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Abstract: Some pattern-forming mechanisms have an intrinsic tendency to form stripes. This involves competition 
between emerging patterns which remains intuitively not obvious to us although we can establish it by computation 
and, in part, by analysis we describe here. Our conclusions are applicable to a wide range of pattern-forming 
mechanisms within the general category of kinetic mechanisms. These include reaction diffusion models, first 
proposed by Turing (1952) and to date the most extensively developed kind of kinetic mechanism. The category also 
includes mechanochemical theories (Oster et al., 1983) as well as mechanisms involving complex cell-cell 
interactions, for example between groups of incipient synapses in the assembly of the nervous system. These last are 
involved in the formation of ocular dominance patterns in the primary visual cortex (also known as the striate cortex, 
area 17 or V1) of higher vertebrates (Fig. 1B). In an earlier publication (Lyons and Harrison, 1991) we showed that the 
observed patterns are similar to those which can be modeled using reaction-diffusion systems. The present analysis 
and discussion is applicable to these disparate mechanisms.  
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Introduction: 

Various studies (e.g. Stacey, 1988; Vinner, 1991; 
Kieran, 1992; Esty, 1992; Sfard & Linchevski, 1994; 
Bell, 1995; Linchevski & Herscovics, 1996; 
McDowell, 1996; Souviney, 1996; Dreyfus, 1999; 
Lithner, 2000; Mason, 2000, Maharaj, 2005) have 
focused on the teaching and learning of school 
mathematics. These studies have indicated some 
important sources of students’ difficulties in 
mathematics. Kieran (1992) considered a student’s 
inability to acquire an in-depth sense of the structural 
aspects of algebra to be the main obstacle. Sfard and 
Linchevski (1994) have analyzed the nature and 
growth of algebraic thinking from an epistemological 
perspective supported by historical observations. They 
indicated that the development of algebraic thinking 
was a sequence of ever more advanced transitions from 
operational (procedural) to structural outlooks. Mason 
(2000:97) has argued that “... the style and the nature of 
questions encountered by students strongly influences 
the sense that they make of the subject matter”. The 
questions that come to the mind of an educator are 
influenced by the perspective and disposition that 
he/she has towards mathematics and pedagogy 
(Mason, 2000).  

These questions in turn influence the sense 
learners make of the subject matter. In this article I 
focus on the outcomes and implications of research on 

(a) use of symbols in mathematics, (b) 
algebraic/trigonometric expressions, (c) solving 
equations, and (d) functions and calculus.  

In seeking to explain the complex phenomena of 
biological pattern formation, one must start with an a 
priori concept of where the complexity lies. Wortis et 
al. (in press) have drawn the contrast between complex 
machines and simple machines with complex behavior. 
Molecular biologists seek the former: the complex 
machine as a multiplicity of genes and gene products, 
mutually governed by many regulative processes 
which are complex by their sheer number but each 
rather simple in character. Physical scientists tend to 
seek the latter: dynamic processes which can be 
described by a few simple terms in two or three 
equations, but which display complex behavior.  

This research describes work within the latter 
paradigm. Our results rely on mathematical analysis to 
an extent; however, for the study of wide ranges of 
parameter values, our method has been, as in most 
work of this kind, to put the model into a computer and 
take its workings as a topic for experimental study in 
much the 0 1993 WILEY-LISS, INC. same spirit as an 
experimental biologist’s study of a developmental 
phenomenon. Such studies are undertaken as 
contributions to the theory of natural phenomena, in 
this case biological pattern formation. Nevertheless, 
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while it is in progress, the work resembles an 
experimental study in its own right, with the model as 
the subject. An important class of biological 
phenomena is the generation of two-dimensional 
structures periodically repeated in space. Such patterns 
occur in diverse biological contexts, for example (1) a 
multicellular epithelial sheet, as for the striped and 
spotted coat patterns of many mammals; (2) a 
multinucleate syncytium having a single layer of some 
thousands of nuclei, such as the Drosophila blastoderm 
in which striped patterns of pair-rule gene-expression 
arise; (3) the surface of a large single cell, for instance 
the growing tip of the alga Acetabularia which 
generates both vegetative and reproductive whorls at a 
site which may be centimeters from the only nucleus 
(Harrison et al., 1988; Berger et al., 1987).  

The lobes of the alga Micrasterias (Lacalli and 
Harrison, 1987) and some microtubule arrays near the 
cell surfaces of ciliates such as Paramecium and 
Tetrahymena (Frankel, 1989) are further unicellular 
examples. Such phenomena show the ability of a living 
organism to establish a quantitative measure of spacing 
between adjacent repeats of similar structures and to 
use it repeatedly in the same direction. Here, 
“repeatedly” is not intended to imply a time sequence 
in which structures are formed one by one. In some 
cases, very numerous parts of the overall pattern are 
expressed precisely simultaneously, e.g., up to 80 
striations in the reproductive cap primordium of 
Acetabularia. In a large taxonomic group wherein one 
may expect the mechanism for formation of a 
particular kind of pattern to have been conserved, the 
pattern formation process can be essentially 
simultaneous in some species and time sequential in 
others (e.g., the onset of seg mentation in the class 
Insecta). In this research, we consider the problem of 
generating the parts of a pattern simultaneously. This 
approach does not lack generality.  
Review of literature: 

The cognitive load work by Kirschner, Sweller, 
and Clark (2006) gives an explanation for the necessity 
of fluency with prerequisite knowledge. Without 
prerequisite fluency, short-term memory becomes 
overloaded and unable to effectively process the new 
concepts being learned. 

Boyer's (1968) A History of Mathematics is 
almost entirely about Greek mathematics. It covers 
ancient Greek mathematics to a degree that none of the 
other mentioned texts do. Perhaps one of the most 
valuable tools for a secondary teacher available is 
Historical Topics for the Mathematics Classroom 
(National Council for Teachers of Mathematics, 1989).  

