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INTRODUCTION 

Relevant publications on Simple and Bi-
Simple are the work done by A.H. Clifford and G.B. 
Preston (1961–1967), E.S. Lyapin (1974), V.N. 
Klimov  (1973), R. Baer and F. Levi (1932), K. 
Byleen,   J. Meakin, and F. Pastijn (1978),  F. Pastijn 
(1977),  E.G. Shutov (1963), W.D. Munn (1969), 
J.M. Howie (1976). to mention but few. Recently 
Junghenn (1996) worked on Operator semigroup 
compactifications.  

The importance of simple and bi- simple 
semi group in Algebra  has developed  into area of 
independent research of Mathematics, [1 - 13] have 
come to play a very significant role. In this paper, we 
look in to simple and bi- simple left inverse semi 
groups. 

According to Encyclopaedia of 
mathematics, A semi-group not containing proper 
ideals or congruences of some fixed type. Various 
kinds of simple semi-groups arise, depending on the 
type considered: ideal-simple semi-groups, not 
containing proper two-sided ideals (the term simple 
semi-group is often used for such semi-groups only); 
left (right) simple semi-groups, not containing proper 
left (right) ideals; (left, right) -simple semi-groups, 
semi-groups with a zero not containing proper non-
zero two-sided (left, right) ideals and not being two-

element semi-groups with zero multiplication; bi-
simple semi-groups, consisting of one -class (cf. 
Green equivalence relations); -bi-simple semi-
groups, consisting of two -classes one of which is 
the null class; and congruence-free semi-groups, not 
having congruences other than the universal relation 
and the equality relation. 

Every left or right simple semi-group is bi-
simple; every bi-simple semi-group is ideal-simple, 
but there are ideal-simple semi-groups that are not bi-
simple (and even ones for which all the -classes 
consist of one element). 

Various types of simple semi-groups often 
arise as  "blocks"  from which one can construct the 
semi-groups under consideration. For classical 
examples of simple semi-groups see Completely-
simple semi-group; Brandt semi-group; Right group; 
for bi-simple inverse semi-groups (including 
structure theorems under certain restrictions on the 
semi-lattice of idempotents) see [1], [8], [9]. There 
are ideal-simple inverse semi-groups with an 
arbitrary number of -classes. In the study of 
imbedding of semi-groups in simple semi-groups one 
usually either indicates conditions for the possibility 
of the corresponding imbedding, or establishes that 
any semi-group can be imbedded in a semi-group of 
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the type considered. E.g., any semi-group can be 
imbedded in a bi-simple semi-group with an identity 
(cf. [1]), in a bi-simple semi-group generated by 
idempotents (cf. [10]), and in a semi-group that is 

simple relative to congruences (which may have 
some property given in advance: the presence or 
absence of a zero, completeness, having an empty 
Frattini sub-semi-group, etc., cf. [3]–[5]). 

 

2.   SIMPLE SEMIGROUP: A semigroup S is said to be simple if it contains only one  ℐ – class and BISIMPLE 

SEMIGROUP: A semigroup S is said to be bisimple if it contains only one Ɗ – class. 
 
Theorem 1.0  

(i)   If a Ɗ – class of a semigroup S contains a regular 

   element , then every element of Ɗ is regular. ℐ - ) 

(ii) If Ɗ is regular then every ℒ - class and ℛ – class contained in Ɗ contain an idempotent. 
 
Proof:         

An element of a semigroup S is regular if and only if ℛa [ℒa] contains an idempotent.  

It then follows that an ℛ – class  ℛ- (ℒ – class) contains a regular element ; then it contain an idempotent and 

every element of ℛ (ℒ) is regular. 

Since every ℛ – class of S contained in Ɗ meet every ℒ – class of S contained in Ɗ, then (1) holds. 
 
Lemma 1.0 
If  a  and  a-1  are inverse element of a semigroup S.  
Then e = aa-1 and f = a-1a  are idempotent such  
that ea = af = a  and  a-1e = f a-1a = a-1 

Hence  e  ℛa  ℒ a
-1  and f  ℛ a

-1  ℒa . The element a, a-1, e and f all belong to the same Ɗ – class. 
 
