources. In the past, many criteria for 
two-point resolution have been proposed for 
diffraction-limited systems. These are systems with a 
performance that is limited only by diffraction as a result 
of the finite size of the system’s optical components. 
Limitations as a result of wave-front aberrations are left 
out of consideration. Traditionally, it is believed that this 
omission is justified if the Rayleigh wave-front criterion 
is satisfied: the deviation of the wave front involved from 
a perfect sphere nowhere exceeds one quarter of the 
wavelength. However, Barakat[6] has shown that this 
criterion should be used with caution, because, within the 
amplitude constraint, the aberrations as a spatial function 
have to meet additional conditions.[7] Owing to the 
diffraction, the image of a point source that the system 
produces is not a point but the diffraction pattern of the 
system’s imaging aperture. This diffraction pattern, 
which is centered about the geometrical image point of 
the point source, is the well-known point-spread function 
of the imaging system.  

Of all the diffraction-related resolution criteria, 
the classical Rayleigh criterion[8–11] is certainly the 
most famous. According to the Rayleigh criterion, two 
point sources are just resolved if the central maximum of 
the intensity diffraction pattern produced by one point 
source coincides with the first zero of the intensity 
diffraction pattern produced by the other. This means that 
Rayleigh’s resolution limit is given by the distance 
between  the central maximum and the first zero of the 
intensity point-spread function of the imaging system 
concerned. The criterion can be generalized to include 
point-spread functions that have no zero in the 
neighborhood of their central maximum, by taking the 
resolution limit as the distance for which the ratio of the 
value at the central dip in the composite intensity 
distribution to that at the maxima on either side is equal 
to 0.81. This corresponds to the original Rayleigh limit 
for a rectangular aperture. Rayleigh’s choice of 
resolution limit, which seems rather arbitrary at first 

sight, is based on presumed resolving capabilities of the 
human visual system. This system has been employed as 
a sensor to detect differences in intensity at various 
points of the composite intensity distribution. Rayleigh 
said this about his criterion: ‘‘This rule is convenient on 
account of its simplicity and it is sufficiently accurate in 
view of the necessary uncertainty as to what exactly is 
meant by resolution’’. 

 Other notable examples of resolution criteria 
are those of Schuster,[12] Houston,[13] and Buxton.[14] 
Schuster’s criterion states that the two point sources are 
just resolved if no portion of the main lobe (central band) 
of the diffraction pattern of one overlaps the main lobe of 
the other. This criterion provides a resolution limit that is 
twice that of Rayleigh. Houston proposed a criterion 
according to which the two point sources are just 
resolved if the distance between the central maxima of 
the composite intensity distribution equals the full width 
at half-maximum of the diffraction pattern of either point 
source. Buxton has proposed a criterion similar to that of 
Houston. However, instead of the intensity diffraction 
patterns, he used the amplitude diffraction patterns for 
his criterion. The amplitude diffraction pattern may be 
taken as the square root of the intensity diffraction 
pattern. According to Buxton’s criterion, at the limit of 
resolution the component amplitude diffraction patterns 
should intersect at their points of inflection.  

Since Rayleigh’s days, technical progress has 
provided us with more and more refined sensors. 
Therefore, when visual inspection is replaced by 
intensity measurement, the natural resolution limit that is 
due to diffraction would be the distance between the two 
point sources for which the second-order derivative of 
the composite intensity distribution at the center of the 
diffraction image just vanishes. Then both central 
maxima and the minimum in between just coincide, and 
therefore even a hypothetical perfect measurement 
instrument would not be able to detect a central dip in the 
composite intensity distribution, simply because there is 
no such dip anymore. This resolution limit is known as 
the Sparrow limit.[15] Ramsay et al.[16] gave a clear 
classification and comparison of the just-mentioned 
classical criteria and several others. All classical criteria 
are to a certain extent a measure of the width of the main 
lobe of the point-spread function associated with the 
imaging aperture. Consequently, the classical criteria 
produce resolution limits that are independent of any 
condition other than the size and shape of the imaging 
aperture and the wavelength of the light.  

As mentioned above, the classical resolution 
criteria concern calculated images, that is, images 
exactly describable by a known, two-component, 
mathematical model. However, if calculated images were 
to exist, the known two-component model could be fitted 
numerically to the observations with respect to the 
component locations and amplitudes. Then the solutions 
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for these locations and amplitudes would be exact, a 
perfect fit would result, and in spite of diffraction there 
would be no limit to resolution no matter how closely 
located the two point sources; this would mean that no 
limit to resolution for calculated images would exist. 
However, imaging systems constructed without any 
aberration or irregularity are an ideal that is never 
reached in practice. Therefore the shape of the 
point-spread function is never known exactly. This 
means that systematic errors in the fitted two-component 
model invariably are introduced. Furthermore, the 
measurements are never completely noise free, which 
means the introduction of random errors. Consequently, 
calculated images do not occur in practice. It was 
reformulated by Goodman,[17] who stated that the 
ability to resolve two point sources depends 
fundamentally on the signal-to-noise ratio (SNR) 
associated with the detected image intensity pattern and 
that therefore criteria that do not take account of noise 
are subjective. It is concluded that if there is an ultimate 
limit to resolution, it must be a consequence of the fact 
that, as a result of systematic and random errors, detected 
images are never exactly described by the model 
adopted. 
 