This text consists of a series of "capsules" (short 
chapters). Each capsule gives a brief historical 
overview of a particular topic (e.g. Napier's Rods). The 
capsules are grouped by general topic (algebra, 

geometry, trigonometry, etc.). Specifically, this text 
provides a historical context to graphical approaches to 
equation solving. In addition, it provides a concise 
overview of the methods employed to solve quadratics 
and cubics.  

Various researchers (Vaiyavutjamai & Clements, 
2006) have illustrated that very little attention has been 
paid to quadratic equations in mathematics education 
literature, and there is scarce research regarding the 
teaching and learning of quadratic equations.  

A limited number of research studies focusing on 
quadratic equations have documented the techniques 
students engage in while solving quadratic equations 
(Bossé & Nandakumar, 2005), geometric approaches 
used by students for solving quadratic equations 
(Allaire & Bradley, 2001), students' understanding of 
and difficulties with solving quadratic equations 
(Kotsopoulos, 2007; Lima, 2008; Tall, Lima, & Healy, 
2014; Vaiyavutjamai, Ellerton, & Clements, 2005; 
Zakaria & Maat, 2010), the teaching and learning of 
quadratic equations in classrooms (Olteanu & 
Holmqvist, 2012; Vaiyavutjamai & Clements, 2006), 
comparing how quadratic equations are handled in 
mathematics textbooks in different countries (Saglam 
& Alacaci, 2012), and the application of the history of 
quadratic equations in teacher preparation programs to 
highlight prospective teachers' knowledge (Clark, 
2012). 

In general, for most students, quadratic equations 
create challenges in various ways such as difficulties in 
algebraic procedures, (particularly in factoring 
quadratic equations), and an inability to apply meaning 
to the quadratics. Kotsopoulos (2007) suggests that 
recalling main multiplication facts directly influences a 
student's ability while engaged in factoring quadratics. 
Furthermore, since solving the quadratic equations by 
factorization requires students to find factors rapidly, 
factoring simple quadratics becomes quite a challenge, 
while non-simple ones (i.e., ax2 + bx + c where a ^ 1) 
become harder still. Factoring quadratics can be 
considerably complicated when the leading coefficient 
or the constant term has many pairs of factors (Bossé & 
Nandakumar, 2005). 

The research of Filloy & Rojano (1989) 
suggested that an equation such as with an expression 
on the left and a number on the right is much easier to 
solve symbolically than an equation such as. This is 
because the first can be ‘undone’ arithmetically by 
reversing the operation ‘multiply by 3 and subtract 1 to 
get 5’ by ‘adding 1 to 5 to get and then dividing 6 by 3 
to get the solution. 

Meanwhile the equation cannot be solved by 
arithmetic undoing and requires algebraic operations to 
be performed to simplify the equation to give a 
solution. This phenomenon is called ‘the didactic cut’. 
It relates to the observation that many students see the 
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‘equals’ sign as an operation, arising out of experience 
in arithmetic where an equation of the form is seen as a 
dynamic operation to perform the calculation, ‘three 
plus four makes 7’, so that an equation such as is seen 
as an operation which may possibly be solved by 
arithmetic ‘undoing’ rather than requiring algebraic 
manipulation (Kieran, 1981).  

Lima & Healy (2010) classified an equation of the 
form ‘expression = number’ as an evaluation equation, 
because it involved the numerical evaluation of an 
algebraic expression where the input value of x could 
be found by numerical ‘undoing’, and more general 
linear equations as manipulation equations, because 
they required algebraic manipulation for their solution. 

The data of Lima & Tall (2008) presented an 
analysis of Brazilian students’ work with linear 
equations that did not fit either the didactic cut or the 
balance model. Their teachers had used an 
‘expert-novice’ view of teaching and had introduced 
the students to the methodology that they, as experts, 
found appropriate for solving equations, using the 
general principle of ‘doing the same thing to both 
sides’ to simplify the equation and move towards a 
solution. However, when interviewed after the course, 
students rarely used the general principle. They did not 
treat the equation as a balance to ‘do the same thing to 
both sides’, nor did they show any evidence of the 
didactic cut. 

According to Matz, (1980) and Payne & Squibb 
(1990), Our purpose is not simply to find and catalogue 
errors. Instead we seek to evolve a single theoretical 
framework that covers all three aspects: the didactic 
cut, the balance model and the problem with ‘doing the 
same thing to both sides’. Such a theoretical 
framework should relate to both cognitive 
development and the emotional effects of the learning 
experience. To integrate these different aspects into a 
single framework, we begin with a theoretical 
construct that relates current learning to previous 
experience. 

This offers a refined formulation of the original 
research into the didactic cut by Filloy & Rojano 
(1989), where many of the students were able to solve 
simple evaluation equations before being taught to 
solve equations using algebraic manipulation. The 
notion of an equation as a process of evaluation is 
supportive for solving evaluation equations but 
problematic for manipulation equations. Another 
observation made at the time is that the introduction of 
the algebraic technique in solving linear equations 
caused a loss in ability for some students to solve 
simple equations using arithmetic undoing. This loss in 
facility when faced with a new technique is common in 
mathematics learning.  

For instance, Gray (1991) noted that some 
children introduced to column subtraction may make 

errors that did not occur when they performed the same 
operation using simple mental arithmetic. This is 
consistent with the absence of the didactic cut in the 
data. 

According to Lima & Tall (2008). The students 
had been presented with a new formal principle for 
solving equations by ‘doing the same thing to both 
sides’. This new principle was not generally 
implemented as intended, instead the students focused 
on shifting symbols with additional rules as procedural 
embodiments that treated both evaluation and 
manipulation equations in the same way. Thus the 
students performed the same type of operation in both 
cases and made the same sort of error. 

Tall (2011) formulated a working definition of a 
crystalline concept as ‘a concept that has a structure of 
relationships that are a necessary consequence of its 
context’. Such a concept has strong internal bonds that 
hold it together so that it can be considered as a single 
entity. 

