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1. Notation and definitions:
1. Notation and definitions.

C"(r23,9), modeled on a Banach space E 2]

The symmetric bilinear positive definite continuous functional /e L, (£31R) is said to be strongly non-
ffixeE—>f =f(x,)eL(E;IR)=E"

Let M be a Riemannian Banach manifold of class

singular [2], if f associates a mapping

which is bijective.

r—1
Also, let & be the metric tensor on the space M | of class . we assume that & is strong non-singular [2

- _ B Dg.
By £ , we denote the covariant differentiation of the tensor & at the point X € M. Finally, by * we
mean the Frechet derivative of the metric & .
2. Locally plane Riemannian Banach manifolds.

Since M is a Riemannian manifold, then on M there exists a unique torsion-free connection I’ [ 2 ] of class

r—2 - _
¢, such that: Vg=0.

Definition (2.1) [ 2 ]: A Riemannian Banach manifold M s called locally plane space, if for all X € M , there

c=U,D,E) =0, o X=D(x)e V) E.

. X r
exists a chart at the point X, such that =~ Where X and

I are the models of the point X and the connection I with respect to the chart ¢, respectively.
p p p y

Lemma (2.1): The metric tensor & of a Riemannian Banach manifold M, which is locally plane, is a constant
tensor field [4].

Now, we assume that N cM 5, submanifold of M of the same class[1]. Let irxeN-—i(x)=xeM,

be the inclusion map. Let c=(U,0,E) be a chart at the point X eNcM on the space M , and

d =Y. F) i a chart at the point ¥ €N M o the space NV .



Report and Opinion 2015;7(3) http://www.sciencepub.net/report

If Z =®(x) and P=Y¥(x) are the models of the point X with respect to the charts € and d , respectively.

Also, if I is the model of the mapping I with respect to the charts € and d , then we have that:

itP=W(x)e¥(V)CF —i(P)=7 =d(x)e DU)C E.

This equation is called the local equation of the submanifold Nina neighbourhood of the point X € N with
respect to the charts Cand @ .

Now, since (M, g) is a Riemannian manifold, then NcM , will be a Riemannian submanifold of M with
1

respect to the induced metric tensor & such that [2]:
1

g (xx,) =g (T i(x),T i(x,)),
x x 2.1)

xeN,X1,X2eT N ;c)
for all ¥ (the tangent space of N at the point
T.i:TN—>TM, - -
X X is the tangent map of the map ! at the point * [1].
-1

. Also, we have that

Similarly, we assume that the metric 8 is strong non-singular. If X, and X, are the models of the vectors

X, and X2 with respect to the chartd , then the models of these vectors with respect to the chart € will be:
Y, = Di,(X,),Y, = Di,(X,),

respectively. Hence, the local form of the equation (2.1) takes the form:

1
gp(XlaXz)=gi(p)(Dip(Xl)’Dip(X2)' (22)

1

Also, with respect to the Riemannian submanifold N , there exists & unique torsion-free connection =

such that[2]:
Vlgl —0
- -1
1

We assume that I and I are the models of the connections I and I with respect to the charts €and d ,

respectively.

In [3], the first derivative equation of the submanifold N s established in the form:
1,2
VDi (X, X)) =n,(4,(X,,X,)), 03
1
r—1
is an isomorphism of class C™ and £ is the

n:xzw(;c) ey(V)cF—>n_elLW;F)

where,

orthogonal complement of the space F atthe point X € F

(T N)L 1,2
Also, the space W is isomorphic to the space * . Finally, \4 is the mixed covariant differential

A, e L(F;W) .

operator defined on the tensors of the space N , and is the second essential form of the space N
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(T,N)L 1,2

Also, the space Wis an isomorphic to the space * . Finally, \ is the mixed covariant differential

A, € L,(F;W)

operator defined on the tensors of the space N , and is the second essential form of the space N

C=U,D,E)

In [4], it is proved that there exists a chart at the point xeN , such that the relation between

the metric tensor g and the connection I is
given in the form:

1
gx(rx(Xl’XZ)’XB):E[Dgx(Xz;XlﬁXB)—'—Dgx(Xl;X29X3)_Dgx(X3;X19X2)]9
x=0(x)edU)cE, X, X,,X;eFE

For all . Where 8x and rx are the models of the metric tensor

g . N . . .
& and the linear connection ~ * with respect to the chart C in the above relation respectively.

_Y
Now, assume that g , is another Riemannian metric function on the space M .

Definition (2.2) [ 2 ] : The two functions & and &' are conformal, if there exists a mapping

HixeM — p(x)€IR, o 4 o

g x =_u(X).g;, 2.5)
for all ¥ € M.