Theorem 1.1  
Let  ‘a’  be a regular element of a semigroup S 

Then (i) Every inverse of  a  lies in Ɗ a  

(ii)  An ℋ- class, ℋb contains an inverse of  a  if and only if both  of the ℋ – classes ℛa  ℒb and ℛb  ℒa 

contains idempotent. 

(iii) No  ℋ – class contains more than one inverse of  a 
 
COROLLARY 1.0 
A semigroup S is an inverse semigroup if and only if each  

ℒ – class and each ℛ – class contains exactly one idempotent. 
 
Corollary 1 .1 
A  semmigroup S is simple if and only if   
S a S = S   a  S i.e if and only if  
a, b  S    x , y in S such that xay = b  
 
Theorem 1.2 
The following statements about a semigroup S are equivalent. 
(i) S is an inverse semigroup  
(ii) S is regular and idempotent element commute. 

(iii) Each ℒ – class and ℛ – class of S contain a unique idempotent. 
(iv) Each principal left and right ideal of S contains a unique idempotent generator. 
 
Proof: 

  It is clear by the definition of ℒ and ℛ that III and IV are equivalent. 
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 To show that I  II  
Let e, f be idempotent  and  let x = (ef)-1 

Then, ef x ef = ef and  xefx = x 
The element fxe is idempotent since  
(fxe)2 = f(xefx) = fxe 
Also, (ef) (fxe) (ef) = efxef = ef 
(fxe) (ef) (fxe) = f(xefx) = fxe 
and ef is an inversed of fxe. 
But  fxe being idempotent, it is its own unique inverse.  
So fxe =  ef. 
It is then follows that ef is idempotent and  
similarly we obtain that fe is also idempotent  
Hence, (ef) (fe) (ef) =  (ef)2  =  ef 
(fe) (ef) (fe)  =  (fe)2  = fe 
:. fe is an inverse of  ef. 
But ef, being an idempotent is its own unique inverse and so,, ef = fe 
:.  I  II. 
To show that II  III 

Since S is regular every ℒ – class contain at least one idempotent. 

If e, f are ℒ- equivalent idempotent, then ef = e, fe = f. 
Since by hypothesis, ef = fe, it follows that e = f 

Similarly remark apply to ℛ – class we can express the property III of inverse semigroups as follows. 

ℒ  (EXE) = ℛ  (EXE) = 1E 
Where E is the set of idempotent of S. 
:. II  III. 
To show that III  I 

Since a semigroup with the property III is necessarily regularily, then every Ɗ – class contains an idempotent. 

If a,1 a11 are inverse of  a,  then aa1 and aa11 are idempotent in S that are ℛ equivalent to  ‘a’  and hence to each 
other. 
By property III, we have aa = aa 
Equally, aa = aa  and so 
a = aaa = a aa 
 aaa = a  
 
Proposition 1.0 
Let S be an inverse semigroup with semilattice of idempotent E. 
Then (i)  (a-)- =  a   a in S. 
(ii) e- =  e   e in E 
(iii) (ab)-  =  b-a-   a, b in S 
(iv) aea- E, a-ea  E, a  in S and e in E 

(v) a ℛ b if and only if aa- = bb- 
               a ℒ b if and only if a-a = b-b 

(vi) If e, f  E, then e Ɗ, f in S if and only if    a in S  such that   aa- = e,     a-a = f. 
 
Proof: 
I and II are mutuality of the inverse property of a semigroup 
   To proof III 
Since bb-1  and  a-1a  are idempotent  
(ab) (b-1a-1) (ab)  =  a(bb-1) (a-1a)b 
= aa-1 abb-1b 
= ab. 
Also, (b-1 a-1)(ab)(b-1a-1) = b-1(a-1a) (bb-1) a-1 
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= b-1bb-1a-1aa-1 
= b-1a-1 
Thus b-1a-1is an inverse and hence the inverse of ab. 
 i.e  (ab)-1 =  b-1a-1 
To proof IV 
(aea-1)2  =  ae (a-1a) ea-1 
= aa-1ae2 a-1 = aea-1 
Similarly,  (a-1ea)2  =  a-1ea. 