Just as Sfard (1991) spoke of ‘condensing’ a 
process from a sequence of distinct steps which we 
may interpret as a metaphor for transforming a gas that 
is diffuse to a liquid that can be poured in a single flow, 
we can think of ‘crystallizing’ as the transition that 
turns the flowing liquid into a solid object that can be 
manipulated in the hand, or, in mathematics, 
manipulated in the mind as an entity. This metaphor 
does not mean that a crystalline concept has uniform 
faces like a chemical crystal, but that it has strong 
internal bonds that cause it to have a predictable 
structure. 

Van Merrienboer and Jeroen (2013) investigated 
the perspectives on problem solving and instruction. It 
was found that problem solving should not be limited 
to well structured problem solving but be extended to 
real life problem solving.  

Tsai et al. (2012) analyzed visual attention for 
solving multiple choice science problems. Studies 
showed that successful problem solvers focused more 
on relevant factors while unsuccessful problem solvers 
experienced difficulties in decoding the problem, in 
recognizing the relevant factors and in self regulating 
concentration. Kuo et al. (2012) experimented a hybrid 
approach to promoting students web based problem 
solving competence and learning attitude. Results 
show that middle and low achievement students in the 
experimental group gained significant. 

Kaye (1915) argued that it was natural to seek for 
traces of Greek influence in later works of art and 
mathematics. There is evidence now to suggest Greek 
philosophy may be linked to or of a possible Indian 
origin. The difficulty in translating of scripts in 
Sanskrit was another reason in that Sanskrit scripts had 
to be translated before mathematicians could 
appreciate their actual mathematical value.  
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Joseph’s (1991) study outlined the possibilities 
that may have led to the development of the vast 
knowledge of mathematics that we enjoy today this 
includes the mathematical achievement of all major 
civilizations such as Mayan, Babylonian, and Chinese 
among others. In this study, the author explores Indian 
mathematics by briefly investigating early India and 
the Vedic period-during which much of the 
foundations were laid for religious, philosophical and 
mathematical views of the world. The Vedic 
achievements are analyzed to highlight the abstract and 
symbolic nature of their mathematics that ultimately 
led to the development of symbolic algebra (AD 500).  

Various studies (Stacey, 1988; Vinner, 1991; 
Kieran, 1992; Esty, 1992; Sfard & Linchevski, 1994; 
Bell, 1995; Linchevski & Herscovics, 1996; 
McDowell, 1996; Souviney, 1996; Dreyfus, 1999; 
Lithner, 2000; Mason, 2000, Maharaj, 2005) have 
focused on the teaching and learning of school 
mathematics. These studies have indicated some 
important sources of students' difficulties in 
mathematics.  

Kieran (1992) considered a student's inability to 
acquire an in-depth sense of the structural aspects of 
algebra to be the main obstacle.  

Sfard and Linchevski (1994) have analyzed the 
nature and growth of algebraic thinking from an 
epistemological perspective supported by historical 
observations. They indicated that the development of 
algebraic thinking was a sequence of ever more 
advanced transitions from operational (procedural) to 
structural outlooks.  

Mason (2000) has argued that "... the style and the 
nature of questions encountered by students strongly 
influences the sense that they make of the subject 
matter". The questions that come to the mind of an 
educator are influenced by the perspective and 
disposition that he/she has towards mathematics and 
pedagogy. These questions in turn influence the sense 
learners make of the subject matter. In this article I 
focus on the outcomes and implications of research on 
(a) use of symbols in mathematics, (b) 
algebraic/trigonometric expressions, (c) solving 
equations, and (d) functions and calculus. 

When introducing algebra the use of letters 
should be withheld until it is evident that learners are 
ready for their use, and teaching should recognise and 
prepare learners for the various uses of letters in 
algebra as the need arises (Harper, 1987; Stols, 1996 ).  

Pyke (2003) has shown that the learners' use of 
"... symbols, words, and diagrams to communicate 
about their ideas each contribute in different ways to 
solving tasks". The structurality of geometry and the 
visual overview that it provides facilitate thinking and 
effective investigation (Sfard, 1995). For example, the 
formulae for determining the areas of squares and 

rectangles can be used to introduce algebraic 
expressions. Such an approach could help learners to 
make links between arithmetic and algebra. A teaching 
sequence which allowed students to develop a 
procedural (operational) meaning for algebraic 
expressions such as 4x + 4y was designed by Chahouh 
and Herscovics (Kieran, 1992). 

Math through the Ages (Berlinghoff & Gouvea, 
2004) is an excellent book from which to learn the 
history of some key mathematical ideas. The text 
focuses on a few main ideas, and expands upon them. 
Specifically, it provides interesting stories and histories 
on people. However, it does not show most of the 
actual work that was needed to derive the formulae and 
ideas presented.  

On the other hand, Journey through Genius 
(Dunham, 1990) provides many of the proofs and 
derivations of formulae in addition to interesting 
background information. However in this book, the 
focus of each chapter is a specific theorem, rather than 
the evolution of a mathematical idea.  

Hattie (2009) noted that fluency with prerequisite 
knowledge, even at a very early stage, was highly 
predictive of latter success. The key prerequisite 
concepts and processes necessary to engage 
meaningfully with quadratics include basic whole 
number fluency, fraction computation, linear algebraic 
procedures, and coordinate geometry. A key process in 
working with quadratics is solving or finding the � 
intercepts, should there be any. 

In most curricula this has involved factorization, 
the square root method, completing the square, and the 
use of the quadratic formula. Each of these techniques 
has its own advantages and disadvantages when it 
comes to teaching, learning, and applying. Research 
has shown that students and teachers shy away from 
some techniques and favor factorization, generally 
using coefficients that are easy to factories since 
students’ ability to perform fractional and radical 
arithmetic has been reported as low (Bosse & 
Nandakumar, 2005). 

The study adds to the literature by supporting the 
findings of previous researchers who have documented 
that student understanding of quadratics equations is a 
problem area (Bosse & Nandakumar, 2005; 
Vaiyavutjamai & Clements, 2006; Vaiyavutjamai et 
al., 2005; Zakaria et al., 2010). 