Definition (2.3) [4]: The Riemannian Banach manifold (M, g) is called locally plane, if there exists on M

1
locally plane metric g , conformal to & such that:
N /1(;) 3 - —
g =e.g,R_=0, - R

_ 7!
¥ for all X € M , where ~ is the curvature tensor of the space (M.g )at the

point X .
Lemma (2.2) [ 2 ] : Let H be a vector space with a bilinear and strong non-singular operator g [2], such that

dlm H > 3. Then’ in the space H , We have that:

i- There exist two arbitrary vectors S.w and a vector Z , which is linearly independent with them;

S.w

ii- There exists a vector X | perpendicular to the vectors and Z with respect to the metric & such that

Xis linearly independent of these vectors.
Now, we consider the following theorem:
Theorem (2.1): The necessary and sufficient condition for a Riemannian Banach manifold M with a strong

non-singular metric g , to be locally plane, is to find a symmetric tensor P (X.Y) of type (0,2) on the space M

such that the following conditions are satisfied:

R(X,Y,Z)=P (V,X).Z+g (X,Y)5(Z),
x xom T T s (2.6)
Vp (X:Y.2)=0,

e 2.7)

Where o(x) is a tensor of type (1,1), is a solution of the equation:
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P.(X,Y)=g_(Y,5(X)) 3)

Furthermore, when dim M >3, we can show that, the condition (2.7) is a direct result, of the condition (2.6).

Remark (2.1) In equations (2.6) and (2.7), there exists an alternation with respect to the underlined vectors, that
does not involve division by 2. This convention will be used henceforth.

Proof: It is sufficient to prove this theorem, locally, with respect to an arbitrary chart.

=(U,D,E) is a chart at the point ¥ eM such that gl

Necessity: We assume that ¢ and R are the

models of &> r and, R respectively with respect to this chart.

Also, assuming that, the Riemannian Banach manifold (M, g) is locally plane. Then there exists a locally

'
plane metric g , conformal to &> such that:
A(x)

g)r:e'gx ’RXEO’ (29)
[ x=D(x) e dU) C E.

for al Therefore, we obtain:

g' X,I''(Y,Z2))= %[Dgx'(Y;X,Z)+Dgx'(Z;Y,Y)—Dgx'(X;Y,Z)].

Applying (2.9) in this last equation, yields:
1 A(x) A(x

g' (X, I, (Y,Z))=E[ e Dg (Y;X,Z)+ e)DiX(Y)gX(X,Z)Jr

A(x) A(x)

e Dg (Z;Y,X)+ e DA (Z). g (Y,X)—

A(x) A(x)

e Dg (X;Y,Z)— e DA (X). g (Y,Z2).
A(x

= e e (XL 20+ (DA, (X.2)+

DA.(2).g (X, Y)-DA . (X).g . (Y,2))] (2.10)
But, from equation (2.9), we have:

A(x)
g (XTI . (Y,Z)= e g (X.,I" (Y,2)). .11)

Using equations (2.10) and (2.11), we get:
g (X I'Y,2)) =g (X.I.(Y,2)) +

1
SIPA.()g (X.2)+ D2(2)8.(X.Y) ) (xy 4 (v,7)].
DA, :XeE—>DA(X)elIR

(2.12)
Now, the function is linear and continuous [1]. This means that

. — I
DA, e LEIR) =E >where £ is the dual space of the space E. Hence, taking into account that the metric

8 is strong non-singular, then there exists a vector By ek such that:

g.(X,B,)=DA.(X), (2.13)

forall X € E.
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Using equation (2.13) into equation (2.12), we get:
gx(X’Fx'(Y’Z)) = gx(X’Fx(Y’Z)) +

%[sz (Y)..(X.Z)+ DA(Z).g.(X.V)~ g (X.B.).g.(Y.Z)] =

g (X,I' .(Y,2) +%[DZX(Y). Z+DA(Z2).Y-g (Y,Z)B,].
Since, g is non-singular, we get:
I (Y,Z)=T.(Y,Z)+ %[D/lx (Y).Z+DA(2).Y —g.(Y,Z).B.]).

R' f«r
But, the curvature tensor ~ * of the space M with respect to the linear connection ~ *
form [ 2 ]:

R (X;Y,Z)=DI'\(£; X,Y)+T.'(I,'(X,Y),2),

where R, is the model of Rx ' with respect to the chart c=(U,0,E) at the point X € M.

Differentiating both sides of equation (2.14) in the direction of a vector Z | we have:

DI(Z: X, 1) = DL(Z X D)+ [D°4,(Z: X)X +

D’A(Z;Y).X -Dg (Z;X,Y).B, —g.(X,Y).DB_(2)].