4.  RESOLUTION AND COHERENCE 
 It is known that resolution also depends on the 
coherence conditions of illuminance. In this section this 
dependence is briefly discussed. In general, light waves 
from two distinct self-luminous point sources are 
incoherent, as is true for double stars imaged by a 
telescope. Incoherent imaging is linear in intensity. 
Therefore the intensity distribution produced by two 
incoherent point sources is obtained by adding their 
separate intensity diffraction patterns. Of course, this is 
no longer allowed if, for example, the two point sources 
are created by illuminating two pinholes in an opaque 
screen. Then some degree of phase correlation will exist, 
which has to be taken into account when diffraction 
patterns are added in the image plane.  
 Point sources that radiate fully coherently may be 
treated as additive in complex amplitude. If neither of 
these extremes applies, we speak of partial coherence. 
Zernike[18] introduced the degree of coherence as a 
measure of the correlation of the waves at different 
places in the image plane. A thorough treatment of the 
concept of partially coherent imaging can be found in 
Refs. [19] and [20]. To decide whether coherent, 
incoherent, or partially coherent analysis should be 
applied, one must compare the width of the so-called 
region of coherence with the width of the point-spread 
function of the imaging system.[21] If the region of 
coherence is so wide that the degree of coherence is 
almost unity over the point-spread function, the system 
may be considered coherent. Conversely, if the region of 
coherence is small compared with the width of the point- 

spread function, the system may be considered 
incoherent. If the two widths are comparable, the system 
must be treated as partially coherent.  
 In their original context, classical resolution criteria 
such as Rayleigh’s and Sparrow’s tacitly assume 
incoherent illumination. Abbe was the first to extend 
two-point resolution to fully coherent illumination with 
special reference to the microscope.18 Later 
Luneberg,[22] McKechnie,[23] and Born and Wolf[20] 
generalized these criteria to include partially coherent 
illumination.  
 Authors discussing two-point resolution of partially 
coherent imaging systems are, among others, Grimes and 
Thompson,[24] McKechnie,[25] and Nayyar and 
Verma.[26] Grimes and Thompson stated that the only 
directly measurable quantity in the image of the two 
point sources is the separation between the two central 
maxima of the composite intensity distribution. Notice 
that thus the possibility of extracting analytic data from 
measurements by means of model fitting is disregarded. 
Grimes and Thompson also studied how accurately this 
measured separation describes the real separation 
between the two point sources, under varying conditions 
of coherence. They found that for any degree of 
coherence but zero the real separation and the measured 
separation differed systematically except for specific 
values of the real separation. Therefore they concluded 
that the correct separation of the two point sources might 
not be measurable even when the classical criteria 
predicted good resolution. Nayyar and Verma[26] 
investigated the dependence of the two-point resolution 
of a Gaussian circular aperture on the degree of 
coherence. They found that the resolution, according to 
both the Sparrow and the Rayleigh criteria, increases 
almost monotonously with the degree of coherence.  
 