According to Kirschner et al. (2006) it adds to the 
literature by helping to explain why this was the case, 
at least in one school. Students who struggled did so 
due to a combination of factors that became critical. 
Some of these included a lack of prerequisite concepts 
and processes associated with fractions and algebra 
conventions (index law conventions and understanding 
the meaning of solve). Cognitive load theorists 
(provide an explanation as to why these deficits 
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become a critical hindrance to engagement with 
quadratics.  

Many students in this study did not have the tools 
to factories, and many of those who could did not 
understand the implications of the factorized form for 
finding the roots. Conceptual errors were invariably 
proceeded by procedural errors. Sometimes the two 
were intertwined (DETE, 2013).  

There was evidence that teacher interpretation of 
curriculum guidelines resulted in overemphasis of 
symbolic factorization processes. The results suggest a 
lack of alternative pedagogies such as links to 
geometric models recommended by some authors and 
the integrated use of graphs in contexual settings 
(Barnes, 1991; Howden, 2001; Norton, 2015).  

This deficit was most obvious in lack of 
understanding of null factor law and various forms of 
quadratics. These results add to the findings of 
previous authors regarding too narrow a focus on 
factorization (Bosse & Nandakumar, 2005). 

The sample school in this research project was a 
coeducational high school in south-east Queensland in 
a community of mixed socioeconomic index. The 
school is typical of outer suburban schools according to 
MySchool data from the Australian Curriculum, 
Assessment and Reporting Authority (ACARA) 
(ACARA, 2012a). The sample included a Year, 2011 
Mathematics B class of 25 students. In Queensland, 
Mathematics B is a calculus-oriented, advanced senior 
mathematics class that qualifies the students to study 
science-oriented subjects at university. All the students 
had studied quadratics in Year 2010 as consistent with 
the state and national curriculum (ACARA, 2012b; 
Department of Education, Training and Employment 
[DETE], 2013; Queensland Studies Authority, 2004). 

Overemphasis on relatively simple factorization 
is concerning as many quadratic equations cannot be 
factorized. Further, other methods that are more 
efficient or that develop conceptualization may be 
neglected in teaching (Bosse & Nandakumar, 2005).  

For example, factorization with algebra tiles links 
quadratics with basic multiplication and division 
concepts via the area model of rectangles and squares 
(Howden, 2001).  

Geometric models are useful in adding 
understanding in developing the quadratic formula via 
completing the square procedure (Norton, 2015).  

Barnes (1991) suggested using graphing 
calculators to plot quadratics with no roots, one root, or 
two roots and linking this to the discriminate values.  

Research suggests that teachers tend to avoid 
teaching alternative methods due to high instances of 
process skill errors with techniques such as the 
quadratic formula and completing the square (Zakaria 
et al., 2010). From this literature review, it is clear that 

there is a need for further research into the sources of 
students’ difficulties with quadratic equations. 

APOS theory will be used as theoretical 
framework to study the level of cognitive development 
of students who completed a precalculus course using a 
traditional lecture/recitation model, as discussed by 
Arnon et al. (2013). 

APOS theory was chosen since it has been used to 
study student learning of a variety of different 
mathematical concepts and has proven to give 
important insights on students learning of mathematics 
has an annotated bibliography). Also, it has been tested 
in the classroom and has proven effective in promoting 
students’ learning of different concepts and guiding the 
development of classroom activities by Arnon et al. 
(2013). 

In APOS theory (Arnon, et al, 2013) an Action is 
a transformation of a mathematical object performed 
by an individual that the individual perceives as 
external. It may be a transformation where the 
individual is limited to following an explicit algorithm 
step by step or is limited to the rigid application of a 
memorized fact. An individual who is limited to 
performing actions when dealing with a problem 
situation that involves a particular mathematical notion 
is said to have an action conception of the 
mathematical notion. So for example, a student who 
needs to be given the quadratic formula or who has 
memorized the quadratic formula and is only able to 
think of using it when a quadratic equation is given in 
standard form, or who is unable to anticipate or discuss 
the nature of its solutions without explicitly computing 
the solutions would show behavior consistent with an 
action conception of the quadratic formula. If the 
individual repeats an action and reflects on it, the 
action may be interiorized into a Process. The process 
is now perceived as internal, under control of the 
individual. An individual with a process conception of 
a mathematical notion may reflect on it without having 
to explicitly carry out all the steps of the 
transformation. A process may be reversed and it may 
be coordinated with other processes. For example, a 
student who can anticipate being able to use the 
quadratic formula to find solutions of a quadratic 
equation regardless of the form in which the quadratic 
equation is given, or who without prompting can use 
the discriminant to discuss the nature of the solutions, 
or who can relate the nature of the solutions to the 
graphical representation of the corresponding quadratic 
function, would be showing behavior consistent with at 
least a process conception of the quadratic formula. 

Algebra is a core component of mathematics 
curriculum, algebra serves as a gatekeeper to higher 
mathematics and many prestigious occupations, and on 
the grounds of equity, all students should have access 
to it (Ahmad & Shahrill, 2014; Lim, 2000; National 
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Council of Teachers of Mathematics [NCTM], 2006; 
Pungut & Shahrill, 2014; Sarwadi & Shahrill, 2014; 
Shahrill, 2009). According to Moses (2000), and 
Strong and Cobb (2000).  

This research seeks to understand why and what 
makes students choose a certain method or strategy in 
solving problems in algebra. In solving algebraic 
problems provides one of the ways to assess students’ 
understanding of a concept. If the reasons can be 
identified, then it should be easier to improve the 
students’ understanding to solve similar algebraic 
problems in the future. The thinking strategies of the 
students in solving problems on three sub-topics in 
algebra, namely, changing the subject of a given 
formula, factorization of quadratic expressions and 
solving quadratic equations using quadratic formula. 
Thinking strategies had been defined as processes that 
involve thoughtful and effective use of cognitive skills 
and strategies for a particular context or type of 
thinking task where individuals engage in activating 
schemata and in integrating new subject matters into 
meaningful knowledge structures. In other words, 
thinking strategies refer to the processes by which 
individuals try to find solutions to problems through 
reflection (Davis, 1992).  