Another time, from equation (2.14), we can get:
LT (X0,2) =T (L (X 10,2) = DA (T (X, 2 -

%DEX (X).DA.(2).Y —%gx (X, Y)I' (B ,Z)+

%gx (X@D@(BX).Zﬁgx(x,z).gx(Bx,Z).Bx —%gx(rx(x,zxzwx.

Substituting from equations (2.16) and (2.17) into equation (2.15), we can obtain:
1
RNX:Y,Z) =R (X3 Y, Z) +[D V(DA (2. X))~
1
T DAX)DZ(Z)+ 8, (X, 21D, (B -

% g.(X,Y).[VB.(2) —%gx (B,,2).B,].

Now, if denoting:

o,(X) = %Dﬂx xX),
P.(X,Y)= %V(D/lx (X,Y)) —imx (X).DA_(Y)+

1
ggx(X’Y)'gx(Bx’Bx)’

(2.14)

takes

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

the
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we have:

P(X,1)=Vo,(X;YV) - o,(X)w,X)+ %gx(X,n.gx (B..B,).

(2.21)
In this case, equation (2.18) takes the form:
RNX;Y,Z)=R (X;Y,Z)+P(Z,X)Y + gx(X,Z){%VBX(X) -
1 1
—g . (B.,Y)B, +—g.(B.,B,)Y].
4 8 (2.22)
Using o, as a solution of the equation:
gx(Xaé‘x(Y)):Px(XaY)’ (2.23)

then considering equations (2.20) and (2.23), we get:

2. (X.5.(1) = P.(X.Y)= %V(mx(n X)) - imx(nmx X)+ %gx(Y,X).gx (B.,B.).
(2.24)
From equation (2.13), we have:

VDﬂ’x(Y;X) = Vgx(Y;X’Bx) = gx(X’VBx(Y))'
Applying this last equation into equation (2.24), yields:

1 1 1
g.(Y,6.(X)) = ng(Y,VBX(X)) —ZDE(X)g(Y,BX) +§gX(Y,X)-gX(BX,BX),
and since & is non-singular, we obtain:

o0.(X)= lVBX()() —ng(X,BX).BX + ng(BX,BX).X.
2 4 8 (2.25)
Now, from equations (2.22) and (2.25), it is clear that:

R'(X:;Y,Z)=R.(X,Y,Z)+P(Z,X)Y+g (X,2)o.(Y).

Putting R(X;Y,2)=0, into equation (2.26), we have:
R.(X:;Y,Z)=P.(Y,X)Z+g.(X,Y)5.(2).

This means that, the equality (2.6) in the theorem, is satisfied.

(2.26)

(2.27)

By covariant differentiation of equation (2.19), locally with respect to YeE we get:
1
Vo (Y;X) =2 [D°4,(1;X) - DI, (. X))
From this equation, we get:
Vo,Y;X)=0.

Using equations (2.21) and (2.28), we have:
P(X,Y)=0

(2.28)

>this means that, the tensor P(X.Y) is symmetric. Furthermore, from equation (2.21) we

get:

Vo(Y,Z) = P(Y,2)+ o (V)o.(Z) -~ g.(Y.7)g.(B..B.).
8 (2.29)

Covariant differentiation of equation (2.29) locally with respect to XeE yields:

10
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VVo )(X;Y,Z)=VP (X;Y,Z2)+Vo (X;Y)o (Z2)+

1
a)X(Y).Va)X(X;Z)—§VgX(X;Y,Z).gX(BX,BX)—
%gx(Y’Z)'Vgx(X;BX)BX)'

Using equation (2.29) into this last equation, we have:

VVo ) X;Y,Z)=VP.(X;Y,Z)+Vo (X;Y)o (Z)+
. (N.[P.(X.2) + 0,(X)0,(Z) —%gx (X.Z)..(B..B.)]-
%gx (Y.Z).g.(B..VB,(X)).

Applying the alternation convention with respect to the vectors XY

and using Ricci's identity [ 1 ], we
obtain the condition of complete integration of equation (2.29) as follows:

VP.(X:Y,Z) + o, (Y).P.(X.Z) %w (V)..(X.7).g,(B..B,) -

%gx (Y.7)..(B.,VB,.(X)) + o,(R.(Z;Y, X)) =O.

(2.30)
Now, using equations (2.25) and (2.27) into equation (2.30), we can get:
1

VE(X;X,Z)—éa&(D&QCZ)&(Bx,BY)—

1 1 1

1

7gr(Z>‘X)gr(Br’Br)a)r(X) :0'

8 (2.31)
Finally, applying equations (2.13) and (2.19) into equation (2.31), we obtain:-

for all * = CD()_C) edU)cEX,Y,Z€<E.
Now, if dim M >3
considered theorem:

In this case, we use Bianchi's identity [ 1 ], which states that:

VR.(S;X;Y,Z)+ VR .(Y;X;Z,S)+VR.(Z;X;S,Y)=0

This means that, the equality (2.7) in the theorem, is satisfied.
> we show that, the condition (2.7) follows directly from the condition (2.6) in the

> (2.33) for all
x=0(x)e®U)CE,SY,Z,XeE.
Also, denoting:
g (S,R.(X;Y,2)=r(S,X.Y,2), (2.34)

and using the equations (2.23) and (2.27) into equation (2.34), we have:
r(XSY 2, W) = g (X W)P(Z,Y) + g, (Y, 2).P (X, ).

