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Abstract: Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the 
Book proof. No great mathematicians study prime problems and prove Riemann hypothesis. In this paper using 

Jiang function 2 ( )J 
 we prove that the new prime theorems (641)-（690) contain infinitely many prime solutions 

and no prime solutions. From (6) we are able to find the smallest solution 0( , 2) 1k N 
. This is the Book 

theorem. 
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Satellite Conference to ICM2010 
Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve 

methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s 
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple 
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false: 

(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf). 
The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996 

Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang 
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s 
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress. 
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and 
Tao theorem is false) to see. 

(http://www.wbabin.net/math/xuan39e.pdf) 
(http://www.vixra.org/pdf/0904.0001v1.pdf). 
There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level. 

Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. IMU should support 
Jiang epoch-making prime theory and the Book theorem to see[new prime k-tuple theorems (1)-(20)] and the [new 
prime theorems (1)-(690)]: (http://www.wbabin.net/xuan.htm#chun-xuan) (http://vixra.org/numth/) 

 

The New Prime theorem（641） 
 

1202, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1202jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1202, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1202

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1202jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1202 2
1

( )
( ,2) : ~

(1202) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（642） 
 

1204, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1204jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1204, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1204

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1204jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1204 2
1

( )
( ,2) : ~

(1204) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5, 29k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5, 29k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,29k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,29k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（643） 
 

1206, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1206jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1206, ( 1, , 1)P jP k j j k   

.               （1） 
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contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1206

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1206jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1206 2
1

( )
( ,2) : ~

(1206) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7,19k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,19k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,19k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（644） 
 

1208, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1208jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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1208, ( 1, , 1)P jP k j j k    .               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1208

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1208jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1208 2
1

( )
( ,2) : ~

(1208) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5k  ， 
(1) contain infinitely many prime solutions 

 
The New Prime theorem（645） 

 
1210, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1210jP k j   contain infinitely many prime solutions and no prime 

solutions. 
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Theorem. Let k  be a given odd prime. 
1210, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1210

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1210jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1210 2
1

( )
( ,2) : ~

(1210) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,11k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（646） 
 

1212, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1212jP k j   contain infinitely many prime solutions and no prime 
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solutions. 

Theorem. Let k  be a given odd prime. 
1212, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1212

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1212jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1212 2
1

( )
( ,2) : ~

(1212) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,607,1213k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,607,1213k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,607,1213k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,607,1213k 

， 
(1) contain infinitely many prime solutions 

 
The New Prime theorem（647） 

 
1214, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1214jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1214, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1214

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1214jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1214 2
1

( )
( ,2) : ~

(1214) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（648） 
 

1216, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1216jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1216, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1216

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1216jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1216 2
1

( )
( ,2) : ~

(1216) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,17,1217k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,1217k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17,1217k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,17,1217k  ， 
(1) contain infinitely many prime solutions 

 
The New Prime theorem（649） 

 
1218, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
1218jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1218, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1218

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1218jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1218 2
1

( )
( ,2) : ~

(1218) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7, 43,59k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7, 43,59k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7, 43,59k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7, 43,59k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（650） 
 

1220, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
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Abstract 

Using Jiang function we prove that 
1220jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1220, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1220

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1220jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1220 2
1

( )
( ,2) : ~

(1220) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,11k 

 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,11k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（651） 
 

1222, ( 1, , 1)P jP k j j k     
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1222jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1222, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1222

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1222jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1222 2
1

( )
( ,2) : ~

(1222) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（652） 
 

1224, ( 1, , 1)P jP k j j k   
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1224jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1224, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1224

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1224jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1224 2
1

( )
( ,2) : ~

(1224) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,19,37,73,103,307,409k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,19,37,73,103,307,409k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,19,37,73,103,307,409k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,19,37,73,103,307,409k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（653） 
 



 Report and Opinion 2017;9(5)           http://www.sciencepub.net/report 

 

31 

1226, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1226jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1226, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1226

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1226jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1226 2
1

( )
( ,2) : ~

(1226) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（654） 
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1228, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1228jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1228, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1228

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1228jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1228 2
1

( )
( ,2) : ~

(1228) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,1229k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,1229k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,1229k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,1229k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（655） 



 Report and Opinion 2017;9(5)           http://www.sciencepub.net/report 

 

33 

 
1230, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1230jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1230, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1230

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1230jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1230 2
1

( )
( ,2) : ~

(1230) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,11,31,83,1231k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,11,31,83,1231k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,11,31,83,1231k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,11,31,83,1231k  ， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（656） 
 

1232, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1232jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1232, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1232

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1232jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1232 2
1

( )
( ,2) : ~

(1232) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,17, 23,29,89,113,617k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,17, 23,29,89,113,617k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17, 23, 29,89,113,617k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17, 23, 29,89,113,617k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（657） 
 

1234, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1234jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1234, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1234

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1234jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1234 2
1