Resnick (1982) stated “difficulties in learning are 
often a result of failure to understand the concepts on 
which procedures are based”. Thus, it is important for 
teachers to develop insights into student thinking in 
order to identify students’ difficulties and errors in 
understanding in algebra. 

The framework of three worlds of mathematics is 
an overall theory of cognitive and affective growth in 
mathematics that has evolved to build from the early 
development of ideas in the child, through the years of 
schooling and on to the boundaries of research in 
formal mathematics (Tall, 2004, 2013). It is strongly 
related to a wide range of theoretical frameworks 
formulated by Piaget (1970), Dienes (1960), Bruner 
(1966), Van Hiele (1986), Skemp (1979), the SOLO 
taxonomy of Biggs & Collis (1982), the structural and 
operational mathematics of Sfard (1991), 
process-object theories (such as those of Sfard (1991), 
Dubinsky (Asiala et al., 1996), Gray & Tall (1994)), 
theories of advanced mathematical thinking (Tall (ed.), 
1991), as well as theories from cognitive science such 
as the embodied theory of Lakoff and his colleagues 
(Lakoff & Núñez, 2000), the blending of cognitive 
structures formulated for example by Fauconnier and 
Turner (2002) and other aspects such as the role of 
various levels of consciousness (Donald, 2001).  

Detailed discussion of all these aspects can be 
found. However, the main purpose of the theoretical 
framework is not to collate all these theories together 
with all their intricate details that differ in many ways, 

but to seek the fundamental essence of essential ideas 
that they have in common Tall (2013). 

According to Lim (2000), students have a choice 
of either a rote-learned cross-multiplication method or 
a rotelearned grouping method when factorising a 
quadratic expression; however, neither was ever 
related to the distribution law. The selection of the 
method really depended on what their teachers 
preferred their students to use. Students remained 
unable to discover the factor of an algebraic 
expression, even at the post-teaching stage of 
factorising an algebraic expression. 
 Kotsopoulos (2007) stated that quadratic 
relations are one of the most conceptually challenging 
aspects of the high school curriculum. This is because 
many secondary students have difficulty with basic 
multiplication table fact retrieval. Since factorization is 
a process of finding products within the multiplication 
table, this directly influences students’ ability to 
engage effectively in factorization of quadratics.  

According to (Kotsopoulos (2007) most 
secondary school students and many university 
students were found to be confused about the concept 
of a variable and the meaning of a solution to a 
quadratic equation. For example, even if most students 
were able to obtain the correct solutions, x = 3 and x = 
5, students thought that the two x’s in the equation (x – 
3) (x – 5) = 0 stood for different variables.  

The students lack relational understanding and 
relied only on rote learning (Law & Shahrill, 2013; 
Pungut & Shahrill, 2014; Sarwadi & Shahrill, 2014; 
Vaiyavutjamai, 2004; Vaiyavutjamai, Ellerton & 
Clements, 2005; Vaiyavutjamai & Clements, 2006). In 
addition, when students were asked to solve (x – a) (x – 
b) = 0, they first expanded the linear expressions and 
then factorized before finally finding the solutions to 
that equation. This showed that the students lack 
understanding of the distributive law which, from a 
mathematical standpoint, is fundamental not only to 
the process of factorization in algebra, but also to the 
reverse process of ‘expanding brackets’ (Lim, 2000).  

In some cases, secondary students were expected 
to memorise the quadratic formula and to be able to 
apply it to solve quadratic equations despite not being 
taught how this formula could be derived (Lim, 2000). 
Thus students developed a perception that their main 
task was only to gain knowledge and to be able to solve 
quadratic equations using the quadratic formula; there 
was no real need to really understand why the method 
works. There are common reasons why students are 
unable to solve quadratic equations using the quadratic 
formula (Oliver, 1992). For example, he may not 
possess the required schema, or, his retrieval 
mechanism cannot locate his appropriate schema, or, 
the retrieved schema is flawed, incomplete or 
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inappropriate (Abdullah, Shahrill & Chong, 2014; 
Chong & Shahrill, 2014; Shahrill & Abdullah, 2013).  

As the solution of the problem is wholly 
determined by the combined information of the used 
cues and the content and structure of the retrieved 
schema, the solution will be wrong if the quadratic 
formula in the schema was flawed. In other words, the 
schema mediates the solution. On the other hand, 
changing the subject of a given formula plays an 
important role in mathematics. It is applied in various 
mathematical topics including function and its inverse 
and trigonometry. However, Lim (2000) found that 
students attempting to solve these equations still used 
descriptions of doubtful educational worth.  

At the general intra- stage some operational 
actions are possible, but there is an absence of 
relationships between properties. At the inter- stage, 
the identification of relations between different 
processes and objects, and transformations are starting 
to form, but they remain isolated. The trans- stage is 
defined in terms of the construction of a synthesis 
between them to form a coherent structure (Cooley, 
Trigueros & Baker, 2007).  

For example, in the genetic decomposition that 
we are about to describe, different processes and 
objects for solving quadratic equations using square 
roots, completion of square, quadratic formula, 
factoring, and graphical interpretation are given. The 
stage of development (intra-, inter-, trans-) of the 
schema of quadratic equations is a measure of the 
degree of interconnectedness of these ideas in the 
students’ minds. The progression from action, to 
process, to object, and to having such constructions 
organized in schemas is a dialectical progression where 
there may be passages and returns from one type of 
construction to the other (Czarnocha, Dubinsky, 
Prabhu & Vidakovic, 1999). 