Applying identity (2.34) into equation (2.33), we get:

Vr(S; X;Y,ZW)+Vr(Z; X;Y,W,8)+Vr.(W; X;Y,S,Z) = 0.

(2.35)

(2.36)
Covariant differentiation of equation (2.35) with respect to Sek , we obtain:

Vr(S§; XY, 2, W) =g (X, W).VP(S;2,Y) + g . (Y,Z).VP(S; X, IW).

11



Report and Opinion 2015;7(3) http://www.sciencepub.net/report

Similarly, we get:

Vr(Z, X;Y,W,8) =g (X,8).VP.(Z;W,Y)+g (Y, W)VP.(Z;X,S),
VFY(W;X;S)Z) = gx(X7Z)' VPX(W;§7Y)+gx(Y’§)' VPX(W;Xaz)'

Substituting these last three equations into equation (2.36), we have:

g.(X, X).VE(S:2,Y) +g,(Y,Z).VP(S; X, W) +
g(X. ) VP(Z;W.Y)+g (Y. W)VP(Z;X,5) +

g.(X.Z)VP(W:8.Y) +g,(Y.9)VP,(W: X, 2) =0 0.37)

Applying lemma(2.2) into equation (2.37), we obtain:
g.(Y,Z)VP S;X.W)+g (Y .W)VP(Z;X,5)+g,(Y,S)VPW;X,Z) =0,
forall YEPW)CE)Y €E.

Taking into account , in the last equation , that Ex is non — singular yields:
Since Z is linearly independent of Wand S , then we get :
VP,(S;I,X)=0.
3
This means that , we have three arbitrary vectors S W.X ek

gx(X’W) = gx(X’S) = 07
P(W.,X) € L,(E;IR)

> satisfy the equations:

VP,(S;W,X)=0.

and satisfy, also the equation

VP.(S;W,W) € Ly(E;IR)

Furthermore, since

>then is a trilinear, anti-symmetric form with respect to the

vectors © and W' Hence, from this and by using lemma (2.3.5) [ 2 ], we deduce that, VE(SW, X)

can be represented as follows:

VP(S; W, X) = u, (S).g. (W, X),

where # & L(E; IR) is a linear, continuous form. From equations (2.37) and (2.38), ewe can find:
#(8)g (X, W).g (Y.2)~ pu(5)g (X,2).g (Y.W)+
u(2)g.(X,2)g Y. W)= p.(2).g (X, W).g.(Y,5)+

(2.38)

u W.g (X,2).g (Y,S)—u (W).g.(X,S).g.(Y,Z)=0, 039
for all X € CD(U) cE and for all X,Y,S,W S E.

Remark (2.2):

Since dim M >3, then for all S, X.,W.Z L, we can find ¥ € £ such that gx(Y’S) = gx(Y,Z) =0

. Appling this remark, into equation (2.39), we get: 8.(X, u(2).g.W.Y).S—p (S).g.W.Y).Z)=0, for

all * € Q) c E, and for all X € E.

u(2)g W, Y).S—u (S)g,W,Y).Z =0,

(2.40)
for all

Taking into account, that 8 is non-singular, we have:

ze®U)cCE S,Z,W € E.

and for all

Assuming that the vector Sis linearly independent of the vector Z | we obtain:

12
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# (2)gW.Y)=0, . xe@PU)CE Z,W e E.

and for all

‘u"(Z):O’ for all

Since w is arbitrary vector and the metric & is non-sin lar, we have:
M gu

xcOU)cEZek. this means that # = 0. (2.41)
Hence, VP(Z:W,Y) =0, (2.42)
forall ¥ € *U)cE and for all Z,Y,W €L, which is required.