5. RESOLUTION AND APODIZATION 
 The pupil function of an imaging system is defined 
as the spatial distribution of transmittance in the plane 
containing the exit aperture.[27] When the transmittance 
over the aperture is uniform, the pupil function is equal to 
one at points in the aperture and equal to zero at points 
outside the aperture. This leads to conventional 
point-spread functions such as, for example, Airy 
functions and sine square functions for circular and 
rectangular apertures, respectively. However, it is 
possible to produce a varying amplitude distribution over 
the aperture, for instance, by placing a nonuniformly 
absorbing filter or screen at the aperture. Such a 
modification of the uniform amplitude distribution over 
the aperture (or pupil) is known as apodization. In order 
to conform with its etymology, the term apodization 
would have to be restricted to those modifying processes 
that suppress, or at least considerably decrease, the feet 
(or sidelobes) of the point-spread function.[28] However, 
in this paper we shall deal with apodization in the widest 
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sense. 
  In the past, several apodization procedures aimed at 
improving the resolution have been proposed. In general, 
apodization procedures try to narrow the main lobe of the 
point-spread function, which improves resolution in the 
sense of the classical criteria. Most of them are based on 
the Rayleigh criterion or the Sparrow criterion.[30-32] 
One way of apodization is to expand the pupil function in 
some complete set of functions with arbitrary 
coefficients and then to adjust these coefficients to 
approximate a prespecified point-spread function. A 
different approach is to use the calculus of variations to 
determine the optimal pupil function.[22],[32],[33] Once 
the pupil function has been optimized, it can be 
implemented in practice by modifying the aperture with a 
suitable filter, using, for example, photographic or metal 
deposition techniques, or by electronic processing of the 
image signal.  
 Generally, apodization achieves an improvement 
only of certain qualities at the expense of others. This is 
illustrated as follows. Luneberg [22]found that, among 
all point-spread functions of equal energy, the one with 
the highest central maximum corresponds to uniform 
transmittance. Therefore any point-spread function that 
gives improved resolution must have a lower central 
maximum. This may be undesirable. Wilkins[34] has 
shown that there is no minimum width of the main lobe 
of the point-spread function below which it is impossible 
to go. That is, the main lobe can be narrowed indefinitely 
by means of apodization. Therefore it is theoretically 
possible to attain unlimited resolution in the Rayleigh 
sense. However, there is no practical interest in taking the 
apodization process to extremes, since narrowing the 
main lobe of the point-spread function will generally 
have the secondary effect of a considerable rise in the 
level of the sidelobes of the modified point-spread 
function. For example, it is well known that an 
obstruction in the central part of the aperture of an 
imaging system enhances the resolution in the Rayleigh 
sense. However, this apodization technique is not often 
used, because there is an increasing loss of light in the 
image as more of the aperture is obstructed. Furthermore, 
there is a deterioration in image quality owing to the 
larger amount of light diffracted from its proper 
geometrical position, or, stating the latter more explicitly, 
the point-spread function produced by the obstructed 
system contains more energy in its sidelobes. [23] In 
spectral analysis such as leak of energy from the main 
lobe to the sidelobes is known as leakage. Leakage 
makes the image more difficult to interpret.  
 With recognition of the practical limits mentioned 
above, later work on apodization focused on the 
problems of finding for a specified Rayleigh limit the 
pupil function (and associated point-spread function) 
having maximum central irradiance[35–37] and the pupil 
function corresponding to a point-spread function having 

as much of its energy as possible concentrated in a circle 
of a specified radius.[38]  
 In conclusion, apodization procedures that narrow 
the point-spread function result in an improvement of the 
resolution in the sense of the classical resolution criteria. 
However, these criteria are based on calculated images 
for which, as explained in before, in principle no obvious 
limit to resolution exists. It remains to be seen whether 
apodization still results in an improvement if applied to 
detected images. These images are always corrupted by 
errors which ultimately limit resolution.  
 
6. CONCLUSIONS 
 The classical resolution criteria, such as Rayleigh’s 
and the associated spectral bandwidth, concern 
calculated images. These images are by definition noise 
free and exactly describable by a known mathematical 
model. The corresponding resolution limits are a 
measure of the width of the main lobe of the point-spread 
function and therefore independent of any condition 
other than the size and the shape of the imaging aperture 
and the wavelength of the light. More recently it has been 
recognized that if calculated images were to occur in 
practice, there would be no limit to resolution at all. It 
follows from model-fitting theory and the work on 
superresolution that then one could attain as high a 
resolution as desired. Therefore the classical criteria 
certainly do not represent the ultimate limit to resolution. 
Limits to resolution stem from the fact that in practice, 
detected instead of calculated images are encountered. 
These detected images are always disturbed by noise, 
that is, nonsystematic errors. Furthermore, the 
point-spread function will never be exactly known. This 
introduces systematic errors. It is these errors, both 
systematic and nonsystematic, that prevent unlimited 
resolution. This main conclusion follows from 
considerations starting from different points of view, 
such as information theory, linear filter theory, decision 
theory, and parameters timation theory. It has inspired 
researchers to propose new resolution criteria that, unlike 
the classical criteria, take the measurement errors into 
account. It has been found that if the system’s transfer 
function is known with sufficient accuracy and the noise 
level is low, super resolution  procedures can provide 
resolution beyond the classical limits. With respect to 
two-point resolution, the results discussed in this paper 
indicate that if the model is properly specified, there is no 
basic obstacle to resolve two point sources, even when 
the separation is significantly less than the classical 
limits. Apodization processes narrowing the main lobe of 
the point-spread function improve the resolution in the 
sense of the classical criteria. However, these criteria are 
based on calculated images for which in principle no 
obvious limit to resolution exists. It remains to be seen if 
apodization still enhances resolution if it is applied to 
detected images. In any case, apodization procedures 



Researcher, 2011;3(2)                                           http://www.sciencepub.net/researcher 

 

http://www.sciencepub.net/researcher                                        researcher135@gmail.com 71 

often have the secondary unfavorable effect of a loss of 
light and an increasing level of the side lobes of the point 
spread function and should therefore not be taken to 
extremes.  
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