What the theory states is that a student’s tendency 
to deal with problem situations in diverse mathematical 
tasks involving a particular mathematical concept is 
different depending on whether the student 
understands the concept as an Action, a Process, or an 
Object or has constructed a coherent Schema. Hence an 
individual’s mental construction of a particular 
mathematical concept may be classified (as action, 
process, object, intra-schema, inter-schema, or 
trans-schema) by inference made from observations of 
his/her overall behavior when using or applying the 
mathematical concept in a diverse group of problem 
situations. In APOS theory, research starts with a 
conjecture of the mental constructions (in terms of the 
constructs of the theory) that students may do in order 
to understand a particular mathematical concept. The 
conjecture, called a genetic decomposition, is based on 
the mathematical concept itself, on the classroom 
experience of the researchers, and results from any 

available data. The conjecture is then tested by doing 
student interviews. What typically happens is that 
students will give evidence of doing some unexpected 
mental constructions and will also show difficulty on 
some of the conjectured constructions.  

This leads to refining the genetic decomposition 
to better reflect the mental constructions that students 
actually do and it also leads to the design of student 
activities and more effective pedagogies to help them 
make particular constructions where they have shown 
difficulty. This marks the end of a research cycle and 
the beginning of the next one which would start with 
the class testing of the specially designed activities. 
Iterations of this cycle of research continue until 
stability is reached, that is, a genetic decomposition is 
obtained that serves to predict the mental constructions 
that students can actually do to understand the 
mathematical concept and also serves as a guide for the 
instruction of the particular mathematical concept. Our 
study is the first cycle of an APOS based research 
project dealing with student understanding of quadratic 
functions. The design of didactic material based on the 
refined genetic decomposition and its classroom 
implementation is not discussed. 

Resnick (1982) stated “difficulties in learning are 
often a result of failure to understand the concepts on 
which procedures are based”. Thus, it is important for 
teachers to develop insights into student thinking in 
order to identify students’ difficulties and errors in 
understanding in algebra.  

According to Lim (2000), students have a choice 
of either a rote-learned cross-multiplication method or 
a rotelearned grouping method when factorising a 
quadratic expression; however, neither was ever 
related to the distribution law. The selection of the 
method really depended on what their teachers 
preferred their students to use. Students remained 
unable to discover the factor of an algebraic 
expression, even at the post-teaching stage of 
factorising an algebraic expression.   

Kotsopoulos (2007) stated that quadratic relations 
are one of the most conceptually challenging aspects of 
the high school curriculum. This is because many 
secondary students have difficulty with basic 
multiplication table fact retrieval. Since factorization is 
a process of finding products within the multiplication 
table, this directly influences students’ ability to 
engage effectively in factorization of quadratics. 
Furthermore, most secondary school students and 
many university students were found to be confused 
about the concept of a variable and the meaning of a 
solution to a quadratic equation. For example, even if 
most students were able to obtain the correct solutions, 
x = 3 and x = 5, students thought that the two x’s in the 
equation (x – 3) (x – 5) = 0 stood for different variables.  
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The understanding of quadratic equations with 
one unknown is fundamental for advanced studies in 
mathematics and other sciences. Nevertheless, it has 
been found in various investigations that many 
secondary school students and even undergraduate 
students do not truly understand these equations or the 
rules they use to solve them. For example, as Didis, 
Baş, and Erbaş (2011) concluded: ‘although students 
knew some rules related to solving quadratics, they 
applied these rules thinking about neither why they did 
so, nor whether what they were doing was 
mathematically correct. It was concluded that the 
students’ understanding in solving quadratic equations 
is instrumental (or procedural), rather than relational 
(or conceptual).’ Hence it is important to study how 
students learn to solve quadratic equations so that 
instruction in this topic may be improved. Different 
explanations for the scarce understanding of quadratic 
equations have been suggested.  

Sönnerhead (2009), for example, noticed that 
mathematics textbooks in Sweden omit important 
concepts that would not be presented by many 
teachers, thus students will tend to develop a 
disconnected and incomplete set of ideas regarding 
quadratic equations.  

Lima and Tall (2010) interviewed students who 
were taught to solve quadratic equations with a strong 
emphasis on using the quadratic formula as a general 
solution method for any type of equation. They 
conclude: ‘such a strategy enabled a small number of 
students to be able to solve specific quadratic 
equations, but it did not help in general to encourage 
students to construct flexible meanings in algebra’. A 
flexible understanding would allow adjusting the 
solution method to the type of quadratic equation and 
would require, as recommended by Kotsopoulos 
(2007), using different types of quadratic equations, 
not only on standard form 2 0  ax bx c, but also on 
factored form   1 2 a x r x r ( ) ( ) 0, and vertex form, 
2   a x h k ( ) 0. 

Moreover, Olteanu and Holmqvist (2012), when 
comparing differences in student learning of the 
quadratic formula as a result of differences in their 
teaching, observed that a more successful teacher gave 
students different opportunities to experience 
variations in the form of the quadratic equation, and to 
discern the way in which the parts of equations are 
related to each other. Further support for this idea is 
provided by Eraslan (2005) when in his discussion of 
quadratic functions he argued that students have 
difficulty relating the vertex form of a quadratic 
equation to its standard form, preferring the latter form.  

On the other hand, Bosse and Nandakumar (2005) 
observed that the probability that a given quadratic 
with integer coefficients in the interval 10,10 has 
rational roots is only 15% and that this gets smaller as 

the interval of possible coefficients increases. Hence, it 
is unlikely that a quadratic equation resulting from an 
application of science or used to solve a real world 
problem can be solved using factoring techniques. 
They argue that this is reason enough to emphasize the 
other techniques of square roots, completing the 
square, and the quadratic formula.  