( )
( ,2) : ~

(1234) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（658） 
 

1236, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1236jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1236, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1236

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1236jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1236 2
1

( )
( ,2) : ~

(1236) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,619,1237k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,619,1237k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,619,1237k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,619,1237k  ， 
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(1) contain infinitely many prime solutions 
 

The New Prime theorem（659） 
 

1238, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1238jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1238, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1238

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1238jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1238 2
1

( )
( ,2) : ~

(1238) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
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(1) contain infinitely many prime solutions 
 

The New Prime theorem（660） 
 

1240, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1240jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1240, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1240

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1240jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1240 2
1

( )
( ,2) : ~

(1240) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,11,41,311k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,11,41,311k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11, 41,311k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,11, 41,311k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（661） 
 

1242, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1242jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1242, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1242

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1242jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1242 2
1

( )
( ,2) : ~

(1242) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,19,47,139k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,19,47,139k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19, 47,139k  . 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19, 47,139k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（662） 
 

1244, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1244jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1244, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1244

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1244jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1244 2
1

( )
( ,2) : ~

(1244) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
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From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5k  ， 
(1) contain infinitely many prime solutions 

 
The New Prime theorem（663） 

 
1246, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1246jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1246, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1246

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1246jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1246 2
1

( )
( ,2) : ~

(1246) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,179k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,179k 

, 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 
3,179k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,179k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（664） 
 

1248, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1248jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1248, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1248

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1248jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1248 2
1

( )
( ,2) : ~

(1248) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,17,53,79,97,157,313,1249k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,17,53,79,97,157,313,1249k  , 
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(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,17,53,79,97,157,313,1249k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,17,53,79,97,157,313,1249k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（665） 
 

1250, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1250jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1250, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1250

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1250jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1250 2
1

( )
( ,2) : ~

(1250) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,11, 251k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 
3,11, 251k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11, 251k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11, 251k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（666） 
 

1252, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1252jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1252, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1252

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1252jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1252 2
1

( )
( ,2) : ~

(1252) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 

The New Prime theorem（667） 
 

1254, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1254jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1254, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1254

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1254jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1254 2
1

( )
( ,2) : ~

(1254) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 
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Example 1. Let 
3,7, 23,67,419k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7, 23,67,419k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7, 23,67,419k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7, 23,67,419k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（668） 
 

1256, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1256jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1256, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1256

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1256jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1256 2
1

( )
( ,2) : ~

(1256) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 

The New Prime theorem（669） 
 

1258, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1258jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1258, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1258

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1258jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1258 2
1

( )
( ,2) : ~

(1258) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,1259k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,1259k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,1259k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,1259k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（670） 
 

1260, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1260jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1260, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1260

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1260jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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 
1

1260 2
1

( )
( ,2) : ~

(1260) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,11,13,19, 29,31,37,43,61,71,127,181,211,631k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,19, 29,31,37,43,61,71,127,181,211,631k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,11,13,19,29,31,37,43,61,71,127,181, 211,631k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,19,29,31,37,43,61,71,127,181, 211,631k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（671） 
 

1262, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1262jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1262, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1262

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1262jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1262 2
1

( )
( ,2) : ~

(1262) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（672） 
 

1264, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1264jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1264, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1264

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1264jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1264 2
1

( )
( ,2) : ~

(1264) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,17,317k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,317k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17,317k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,17,317k  ， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（673） 
 

1266, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1266jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1266, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1266

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1266jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1266 2
1

( )
( ,2) : ~

(1266) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7k 
， 

(1) contain infinitely many prime solutions 
 

The New Prime theorem（674） 
 

1268, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1268jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1268, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1268

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1268jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 
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2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1268 2
1

( )
( ,2) : ~

(1268) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 

The New Prime theorem（675） 
 

1270, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1270jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1270, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1270

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1270jp

+
k j

 is a prime. 
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Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1270 2
1

( )
( ,2) : ~

(1270) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,11k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,11k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11k  ， 
(1) contain 

infinitely many prime solutions 
 
 

The New Prime theorem（676） 
 

1272, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1272jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1272, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1272

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1272jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1272 2
1

( )
( ,2) : ~

(1272) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,107k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,107k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,107k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,107k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（677） 
 

1274, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1274jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1274, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1274

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1274jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1274 2
1

( )
( ,2) : ~

(1274) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（678） 
 

1276, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1276jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1276, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1276

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1276jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1276 2
1

( )
( ,2) : ~

(1276) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5, 23,59,1277k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5, 23,59,1277k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,23,59,1277k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,23,59,1277k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（679） 
 

1278, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1278jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1278, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1278

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1278jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1278 2
1

( )
( ,2) : ~

(1278) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,19,1279k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,19,1279k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,19,1279k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19,1279k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（680） 
 

1280, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1280jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1280, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 
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1
1280

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1280jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1280 2
1