Recall that a semigroup S is said to be simple if it contains only one ℐ- class.  i.e S is simple if and only if ℐ =  
S X S  

i. e every element in ℐ is related to each other. 
 
Lemma 1.2 
An inverse semigroup S with semilattice of idempotent E is simple if and only if  

(  e, f  E)( g  E) [g  f and e Ɗ)g]. 
 
Proof: 
 Let S be simple, if e, f  E, then e Jf and so   x, y  S such that   e = xfy. 
Let  g  = fyex, then  
g2  =  fye(xfy)ex  =  fye3x 
 since  g = fyex,  g E 
Also,  
      Fg  =  g  and  g  f 
       If z = x-1e, then xz = xx-1e = xx-1xfy 

         xfy =  e  and so  e ℒ z  
Also 
      Zx =  x-1ex  =  x-1e2x 
    = x-1xfyex  =  x-1xy  =  gx-1x 
    = fyexx-1x = fyex  =  g 
        gx-1= gx-1xx-1 = x-1xgx-1 
    =  x-1 xfyexx-1  =  x-1 e2 xx-1 

     x-1xx-1e  =  x-1e  =  x-1e =  z  and so z ℛ g. 

Thus, e Ɗ g as required. 
Conversely if S has  the property described above, considering any two idempotent e, f in S then  g E : g  f 

and e Ɗ g and so, Je = Jg < Jf . 

Equally,  h  E: h  e and f Ɗ h  and so,  Jf = Jh  Je. 
Hence. 
   Je = Jf and so all the idempotent of S fall in a single  

ℐ – class. 

  But every element of S in ℐ – equivalent (indeed even ℛ – or ℒ – equivalent) to some idempotent 
and so it follows that S is simple. 
As a consequence,if S is a simple inverse semigroup with semilattice of idempotent E, then E has the property  
( e, f  E)( g  E) [g  f and Ee  Eg]. 
Recall that a semigroup S is said to be Bisimple if it contains only one D-class. It is a semigroup in which D is 
the universal relation.  
 If S is a Bisimple inverse seigroup with semilattic of idempotent E. then all the idempotent are mutually D- 
equivalent. i.e D  (E x E) = E x E. 
 Hence it follows that U = E x E, i.e E is a uniform semilattice. 
 Conversely, if we start with a uniform semilattice E, then we cannot expect that every inverse semigroup 
having E as semilattiec of idempotent will be Bisimple, E itself is one such inverse semigroup and are assumed 
not Bisimple. 
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DEFINTION 
If (e, f) Є U,  
Let Te, f be the set of all isomorphism from Ee onto Ef  

Let  TE = Te,f 
ufe ,



Since all the element of TE are partial one-one mapping of E. We may therefore multiply element of TE as 
element of J(E). 
If : Ee Ef and  
     : Eg   Eh are element of TE, then the product of  and  in JE maps (Ef  Eg)-1 onto (Eg  Eg)  i.e it 
maps (Efg)-1 onto (Efg) (fg)-1 and (fg) = j. 
Then x E (Efg)-1  x   Efg 
i.e  x   fg  x  (fg)-1  
 x  Ei 
Similarly, x E (Efg) . 
  x E Ej. 

Thus   maps the principal ideal Ei onto the principal ideal Ej. 
 Since it is clearly an isomorphism, we have that    TE. Thus TE is a subsemigroup of J(E). 
 
Proposition 1.2 
 If E is a uniform semilattice, then TE is a Bisimple inverse semmigroup.  
 