Sufficiency:

For this aim, we assume that M is a Riemannian Banach manifold with a strong non-singular metric g Also,

we suppose that the curvature tensor R of the space M | satisfies the equality (2.27) with the condition (2.32) such

that the tensor Pr(X.Y) is symmetric. Then, we show that the space M s locally plane.

o, (Y)

But, since the condition (2.32) is satisfied, then the equation (2.29) has a solution
g, =-¢e .8

. Also, the equation

2.19) will has a solution A . In this case, we make the transformation *>and we get the Riemannian
g

- — N
Banach manifold (M,g )With a curvature tensor R'=0. Hence the space (M, g) is conformal to the locally

_Y
plane space ( M.g') and this completes the proof of the theorem.
Now, we introduce the following lemma:

Lemma (2.3): Let E be a vector space such that dim Ez4

geL,(EIR). X, Y eE

> with a strong non-singular operator

are arbitrary vectors such that X #0 and X s perpendicular to Y with respect

to the operator g , then there exists a vector Z € £ | such that Z is perpendicular toY and the vectors X,z are
linearly independent.

Proof: We have the following two cases:

1) If ¥ is a non-
isotropic vector (g(¥,Y)#0) and X is perpendicular to Y then X and ¥ are linearly independent vectors.

2 If Yisan isotropic vector, then we, also have two cases:

(a) The vectors X and Y are linearly independent.

(b) The vectors X and ¥ are linearly dependent. These cases are considered as follows:

(D In this case
we have & ¥.¥)=0 and since dim £ =4 | then there exists a vector Sek , which is linearly independent of

the vectors X and Y . Furthermore, if S is not perpendicular to Y | then we can take a vector Z € E to be
perpendicular to Y as follows:

Z=aX+g(SY)Y-g.Y)S, where & is an arbitrary number. It is clear that the vectors Zand X
are linearly independent and the lemma is valid in this case.

) (@ In the
g¥,Y)=0 =Y

present case and the vectors XY are linearly independent. Then, if we take z > we get

g(Z,Y)=0

such that the vectors X and Z are linearly independent and the lemma is true.

X#0,X=mY ,melR . (X,Y)=0.

1S constant and g But the lemma is valid also.

(2) (b) In this case
Since, if the lemma is not true, then there exists a vector Z € E such that Z is perpendicular to Y and the vectors

. 1 n
dim<Y>"=1, where <Y >7 is the

orthogonal complement [3] of the hypersurface < Y > | This means that dim £ =2 , which is a contradiction with
the fact that

X and Z are linearly dependent. And, in this case we have that

13
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dim £ = 4. This completes the proof of the considered lemma.

3. Riemannian Banach manifolds of constant sectional curvature:

Let (M, g) be a Riemannian Banach manifold of constant sectional curvature [2]. In this case, the curvature
R (X3;X1,X2)
tensor  * on the Banach manifold M has the form [2]:
Ru(X33X1,X2) = A[g, (X3, X2).X1 - g, (X1,X3).X2),
x (3.1)
)CEM,}l,}z,}3 eT M, A
for all x where * is areal function of points of the space M and is called the
Gaussian curvature of the manifold M . Now, we consider the following theorem:

Theorem (3.1): A Riemannian Banach manifold (M, g) of constant sectional curvature, such that dimM =24 s
a locally plane space.

Proof: It is sufficient to prove this theorem locally with respect to a chart ¢=(U,D,E) at a point ¥ € M.

We assume that the manifold M is of class C"(r23,) with a strong non-singular metric g [2].
Now, the curvature tensor R of the space M | with respect to a chart ¢=U,D,E) at a point xeMs
takes the form:
ROC(X;Yaz)=//{’x[gx(Y7X)‘Z_gx(Z7X)‘Y]) (32)
R

for all ¥ = O(x) e @U)c E,X,Y,Z € E. Where Rx and 8+ are the models of the tensor  * and the

g

metric  * with respect to the chart c, respectively. Hence, by using theorem (2.1) we will find a symmetric tensor

P (X,Y)
x satisfies the following conditions:

A.[g. (Y. X)Z-g (Z,X)Y]=P(Y,X).Z~
P(Z,X)Y +g (X.Y)5.(2)~-g . (X,2)5.(Y),

(3.3)
VP.(X:7,2)=0, oo
such that Px (Y’ Z) =& (Z’ 5x (Y))’ (3.5)

1)CE¢(U)CE,X,Y,ZEE.

for al

Multiplying both sides of equation (3.3) by the arbitrary vector SE€E and using the equality (3.5) , gives us:
ﬂ’x[gx(Y’X)‘gx(S’Z) - gx(Z’X)‘gx(S’Y)] =

})x(YaX)gx(SaZ) _})x(ZaX)gx(S’Y) + gx(XaY)PX(S’Z)_gr(XaZ)Pr(Y’S) (3.6)

Now, using lemma (2.1) we find that: for all Y # 0, SE€EE and S is perpendicular to Y , there exists a

vector Z € E such that S is perpendicular to Z and the vectors 24 are linearly independent.
Hence, from equation (3.6) we get:

g.(X,Y).P(S,Z2)-¢g.(X,Z2).P(Y,5)=0,
1)CE¢(U)CE,XEE.

for al

P.(S,2)Y-P.(Y,S).Z =0.

