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1.1 Introduction 

 There are many different type of integral equations which also include Volterra and fredholm ones of second and  

first kind. A Volterra integral equation (VIE) of the second kind has the form 

( ) ( ) ( , , ( ) ) , ,
x

a

v x x K x t v t d t a x X                              (1.1) 

and a Fredholm of integral equation (FIE)of the second kind has the form  

( ) ( ) ( , , ( ) ) , .
b

a

v x x K x t v t d t a x b     

The kernel  in both cases is either continuous in all its three variable, or weakly singular 

for example of the form 

( , , ( ) )K x t v t

( , , ( ) )
( , , ( ) ) , 0 1 ,

H x t v t
K x t v t

x t
  


           (1.2) 

Where ( , , ( ))H x t v t is continuous in all its three variables. 

VIEs of the second kind in the form (1.1) with weakly singular kernels of the form (1.2): 

0

( ) ( ) ( , , ( ) ) , 0 ,
x

v x x K x t v t d t t x X            (1.3) 

With 

( , , ( ) )
( , , ( ) ) , 0 1, 0 ,

H x t v t
K x t v t t x X

x t
     


                       (1.4) 

And 

( , , ( ) ) ( )H x t v t c v t                           (1.5) 

Where C is a constant. 
This is, we are considering VIEs of the form: 

0
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v x x c d t
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                                                (1.6)  
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 In the order to solve these equation we will make we will make use of generalized Newton-cotes quadrature 
rules ([6],p. 47, [3], p. 864). Comparisons are made with a numerical approach using the conversion to ODEs 
concept by Abdalkhani ([1]). 
Notation preliminaries: In all methods we consider a mesh of the form: 

0 1 20 . . . . . . . . nx x x x X                       (1.7) 

The stepsize is defined   1 , 1 , 2 , 3 . . . . . . , .i i ih x x i n  
 
1.2 Generalized Newton Cotes 
 
If we consider VIEs with weakly singular kernels of the form: 

0

( )
( ) ( ) ,

x v t
v x x c d t

x t
 

                         (1.8) 

  And discretise at ix x given by (1.7), we have that: 
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                          (1.9) 
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                                 (1.10) 

Using a lagrange interpolating polynomial we approximate the u(t) inside the integral with 0 1( ) ( )j j
1j jl t v l t v   

so we get: 
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Or 
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We have that  

1
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                                                         (1.15) 

And we also have 

1 ( , , ) ,
B

A

d t
I Z A B

Z t


                                                          (1.16) 
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2 ( , , ) ,
B

A

t d t
I Z A B

Z t


                                     (1.17) 

With the help of these integrals we can rewrite the above equation in order to compute the desire solution : for 
example: 
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 1                  (1.18) 

 
1.3 A numerical approach using interpolating polynomials based on Abdalkhani ([1]) 
 

if in (1.4)we replace ( )x t  by a polynomial of degree N in x and t, , (N a )P x t then (1.3) 

becomes .                          (1.19) ,( ) ( ) ( , , ( ) ) ,N av x P x t H x t v t d t  
0

( )
x

x  
 
Theorem1 (Abdalkhani, [1], p. 251)  

 If we approximate ( )x t   by , (N )P x t   given by  
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                                 (1.20) 

For (x,t)   S ,where and are the chebychev polynomials of the second kind and is 

defined by 

( , ) : 0S x t t x X    nU ( )na

1
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( 1) ( 2 ) . . . . ( 1)na
a a a a n
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                         (1.21) 

Then for  , x o X . We have 

 2 ( 1 )
,

0

[ ( ) ( ) ]
t

Nx t P x t d t O N 


      .                                         (1.22) 

Chebychev polynomials of the second kind are given by the following explicit expression (cf. [16], p. 29) 
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s i n ( 1 )
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                                                                         (1.24) 

 
Theorem 2 (Abdalkhani ([1], P. 250)  
 
Assume that (1.3) and (1.19) possess, respectively unique solution ( )v C I  and ( )W C I ,and suppose that  
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0

( ( ) ( ) )
x

Nx t P x t d t


     0 .t x X, for all                            (1.25) 

Let be any numerical approximation to w(x) such that ( )W x


2( ) ( )W x W x


   for all x, 0 .x X   

In addition, let ( , , )K x t v  be continuous in the region 

 ( , , ) : ( , ) ( ) .x t v x t S a n d u x B                                                  (1.26) 

Also let ( , , ) ( , , ) .K x t v K a t u L v u   Then  

1 1 2 2( )v x W C C


     ,                                                                 (1.27) 

Where C1 and C2 are real constants. 
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