Proof: 
 This proves more generally that if E is any semilattice whatever, then in TE D  (E x E) = U. 
 Since TE is an inverse semigroup whose semilattice of idempotent is (effectually) E, one half of this result 
is obvious. 
Suppose that (e,f) E U. Then Ee  Ef and so there exist at least one  in TE such that dom() = Ee and ran() = 
Ef. i.e -1 =  1Ee (= e) and  
-1 = 1Ef (= f) and so e,f are D – equivalent in TE.  
 By applying it into the uniform case, we  find that all idempotent in TE are D- equivalent. 
 Hence since every element of a regular semigroup is D- equivalent TE is therefore BISIMPLE  
 
DEFINITION: 
Let  T be a semigroup with identify I and  
Let  be a homomorphism from T into Hi the H-class containing the identity of T ( what is often called the 
group of units of T)  
Let N = { 0, 1, 2---}. 
We can make N x T x N into a semigroup by defining. 
(m, a, n) (p, b, q) = (m – n + t, at-n bt-p, q – p + t) 
where t = max( n, p) and 0 is interpreted as the identity map of T. 
 To check that the given composition is associative, we observe that: 
[(m, a, n) (p, b, q)] (r, c, s) = m – n + w, aw-n bw-r-p+q , s – r - + q + w) 
where 








))max(,max(

)),(max(max

rqqpnW

rpnpqU
                …          ** 

The outer coordinates in multiplication (**) combining exactly as in the bicyclic semigorp which associative 
since it is isomorphism to Tcw. 
Hence by equating the first coordinates or (equivalently third coordinates) we obtain   
W = u + p – q. 
It is then clear that this result implies the quality of the two middle coordinates and so the composition (**) is 
indeed associative and shall be denoted by the semigroup obtained in this way by S = BR(T, ) which refers to 
as the BRUCK – Reilly Extension of T determined by . 
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Proposition 1.3 
 If T is a semigroup with identity 1 and S = BR (T, ). 
Then,  
(i) S is a simple semigroup with identify (0, 1, 0) 
(ii) Two element (m, a, n) and (p, b, q) of S are D- equivalent in S if and only if a and b are D – 

equivalent in T. 
(iii) The element (m a, n) of S is idempotent if and only if m = n and a2 = a. 
(iv) S is an inverse semmigroup if and only if T is an inverse semigroup. 
 
Proof: 
(1) We show that if (m, a, n) and (p,, b, q) are arbitrary element of S the  (r, x, s) and (t, y, u) such that (r, x, s) 
(m, a, n) (t, y, u) = (pp, b, q). 
(1) Let (r, u, s) = (p(a)-1m + 1) and  
(t, y, u) = (n + 1, b, q) where 
(a, )-1 is the inverse of a in the group Hi  
Then it is easy to check that the desired equality holds. 
 That (0, 1, 0) is the identify of S is a matter of routine verification. 
(ii) Let us use superscripts S and T to distriquished between the green equivalent on S and those on T. if 

(m a, n) Rs (p, b, q) for some (r x, s) in S  
Hence P = m – n + max (n, r)  m 
Equally, we show that m  p and so infect m = p it follows that m – n + max (n, r) = m and  
Hence that n  r. 
By equating the middle coordinate, we have  
A(xn-r = b, so Rb  Ra in T. 
 Similarly, we show that Ra  Rb and so aRTb. 

Conversely, if aRTb then ax = b,  bx1= a for some x, x1 inT1). 
 Hence,  
(m, a n) (n, x, q) = (m, b, a) 
(m, b, q) (q, x, n) = (m, a n) in S and so (m, a, n) Rs(m, b q) 
 (m, a, n) Rs (p, b, q)  mm = p and aRTb  
 A dual argument establishes that (m, a, n) Ls (p, b, q)  n = q and a LTb. 
 Suppose that (m, a, n) and p b, q) in S are such that   
(m, a, n) Ds (p, b, q). Then there exist (r, c, s) in S for which (m, a, n) Rs (r, c s) Ls (p, b, q). 
 It then follows that aRTc and cLTb ( and r = m, s = q) 
Hence  a DTb. 
Conversely, if a DTb, then for some c in T we have aRTc and cLTb . 
Therefore for every m, n p, q, in N 
(m, a, n) Rs (m, c q) (m, c, q) Ls (p, b, q) and so (m, a n) D (p, b, q). 
(iii) (m, a, n)2 = (m – n + t, at-m bt-m, n – m + t) 
where t = max (m, n) 
Hence (m, a, n) can be idempotent only if m = n. 
Since (m, a, m)2 = (m, a2, m), the element (m, a, m,) is idempotent if and only if a2 = a. 
(iii) If T is an inverse semigroup, then each element (m, a n) of S has an inverse (n, a-1, m) 
Thus S is regular. 
To show that it is an inverse seigroup. 
Let (m, e, m) (n, f, n) be idempotent in S (with m  n say) 
Then  