Since the metric € is non-singular, we obtain:
2

14
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Taking into account that the vectors Z and ¥ are linearly independent, we get: P, ¥,5)=0.

2
(Y > S) = satisfies the condition
P e L,(E;IR).

Also, using lemma (2.3.3) [2] which states that: If for all a pair of vectors
8+ (Y’ S) =0 Px (Y’ S) =0 is also, satisfied, where

exists a real number Vs such that Px (X’ Y) =Vx-8x (X’ Y)'
Thus, from the relations (3.3) and (3.7) we have:
/Ix[gx(Y’X)‘Z _gx(Z’X)‘Y] =7/x'gx(Y’X)‘Z -
j/xgx(Z’X)‘Y + gx(X’Y)‘é‘x(X) - gx(X’Z)‘é‘x(Y)‘

7.8, 2)=g.(Z,6.(Y)),

> the following condition Then there

(3.7)

(3.8)

Also, from equations (3.5) and (3.7) we obtain :
forall YEPQW)C EY,Z€eE.

But, since the metric & is non-singular, we get: o.(¥)=7r...Y.
From this result and using equation (3.8), it is clear that:

ﬂ’x[gx(Y’X)'Z_gx(Z’X)'Y]=27/x'gx(Y’X)'Z_
2y g (Z,X)Y,
1XECD(U)CE,X,Y,Z€E.

for al

Hence, by taking the vectors Zand Y are linearly independent we have:
//{’x'gx(Y’X) =27/x'gx(Y’X)’

L XeEPU)cE XeE.

for al

g (X,Y)=0.

Since the metric & is non-singular and the vector X s arbitrary , we obtain: This means

A, =2y,

that . From which and considering equation (3.7) yields:

P(X,Y) :%gvr(X,Y).

Furthermore, the tensor Px (X’ Y) satisfies the condition (3.4) which in the form:
VE(S,X,Y) =0, for all * € oU)c ES, X, Y €E. Hence, the tensor

required conditions and this completes the proof of the considered theorem.

(3.9)

F(X,Y)

satisfies all the

4. The metric tensor of a Banach space of constant sectional curvature:

C'(r=3),

Let M be a Riemannian Banach manifold of constant sectional curvature ﬂ’x [2] of class

modeled on a Banach spaceE . Assume that the metric tensor & on the space M s strong non-singular [2].
Now, we consider the following theorem:

Theorem (4.1): If the metric tensor &x on the manifold M , with respect to a chart c=(U,®,E)

at the
point X € M has the form:
1 2
g. (X, )=g (X,1)/¥, @.1)
1
for all xe@U)cEX.Yek . Where & is a bilinear continuous symmetric strong non-singular,
constant form, does not depend on the point xe®(U) and is defined on the spaceE . Then the scalar function
* on the set o) will has the form:

15
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X

g :1+%.gl(x,x).

Proof: Differentiating the relation (4.1) with respect to the point xe@®U)cE in the direction of the vector
ZeE we get:
_2g'(X.Y).D¥,(Z)
Dg (Z;X,Y)= P ,
similarly we have:
~2g¢"(X,Z).D¥ (V)
Dg (Y;X,Z)= e ,
-2g"'(Y,Z2).DY (X
DgX(X;Y,Z): g ( > 3) x( )'
Y.

Using the relations (1) and (4.1), we can obtain:

g (Z,T.(X,Y))= gl(Z,\;—l[D‘PX(X).Y+D‘PX(Y).X]) +

X

L oix.nov.2)
¥, 4.2)

Now, for all xe®dU)cE we have that:
D¥,: X cE—DY¥ (X)elR 1

is a linear continuous form [1] . And since the form g is strong non-

singular, then there exists a vector B.e such that:
_ 1
DY (X)=g (X,B,), “3)
forall YEPW)CE, X €eE.

1
Hence, from equations (4.2), (4.3) and by taking into account that the form g is non-singular, we can get:

I(X,Y)= \Pl[ g'(X,Y).B,— DY (X).Y —D¥_(Y).X].
x (4.4)

Differentiating the relation (4.4) with respect to xeoU)ck in the direction of the vectorZ € £ | we

obtain:

DT (Z;X,Y) =\Pi[g1()(, Y).DB.(Z)-D*¥ (Z; X).Y -
D‘P:(Z)

2

[gl(X, Y).B.-D¥Y (X)Y-DY¥Y (Y).X].
x (4.5)
Also, from relation (4.4) we can have:

[ ([.(X,Y),Z Z%{gl(X,Y)gl(Bx,Z)Bx -D¥,(X).g'(Y,Z).B, -

DY (Z;Y).X]-

DY _(Y),g' (X,Z).B); ~g"(X,Y).DY (B,).Z +2D¥ (X).D¥ (Y).Z+
g'(X,Y).D¥ (Z).B, + DY (Z).D¥ (X)Y +
DY (Z).DY, (Y).X} wo

Now, from equations (4.5) and (4.6), we can get:

R.(X;Y,Z)=DI' (£, X,Y)-T'.(I,, (X,Y),Z)=

16
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Ti[gl(x, Y).DB,(Z)- D™V (Z; X).Y]+

X

1
? gl (X5 Z)'D‘{Ix(Bx)'Za
x 4.7
where in this equation(4.7), R(X:Y,Z) is the model of the curvature tensor R(X:Y,2) of the space

M with respect to the chart c.
Since the space M has constant curvature [2], then by using equation (4.1) into equation (4.7) yields:

A
\P—’;[gl(X,Y)Z -¢'(Z,X)Y]=2[g.(Y,X).Z-g.(Z,X)Y]=

X

o & XNDB(2) =g (X, 2).DB.(1) -

LD“{; (Z; X)Y + R DY (Y;X).Z +
¥ ¥

X X

L e x.2).D¥, (B)Y - o' (X.Y)D¥,(B,).2,
WY, V! s
forall ¥ € OU)c E,X,Y,Z<E.

Now, assuming that dimM 24 and using lemma (2.1) , we deuce that: for all arbitrary perpendcular vectors

1
X,Z e Ewith respect to the form & and Z#0 , there exists a vector ¥ € E such that 4 are perpendicular

1
with respect to & and the vectors Y,z are linearly independent. Hence, from this and using equation (4.8) we can
obtain:

DY (Z;X)=0.

4.9
Also, considering lemma (2.3.3) [2],
then there exists a real number Hi € IR such that:
2 . _ 1
DY (Z;X)=pu, g (Z,X). (4.10)

We will show that M is a scalar Quantity, does not depend on the point. Differentiating equation (4.3) in the
direction of a vector ¥ € E and using (4.10), we get:
g (X,DB (Y))=D*¥ (Y;X)=p, g (Y;X),
foral Y€ QW) E, XY € E.

1
Since, the form g is non-singular, we can obtain:

DZBX(X; Y)=Du (Y).X.
2 . —_ N2 .
But D*B,(X:Y)=D"B (Y: X), from which, assuming that the vectors 4 are linearly independent,

we have:

Dy (X)=0. This means that Hy is a scalar, does not dependent on
DZ‘I’X(X;Y) = ,ugl(X,Y).

xe®U)cCE. Hence, from (4.10)

we deduce that: (4.11)

Now, to find a solution for the differential equation (4.11) with respect to Y| we remark that:
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DZ‘I’X = D(D‘I’x) = y.gl e L2 (E;IR)= L(E;L(E;IR)),
D(D‘{’x) = f, wheref € L(E;L(E;IR)),
then we get: DY, =D¥(x)=f(x)+C,
. _ 1 .
Where Ce L(E;IR) is a constant function and f(x) =HE (x") € L(E’IR)'

Finally, we obtain:

is a constant function. Hence, if we put

¥ =) =§(f<x))(x)+C<x)+co

%ux.gl(x,x)w(x)wo,
(4.12)

for all ¥ € QU)c E such that Cy € IR

Furthermore, all the solutions of equation (4.11) will be in the form (4.12). Since, if Vi is another solution of

D’n, =0.

the equation (4.8), then My =7~ ¥, will be a solution of the equation:

This means that D, =he L(E;IR), is a constant function. And we get:

7, =1(x) = h(x)+ hy, for all ¥ € PU)c E such that hy € IR . From which, it is clear that:
yo=n 4V, = %,u.gl(x,x) FC)+Cy+ h(x)+h, = %,u.gl(x,x) +C(0)+C,,

where C1(0) = C(0) + h(x) € L(E; IR), C, = C, +h, € IR.

This shows that, all the solutions of the differential equation (4.11) have the form (4.12).
1

Furthermore, since Ce L(E;IR) is a covector and since the form & is strong non-singular, then there exists
a vector 4 € E such that:
1
Cx)=g (4,X), ¢pa *€EPWU) C E.

From which and using (4.12), we obtain:

¥ =¥(x) =%u.gl(x,x>+gl(A,X>+Co-

(4.13)
Therefore, it is clear that:
DY (Y)=pug'(x,Y)+g'(4,Y). (4.14)
Hence, we get:
D*Y (Z;Y)=pug'(Z,Y), (4.15)
forall £ € E.

1 _ _
Also, by using equations (4.3) and (4.14) we deduce that: g (B,.Y)=D¥ (¥)=
= 18" (x,Y)+g'(4.7),
foral XEPW)C EY €E.