Furthermore, Gray and Thomas (2001), reported 
on an experiment where students, who had received 
lessons using the graphing calculator, showed 
difficulty relating processes for the graphical and 
symbolic solution of quadratic equations. Some 
investigations on student understanding of quadratic 
equations refer to specific misconceptions. 
Vaiyavutjamai, Ellerton, and Clements (2005), Bosse 
and Nandakumar (2005), and Ochoviet and Oktaç 
(2009, 2011) observed, for example, that some students 
believe that the variable in an equation of the form   
( ) ( ) x a x b c may have different values at once, 
which means that many students are not aware of the 
relation of the solution with the original quadratic 
equation. Also, as cited in the Vaiyavutjamai et al 
(2005), many of the students did not realize that 
quadratic equations often had two solutions.  

In addition, Vaiyavutjamai et al (2005) and also, 
Tall, Lima, and Healy (2014) found that most of the 
students in their study could not find the correct 
solutions. 9x by using correct procedures or correct 
explanations. Most of the students either they only 
found one solution. 

 Tall et al (2014) argued that students were for the 
most part shifting symbols around in a procedural 
embodied sense rather than using the more general 
reasoning of ‘doing the same on both sides’. Also, 
Didis et al (2011) observed that students were not 
aware of the missing root 0 when cancelling an in the 
equation 2 2 3 x x and generally did not show a good 
understanding of the zero product theorem, a fact also 
observed by Ochoviet and Oktak (2009, 2011), and 
Bosse and Nandakumar (2005).  

All of these investigations have their own context, 
with many of them involving observations made with 
pre-university students. In Puerto Rico, an 
unincorporated territory of the United States, the 
Department of Education establishes that the 8th grade 
students will learn how to solve simple quadratic 
equations by factorization and the zero product 
property, but it is not until 10th grade that students 
learn how to solve quadratic equations, not only simple 
quadratic equation, by the following techniques: 
factoring, the square root method, completing the 
square, the quadratic formula, and using technology. 
Hence, Puerto Rican students are expected to have seen 
quadratic equations in two different stages in their 
respective schools before beginning university studies. 
Given the context of the Puerto Rican beginning 
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university student, this study proposes to investigate 
student understanding of quadratic equations by:  

(1) Establishing a conjecture of the mental 
constructions (stated in terms of the constructs of 
APOS theory, as will be discussed further along) that 
beginning university students may do in order to 
understand how to solve quadratic equations.  

(2) Using semi-structured interviews in order to 
investigate which of the conjectured mental 
constructions students can do and which they have 
difficulty doing.  

(3) Using written work from more advanced 
undergraduate students to investigate their use and 
understanding of two specific mental constructions 
conjectured in the genetic decomposition. 

The study of quadratic equations acts as a 
gateway to more advanced study of algebra and is a 
topic area that challenges many students (Bosse & 
Nandakumar, 2005; Vaiyavutjamai & Clements, 2006; 
Vaiyavutjamai, Ellerton, & Clements, 2005; Zakaria, 
Ibrahim, & Maat, 2010). Failure at working with 
quadratic equations virtually precludes students from 
accessing the powerful mathematics that is necessary 
to enrol in courses involving the study of sciences at 
tertiary levels (Watt, 2005). Despite the importance of 
this topic area there has been little research to inform 
the reform of pedagogy associated with quadratics. 

The resounding theme in mathematics education 
research is that students’ performance in the domain of 
quadratic equations is exceptionally poor and does not 
significantly increase even after instruction 
(Chaysuwan, 1996; Vaiyavutjamai et al., 2005). 
Students have been found to struggle particularly 
solving for � in the form � 2 = � (k>0) and (� − �) 
(� − �) = 0 where � and � are any real numbers 
(Vaiyavutjamai et al., 2005). The most concerning of 
all the data was that, out of a subsample of 29 
second-year university students in the United States 
who were preservice middle-school mathematics 
specialist teachers, only 37% and 78% respectively 
could answer the two questions correctly 
(Vaiyavutjamai et al., 2005). Other than studies by the 
researchers noted above, there is a deficit in research 
and empirical evidence regarding students’ 
performance with respect to solving quadratic 
equations. It is also important to consider the impact 
and current evidence relating to teaching methods and 
the learning of quadratic equations. Kotsopoulos 
(2007) reported that students need to develop 
procedural and conceptual knowledge through various 
learning experiences in an integrated manner. The 
Australian Academy of Science (AAS) also recognises 
the intertwined relationship between conceptual 
understanding, procedural fluency, and problem 
solving and reasoning due to the hierarchical nature of 
mathematics (AAS, 2015).  

The cognitive load work by Kirschner, Sweller, 
and Clark (2006) gives an explanation for the necessity 
of fluency with prerequisite knowledge. Without 
prerequisite fluency, short-term memory becomes 
overloaded and unable to effectively process the new 
concepts being learned. Hattie (2009) noted that 
fluency with prerequisite knowledge, even at a very 
early stage, was highly predictive of latter success. The 
key prerequisite concepts and processes necessary to 
engage meaningfully with quadratics include basic 
whole number fluency, fraction computation, linear 
algebraic procudures, and coordinate geometry. A key 
process in working with quadratics is solving or 
finding the intercepts, should there be any. In most 
curricula this has involved factorization, the square 
root method, completing the square, and the use of the 
quadratic formula.  
 
Corresponding author: 
Dr. Harsh Vardhan 
Assistant Professor in Department of Mathematics,  
Teerthanker Kunthnath College of Education  
(Teerthanker Mahaveer University, Moradabad),  
Uttar Pradesh, India. 
Email: harshv.education@tmu.ac.in  
 
References: 
1. Dennis J.E. and Schnable R.B., Numerical 

Methods for Unconstrained Optimisation and 
Nonlinear Equations, Prentice Hall, 1983. 

2. Department of Education, Training and 
Employment. (2013). Curriculum into the 
classroom (C2C). Retrieved from 
education.qld.gov.au/c2c 

3. Dheghain, M. and Hajarian, M. 2010. New 
iterative method for solving nonlinear equations 
fourth-order Convergence. International Journal 
of Computer Mathematics 87: 834- 839.  