mefmmemnfn

mfemnfnmem
nM

nm

,)((),,(),,(

))(,(),,(),,(




   

Now fm-n is an idempotent in T. 
(indeed if m  n, we must have fm-n = 1the only idempotent in Hi) 

Hence e (fm-n) = (fm-n) e and so idempotent commutes in S. 
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Conversely if S is an inverse semigroup and if (p, b, q) is the inverse of (m, a, n), then (m, a, n) (p, b, q) = (m – 
n + t, 
at-n bt-p , q – p + t) with t = max (n, p) is an idempotent Rs – equivalent to (m,, a n) and Ls – equivalent to (p, 
b, q). 
 Therefore m = m – n + t = q – p + t = q  
   and so        n = p (= t) , m, = q. 
The inverse property now gives  
(m, a, n) = (m, a, n)(n, b m) (m, a, n) = (m aba, n) 
(n, b, m) = (n,, b, m) (m, a, n)(n, b, m) = (n, bab, n) 
Thus aba = a bab = a and so is an inverse of a in T. Thus T. is regular. 
If e,f are idempotent in T, then the commuting of the idempotent (o, e, o), (o, f, o) of S implies that ef = fe in T. 

 
2.1  A semigroup S is called left inverse if every principal right ideal of S has a unique idempotent generator. Many 
authors and scholars have laid their hands in solving problems relating to simple and bisimple semigroup. Here in 
this chapter, we investigate the D- class of regular semigroups and of left inverse semigroups.  

Lemma, proposition and Theorems were also considered to support each statement. 
A description of a bisimple let inverse semigroup S with identity element e as a quotient of the contesian 

product Lex Le of  L – class Le of and the R – class Re of  S containing e. 
 We also describe the maximal inverse semigroup homomorphism of S. 
 
3.     D – CLASSES IN REGULAR SEMIGROUPS 
Let S be a regular semigroup and a  S. The L – class of S containing the element a is demoted by La. 
Let A be a subset. Throughout a’ denotes an inverse of a and A’ denotes the set of all inverse of elements of A 
 
Lemma 1 
Let S be a regular semigroup. Then S is Bisimple if and only if for any two idempotent e, f in S there exist an 
element a of S and a’ of a such that aa1 = f. 
 
Lemma 2  
Let S be a regular semigroup and e be an idempotent of S write L = Le, R = Re, H = He, and D = De, then 

i.        L  R1 and R  L1 
ii.       LR =D 
iii. Let m, n,  L and b, d R. then mb = nd if and only if  u  H such that mu = n end ud = b. 
Proof : 
 Let x  L. then   x of x such that x  R. so x  R and  
Hence L  R  
Similarly, Let m, n,  L and b, d R then there exist inverse m, n, b and d of m, n, b, and d respectively 
such that mm = nn = bb = dd =e. 
Let   md = nd.  
Then (mm nd) d 
And so mun = n. Let u = mn. 
Now mu = n and ud = mnd = mmb =b. 
Further, eu = ue = u and u(db) = bb = e = nn = (nm)u. 
Thus u  H. 
 Remark  The element u above is unique. 
 If X is a subset of a semigroup  S. then E (X) denote the set of all idempotent in x.  
Let S be a regular semigroup  for any a S. 
Lemma 3  
Let D be a D – class of  regular semigroup S  
Let E (D) be a subsemigroup of S. Then D is a bisimple subsemigroup of S 
Proof: 
 Let a, b,  D and let f = aa and g = bb  
Then f La and g  Rb,  so f g  La  Rb. 