1 _ A= 1
And we get: g (.8, ~px—A4)=0, for allxeq)(U)’YEE' Taking into account that g is non-

singular, we have B, =A.x+A. (4.16)
Thus: DB ) =4..Y, (4.17)
forall ¥ € E.

18
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Similarly, considering equations (4.14) and (4.16), it is clear that:
DY, (B,)=p’.g" (x,x)+g' (4, A)+2u g (x, 4). 4.18)

Now, applying equations (4.13), (4.15),(4.17), and (4.18) into equation (4.8) and then comparing the
coefficients of the vector Z in both sides of the result, we can obtain:

2 1
g (XN =g ()~ g (XD [ g () 2008 () 4.8 (4.4,

X X

| Xe@U)c E X, YeE.

for al

1
From which, by considering equation (4.13) and using the non-singularity of g , we can have:

2uCy—A, —g'(4,4)=0.

(4.19)
Now, to complete the proof of theorem (4.1), we must consider the following theorem:

Theorem (4.2): For a strong non-singular Riemannian metric & of a Banach Riemannian manifold M of

. A . . = .
constant sectional curvature ~*, which represents, locally with respect to a chart € U,2,E) in the form:

1
g X.Y)
(X N)=@=222 Wm0 = (4 =2 g () + g (404G,
x where 2 such that the
constants #,Co € IR , and the vector 4 € E satisfy the condition (4.19), we can find another chart
¢=U' o E"

in which the metric g takes the form:

1 ' '
' ' i XaY
gx'(Xﬂy): g ( )

[1+=2g' (', X))
4 (4.20)

A
H= -, C() =1,
which is a special case of the functions (4.1) and (4.13) when: 2
and 4=0.

Proof: According to the values of the constants H and Cos the following cases are considered:

Case 1. If 47 0, , then equation (4.12), by taking into account the condition (4.19) takes the form:

1 A
Y =—.g' (ux+A,px+A)+—=.
2u 2u

(4.21)
Now, we consider the transformation:
x=F(x') =y [#—A].
Hog () (4.22)
Thus we have:
xr — Ffl ()C) — 1 2(;u'x+ A) ,
g (ux+A,pux+A) (4.23)
and this gives us a new chart ¢'= (U, @ E"), for which the metric g.(X.7) takes the form:
¢ (X.7)= g'(x.y) _g'(DF,(X").DF,(Y")
S ey WECE )
w2 X' x'2g'(x',x'
DF. (X')=—] T o lgr(r 2)’
where uog (xhx) g (x,x) (4.25)
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2 Y' x'2g'(x,Y'
DFX'(Y):_[ Tt o lgr( ’ 2)'
and similarly Hog (LX) g (x,x) (4.26)
Hence, from equations (4.21), (4.24), (4.25) and (4.26) we can get:
1 ' '
X 7Y ’ ’ ’
e (xn)=— X oy

([lej‘gl(X',X')]2
which is required.
Case 2184 =0 gng Co # 0
Y(x)=g'(4,x)+ C,.

>, then equation (4.12) takes the form:

(4.27)
Also, the condition (4.22) becomes:
1 —_ —
g (4, 4)=-4,. (4.28)
Then, we consider the transformation:
2 !
x:F()cl):—1 )f ~,
g (x,x) (4.29)
2 !
X' =F7(x)=— i
and g (x,x) (4.30)
With respect to this transformation, the metric Ex has the form:
e (X7 EED g (DE(X).DE(XY) _
T 840+ G [¥(F ()T
_ g'(X.Y)
(€0} 8" (') + g (4]
which is the first case with £ ~ Co#0,4'=4 and Co =0.
Case3: If # = 0 and Co =0, then we obtain:
P = g'(4,%), wsn

1
A, A)=—-1_.
and & (4, 4) x
1
Hence 4 # 0 , and since the form g isa strong non-singular, then there exists a vector S € E guch that:

g'(4,5)=5, #0.

(4.32)
Nt r_ _ -l
Thus, by considering the transformation F)=x=x"+8,x'=x-§=F"(x), then the metric & will
1
(X,Y
g.xp)= 5D
[g (4, X)]

be in the form:
This means that:

DF, (x)),DF,(Y")) _

x,yy= 8¢
& = PG

g (XY
[gl(zél,x')wLSO]2

(4.33)
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Co

which is the second case with A'=4 and

=S . This completes the proof of theorem (4.1). Hence, in the

case of a Riemannian Banach manifold of constant Gaussian curvature, and at any point* € M , there exists a chart

cl — (UI,QI,EI)

, such that the metric tensor of this space takes the canonical form (4.20) with respect to this

chart. Which is a generalization of this result in the finite-dimensional Riemannian geometry.
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