4. Didis M. G., Baş S., Erbaş A. K. Students’ 
reasoning in quadratic equations with one 
unknown. Paper presented at the 7th Congress of 
the European Society for Research in 
Mathematics Education. 2011. Last retrieved 
March 18, 2014 from 
http://www.cerme7.univ.rzeszow.pl/index.php?i
d=wg3 

5. Dowell M. and Jarratt P., A modified 
Regula-Falsi method for computing the root of an 
equation, BIT, 11, 168-174, 1971. 

6. Dreyfus, T., & Hoch, M. (2004). Equations – A 
structural approach. In M. Johnsen Høines (Ed.), 
PME 28, Vol. I (pp. 152–155). 

7. Dufiet, V., and Boissonade, J. (1991) 
Conventional and unconventional Turing 
patterns. J. Chem. Phys. 96:664-673.  



 Report and Opinion 2021;13(2)           http://www.sciencepub.net/report   ROJ 

 

32 

8. Eddy, R. H., The Conics of Ludwig Kiepert – A 
Comprehensive Lesson in the Geometry of the 
Triangle, Math. Mag. 67 (1994), 188-205. 

9. Eraslan A. A qualitative study: algebra honor 
students’ cognitive obstacles as they explore 
concepts of quadratic functions. Electronic 
Theses [Treatises and Dissertations]. Paper 557; 
2005. 

10. Ermentrout, B. (1991) Stripes or spots? Nonlinear 
effects of bifurcation of reaction-diffusion 
equations on the square. Proc. R. Sac. London 
A434:413-417. 

11. Erwin Kreyszig, Introductory Functional 
Analysis with Applications, Wiley Classics 
Library, 1989, pp. 300–302. 

12. F I Fedorov and A M Goncharenko, Opt. 
Spektrosk. 14, 100-105 (1963) (in Russian) 

13. F I Fedorov and V V Filippov, Reflection and 
refraction of light by transparent crystals, Nauka 
Tekh., Minsk, (1976) (in Russian) 

14. F I Fedorov, Optics of anisotropic media, lzd. AN 
BSSR, Minsk, (1958) (in Russian) 

15. F I Fedorov, Theory of elastic waves in crystals 
(Plenum, New York, 1968) 1-4] 

16. F I Fedorov, Theory of gyrotropy, Nauka Tekh., 
Minsk, (1976) (in Russian) 

17. F. Ettwein, M. Ruzicka, B. Weber, Existence of 
steady solutions for micropolar electrorheological 
fluid flows, Nonlin. Anal. Meth. Appl. 125 (2015) 
1-29. 

18. F. J. Suarez-Grau, Asymptotic behavior of a 
non-Newtonian flow in a thin domain with Navier 
law on a rough boundary, Nonlin. Anal. Meth. 
Appl. 117 (2015) 99-123. 

19. F. T. Pinho and P. J. Oliveira, Analysis of forced 
convection in pipes and channels with simplified 
Phan-Thien Tanner Fluid, Int. J. Heat Mass 
Transfer. 43 (2000) 2273–2287. 

20. F. Talay Akyildiz, K. Vajravelu, 
Magnetohydrodynamic flow of a viscoelastic 
fluid, Physics Letters A. 372 (2008) 3380-3384. 

21. F. Zafar and N.A. Mir, A generalization of 
Ostrowski-Gr¨auss type inequality for first 
differentiable mappings, Tamsui Oxford J. Math. 
Sci., 26(1) (2010), 61-76. 

22. F. Zafar and N.A. Mir, A generalized family of 
quadrature based iterative methods, General 
Math., 18(4) (2010), 43-51. 

23. F.A. Potra and V. Pták, Nondiscrete induction 
and iterative processes. Research Notes in 
Mathematics, vol. 103, Pitman, Boston (1984). 

24. Fernando T.G.I. and Weerakoon S., Improved 
Newton’s method for finding roots of a nonlinear 
equation. Proceedings of the 53rd Annual Sessions 
of Sri Lanka Association for the Advancement of 
Science (SLAAS) E1-22, 309, 1997. 

25. Filloy, E., & Rojano, T. (1984). From an 
arithmetical to an algebraic thought. A clinical 
study with 12–13 year olds. In J. M. Moser (Ed.), 
PME-NA 6 (pp. 51–56). 

26. Filloy, E., & Rojano, T. (1989). Solving 
Equations: the Transition from Arithmetic to 
Algebra. For the Learning of Mathematics, 9(2), 
19–25.  

27. Ford W.F. and Pennline J.A., Accelerated 
convergence in Newton’s method, SIAM 
Review, 38, 658-659, 1996. 

28. Frankel, J. (1989) “Pattern Formation: Ciliate 
Studies and Models.” New York: Oxford 
University Press. Gierer, A, and Meinhardt, H. 
(1972) A theory of biological pattern formation. 
Kybernetik 12:30-39.  

29. Frontini M. and Sormani E., Modified Newton’s 
method with third-order convergence and 
multiple roots, J. Computational Applied 
Mathematics, 156, 345-354, 2003. 

30. Frontini M. and Sormani E., Some variants of 
Newton’s method with third-order convergence, 
Applied Mathematics and Computation, 140, 
419-426, 2003. 

31. G N Ramachandran and S Ramaseshan, in 
Handb. Phys. (Springer-Verlag, Berlin, 1961) 
25(1) 

32. G S Ranganath, Curt. Sci. 67, 231-237 (1994)  
33. G. Ardelean, Proving the convergence of the 

iterative methods by using symbolic computation 
in Maple, Carpathian J. Math., 28(1) (2012), 1-8.  

34. G. Matthias, G. Dario, N. Manuel, L-p-theory for 
a generalized nonlinear viscoelastic fluid model 
of differential type in various domains, Nonlin. 
Anal. Meth. Appl. 75 (2012) 5015-5026. 

35. Gay, L., Airasian, P. (1992). Educational 
Research: Competencies for analysis and 
application. Englewood Cliffs.  

36. Gerald C.F. and Wheatley P.O., Applied 
numerical analysis, Addison-Wesley, 1994. 

 
 

2/2/2021 