( )
( ,2) : ~

(1280) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,11,17, 41, 257,641k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11,17, 41, 257,641k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11,17,41,257,641k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,11,17,41,257,641k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（681） 
 

1282, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1282jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1282, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P 
，

( )P
 is the number of solutions of congruence 

1
1282

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1282jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1282 2
1

( )
( ,2) : ~

(1282) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,1283k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,1283k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,1283k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,1283k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（682） 
 

1284, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1284jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1284, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1284

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1284jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1284 2
1

( )
( ,2) : ~

(1284) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,643k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,643k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,643k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,643k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（683） 
 

1286, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1286jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1286, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1286

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1286jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1286 2
1

( )
( ,2) : ~

(1286) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（684） 
 

1288, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1288jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1288, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1288

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1288jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1288 2
1

( )
( ,2) : ~

(1288) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5, 29,47,1289k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5, 29,47,1289k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,29,47,1289k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,29,47,1289k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（685） 
 

1290, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1290jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1290, ( 1, , 1)P jP k j j k   

.               （1） 
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contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1290

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1290jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1290 2
1

( )
( ,2) : ~

(1290) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7,11,31, 431,1291k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,11,31, 431,1291k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,11,31, 431,1291k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,11,31, 431,1291k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（686） 
 

1292, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1192jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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1292, ( 1, , 1)P jP k j j k    .               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1292

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1292jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1292 2
1

( )
( ,2) : ~

(1292) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,647,1293k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,647,1293k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,647,1293k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,647,1293k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（687） 
 

1294, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1294jP k j   contain infinitely many prime solutions and no prime 

solutions. 
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Theorem. Let k  be a given odd prime. 
1294, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1294

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1294jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1294 2
1

( )
( ,2) : ~

(1294) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（688） 
 

1296, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1296jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 
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Theorem. Let k  be a given odd prime. 
1296, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1296

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1296jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1296 2
1

( )
( ,2) : ~

(1296) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,17,19,37,73,109,163, 433,1297k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,17,19,37,73,109,163, 433,1297k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,17,19,37,73,109,163,433,1297k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,17,19,37,73,109,163,433,1297k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（689） 
 

1298, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1298jP k j   contain infinitely many prime solutions and no prime 
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solutions. 

Theorem. Let k  be a given odd prime. 
1298, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1298

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1298jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1298 2
1

( )
( ,2) : ~

(1298) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3, 23k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3, 23k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3, 23k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 23k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（690） 
 

1300, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1300jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1300, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1300

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1300jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1300 2
1

( )
( ,2) : ~

(1300) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,11,53,101,131,1301k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11,53,101,131,1301k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11,53,101,131,1301k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,11,53,101,131,1301k  ， 
(1) contain infinitely many prime solutions 
 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ   and Jiang prime k -tuple 

singular series 

1
2 ( ) 1 ( ) 1

( ) 1 (1 )
( )

k
k

k P

J P
J

P P

  


 


 

     
  [1,2], which can count the number of prime 

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series 
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( ) 1
( ) 1 (1 ) k

P

P
H

P P


  

    
   is false [3-17], which cannot count the number of prime numbers[3]. 

 
Note: 

This article has been published as: Jiang, Chun-Xuan. 
The New Prime theorems（641）-（690）. Academ Arena 
2016;8(1s): 409-462]. (ISSN 1553-992X). 
http://www.sciencepub.net/academia. 9. 
doi:10.7537/marsaaj0801s1609. 
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Szemerédi’s theorem does not directly to the primes, 

because it cannot count the number of primes.  Cramér’s 
random model cannot prove any prime problems. The 

probability of 
1 / log N

 of being prime is false. Assuming 

that the events “ P  is prime”, “ 2P   is prime” and 

“ 4P   is prime” are independent, we conclude that P , 

2P  , 4P   are simultaneously prime with probability 

about 
31 / log N

. There are about 
3/ logN N

 primes 

less than N . Letting N   we obtain the prime 
conjecture, which is false. The tool of additive prime number 
theory is basically the Hardy-Littlewood prime tuples 
conjecture, but cannot prove and count any prime 
problems[6]. 

Mathematicians have tried in vain to discover some 
order in the sequence of prime numbers but we have every 
reason to believe that there are some mysteries which the 
human mind will never penetrate. 
Leonhard Euler(1707-1783) 
It will be another million years, at least, before we 
understand the primes. 
 
Paul Erdos (1913-1996) 

Of course, the primes are a deterministic set of integers, 
not a random one, so the predictions given by random models 
are not rigorous (Terence Tao, Structure and randomness in 
the prime numbers, preprint). Erdos and Tur á n(1936) 
contributed to probabilistic number theory, where the primes 
are treated as if they were random, which generates Szemeré
di’s theorem (1975) and Green-Tao theorem (2004). But they 
cannot actually prove and count any simplest prime examples: 
twin primes and Goldbach’s conjecture. They don’t know 
what prime theory means, only conjectures.  
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