But La  Rb is contained in some D – class D of S. 
Since fg D. By hypothesis we then conclude that D = D and a b La Rb 
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Hence, D is a subsemigroup of S 
 
Lemma 4 
Let S be a regular semigroup and e be an idempotent of S. Write L = Le,  R = Re and D = De  
Let E (S) be a subsemigroup of S. Then the following condition on S are equivalent  

i. f e f = f for any idempotent f D 
ii.  R is a subsemigroup of S 
iii.  L is a subsemigroup of S 

 
Proof: 

Assume (1). Let a, b  R. then there exist inverse a of a and b of b such that aa= bb =e 
By (1) we have a a e a a = aa and aea = aaaa = e  
 That is abba = e, now b a is an inverse of ab and therefore ab R. 
Conversely Assume (ii) 
Let f2 = f = D. then exist a R and an inverse a of a such that aa =e and aa = f. by Hypothesis ef and fe are 
idempotent.  
Therefore ea is an inverse of ae. 
 By (ii) we have a e R  
Hence aea R. Now fef =aaeaa = a (aeae)a 
= aea = aa = f given A. 
thus (1) and (II) are equivalent 
similarly (I) and (III) are also equivalent  
therefore 1 (II)  (III) in an arbitrary regular semigroup S 
 
Lemma 5 
Let S be a regular semigroup and e be an idempotent of S write L = Le, R = Re and D = De 
Let e be a left or right identity element for D.  
Then R and L are subsemigroup of S. 
 
Proof: 
Let a, b,  R, then there exist inverse a of a and b of b such that aa = bb = e. As e is a left or right identity 
for D we get peq = pq or any p, q, D. 
Now abba = aea = aa = e and so bais an inverse of ab. Hence ab,  R and R is a subsemigroup of S.  
Similarly L is a subsemigroup of S.  
 
Lemma 6  
Let S be a regular semigroup and e be an idempotent of S.  
Write L = Le,  R = Re,  D = De.. The following conditions on S are equivalent . 
(I) e is a right [ left] identity element for D.  
(II) e is an identity element for R [L]  

(III) R [L] is a right [left] cancellative subsemigroup of S. 
 

Proof: 
Clearly (I) implies (II). Conversely assume (II).  
Let f2 = f  D. let a R  Lf. 
Then there exist an inverse aa of a such that aa = f. 
Now by (II) we get fe = aae = aa = f 
So we get (I). Hence (I) and (II) are equivalent.  
Now assume (I). Then by lemma 5.3 R is a subsemigroup of S.  
Let ax = bx where a, b, x R. As xx = e  

For some inverse x of x, by (I) we get a = b. and hence (III)  
Assume (III) let a  R, then a e  R now aee = ae and by right cancellative we get ae =a so we get (II) and hence 

(I). 
 
 Lemma 7  
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 Let S be a regular semigroup and e be an idempotent of S. Write R = Re and D = De. 
(I) Sa  R  Ra for any a  R 
(II) if R is a subsemigroup of S then Sa  R  Ra for any a  R 
(III) Let e be an identity element for D and a  R, then  
          Sa   R  = Ra if and -only if a  R 
 
Proof:   
(I) Let a  R and x  Sa   R, then x = t a  R for some t  S. Now there exist inverse a of a and (ta) 

 of ta such that aa =  ta (ta)  = e.  
So e = t (ea) (ta)    E e S.  
Again ta = (te) a  given te = e t e  S.  
Hence te  R. now x = ta = (te) a  Ra proving (I). 
(II) If R is a subsemigroup of S, then Ra  R for any  
          a  R. now from (I) we get (II) 
(III) let  e  be an identify for D. then  from lemma (5.1 and (2) above we get  Sa  R = Ra  
        For any a  R. the converge is obvious  
 
4  D - CLASSES IN LEFT INVERSE SEMIGROUP 
Recall that a semigroup S is called a left (right) inverse semigroup if every principal right (left) ideal of S has 
unique idempotent generator.  
A left (right) inverse semigroup is clearly a regular semigroup. 
 
Lemma 1 
Let S be a regular semigroup. Then the following condition on S are equivalent.  
(I) Se  Sf  = Sef (=Sef) for any two idempotent e,f in S. 
 
(II) fef = ef for any two idempotent e f in S. 
(III)  If a and a are inverse of a in S , then aa = aa 
(IV) S is a left inverse semigroup 
 
COROLLARY 1  
 Let S be a left inverse semigroup and e be an idempotent of S. Then  
(I) aa = e for any inverse a of a in  Re. 
(II) E (S) is a subsemigroup of S. 
(III) If a, b are inverse of a, b in S then ba is an inverse of ab. 
 
Theorem 1  

Let S be regular semigroup. Then S is a left inverse semigroup if and only if Le = (Re) for any idempotent e in S. 
 
Proof:  
Let e be any idempotent in S write L = Le and R = Re 
 Let S be a left inverse semigroup and PR1 
Then p = X is an inverse of some XR. 
Now xx is an idempotent in Re.  
Hence xx = e since S is left inverse. 
Consequently x  L xx= Le and hence R L. 
Conversely, let L = R for any idempotent e in S.  
Let f and g be idempotent of S and let fs = gs. then gf = f, fg = g and f is an inverse of g. 
Now by hypothesis we get f  Lg. 
So fg = f an hence f = g. 
 Thus S is a left inverse semigroup. 

 
Lemma 2  
Let S be a left inverse semigroup and e be an idempotent of S. Let a, c, u, , Re. 
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Let a,c be inverse of a, c respectively, then  
(I) if au = c, then a = uc 
(II) If a = c, then a = c. 
 
Proof:  

(i) let au =c, Let u be an inverse of u.  
Then aa= uu =e and a=cu.  
Therefore aa = a (uc) 
This implies that a = uc. 
(ii)  Let a = c, then a and c both are inverse of a 
 aa = a (uc) 
Hence a = c. 
 
Lemma 3 

Let S be a left inverse semigroup and e be an idempotent of S. 
Let e be an identity element for De.  
Let c, d  R = Re then Rc = Rd if and only if for any given 
inverse cof c, there exist an inverse dof d such that cc = dd. 
 
Proof:  
Let Rc = Rd and Let c be the given inverse of c.  
Now c = id and d = jc for some i, j R. 
Also cc = dd = e for any inverse dof d 

So  e = cc = (i,j, c) c = ij and  
Similarly, e = ji.  
Now ci is an inverse of d = jc and dd = cid = cc. 
 
Theorem 2  
Let D be a D – class of the left inverse semigroup S. 
Let R be an R- class of S contained in D then.  
The following condition on S are equivalent. 
(I) E(D) is a subsemigroup of S. 
(II) D is a (Bisimple) subsemigroup of S. 
(III) For any a, b,  R there exist cR .  
          such that Sa  Sb = Sc. 
 
Proof:  
(i)  Implies (II) by lemma 5.3. 

          Now Assume (II), Let a, b, R. 
Let a be an inverse of a and b an inverse of b. 
 Let aa = f and bb = g. then f, g and f g D  
 Sa  Sb = Sf  Sg = Sfg by lemma 5.6  
Let c R Lfg. Then, Sfg = Sc. 
Assume (III):  
Let f, g  E (D).  
Let a R  Lf and b R  Lg.  
Then by lemma 5.6, Sa  Sb = Sfg. 
But there exist cR such that Sfg = Sc 
 fg D, so fg E (D). 
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Conclusion 

We only focused on the D-classes of left 
inverse semigroup whereby we established 
that a left inverse semigroup is clearly a 
regular semigroup. 
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