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1. Notation and definitions: 

1. Notation and definitions. 

Let M  be a Riemannian Banach manifold of class 
),,3( rC r

 modeled on a Banach space E  [2 ]. 

The symmetric bilinear positive definite continuous functional );(2 IRELf  is said to be strongly non-

singular [2], if f associates a mapping 
*** );(,.)(: EIRELxffExf x 

which is bijective. 

Also, let 



g be the metric tensor on the space M  , of class .1rC  we assume that 



g  is strong non-singular [2 
]. 

By 




 xg
, we denote the covariant differentiation of the tensor 



g
 at the point .Mx



 Finally, by x

gD 



we 

mean the Frechet derivative of the metric 



g
. 

2. Locally plane Riemannian Banach manifolds. 

Since M  is a Riemannian manifold, then on M there exists a unique torsion-free connection



  [ 2 ] of class 

,2rC
such that: .0



g  

Definition (2.1) [ 2 ]: A Riemannian Banach manifold M is called locally plane space, if for all Mx


, there 

exists a chart ),,( EUc  at the point 



x , such that 
,0x  for all .)()( EUxx  Where x  and 

  are the models of the point x  and the connection 



  with respect to the chart c, respectively. 

Lemma (2.1): The metric tensor 



g  of a Riemannian Banach manifold M, which is locally plane, is a constant 
tensor field [4]. 

Now, we assume that MN   is a submanifold of M of the same class[1]. Let ,)(: MxxiNxi 


 

be the inclusion map. Let ),,( EUc  be a chart at the point MNx 


 on the space M , and 

),,( FVd  is a chart at the point MNx 


on the space N . 
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If 
)(



 xZ
and 

)(


 xP
are the models of the point 



x  with respect to the charts c and d , respectively. 

Also, if i  is the model of the mapping 



i with respect to the charts c and d , then we have that: 

.)()()()()(: EUxZPiFVxPi 


 

This equation is called the local equation of the submanifold N in a neighbourhood of the point Nx


 with 

respect to the charts c and d . 

Now, since 
),(



gM
 is a Riemannian manifold, then MN  , will be a Riemannian submanifold of M  with 

respect to the induced metric tensor 

1

g
 such that [2]: 

)),(),((),( 21)(1

1

2
xiTxiTgxxg

x
xxi

x






 
  (2.1) 

for all 
NTXXNx

x




21,,
(the tangent space of N  at the point 

)


x
. Also, we have that 

,: MTNTiT
xx

x  
 is the tangent map of the map 



i at the point 



x [1]. 

Similarly, we assume that the metric 

1

g
 is strong non-singular. If 1X

 and 2X
 are the models of the vectors 

1



X
 and 2



X  with respect to the chart d , then the models of these vectors with respect to the chart c  will be: 

),(),( 2211 XDiYXDiY Pp 
 respectively. Hence, the local form of the equation (2.1) takes the form: 

).(),((),( 21)(21

1

XDiXDigXXg pppip 
  (2.2) 

Also, with respect to the Riemannian submanifold N , there exists   unique torsion-free connection ,1


 , 
such that[2]: 

011  g
 

We assume that  and 
1  are the models of the connections 



  and 

1

 with respect to the charts c and d , 
respectively. 

In [3], the first derivative equation of the submanifold N  is established in the form: 

)),,((),( 2121

2,1

XXAnXXDi ppp 
  (2.3) 

where, 
);()()(: 



 xx FWLnFVxxn 
 is an isomorphism of class 

1rC  and 


xF
 is the 

orthogonal complement of the space F  at the point Fx . 
 

Also, the space W  is isomorphic to the space 


 )( NT
x . Finally, 

2,1

  is the mixed covariant differential 

operator defined on the tensors of the space N , and 
);(2 WFLAp   is the second essential form of the space N

. 
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Also, the space W is an isomorphic to the space 


 )( NT
x . Finally, 

2,1

  is the mixed covariant differential 

operator defined on the tensors of the space N , and 
);(2 WFLAp   is the second essential form of the space N

. 

In [4], it is proved that there exists a chart ),,( EUC   at the point Nx , such that the relation between 

the metric tensor 
g

 and the connection   is 
given in the form: 

)],,;(),;(),;([
2

1
)),,(( 213321312321 XXXDgXXXDgXXXDgXXXg xxxxx 

 

For all 
EXXXEUxx  321 ,,,)()(

. Where xg
 and x  are the models of the metric tensor 

xg
 and the linear connection x  with respect to the chart C  in the above relation respectively. 

Now, assume that 'g  , is another Riemannian metric function on the space M . 

Definition (2.2) [ 2 ] : The two functions g  and g ' are conformal, if there exists a mapping 

,)(: IRxMx    such that: 

,).( 
 


xx gxg 
  (2.5) 

for all .Mx  

Definition (2.3) [4]: The Riemannian Banach manifold ),( gM is called locally plane, if there exists on M a 

locally plane metric 'g , conformal to g  such that: 

,0,.
)(










x
x

Rgeg
x

x

 for all Mx


, where 
'

x

R
 is the curvature tensor of the space 

),(


gM
at the 

point x  . 

Lemma (2.2) [ 2 ] : Let H  be a vector space with a bilinear and strong non-singular operator g [2], such that 

.3dim H  Then, in the space H , we have that: 

i- There exist two arbitrary vectors WS ,  and a vector Z  , which is linearly independent with them; 

ii- There exists a vector X , perpendicular to the vectors WS ,  and Z with respect to the metric g such that 

X is linearly independent of these vectors. 
Now, we consider the following theorem: 

Theorem (2.1): The necessary and sufficient condition for a Riemannian Banach manifold M  with a strong 

non-singular metric g , to be locally plane, is to find a symmetric tensor ),( YXP x


of type (0,2) on the space M , 
such that the following conditions are satisfied: 

),(),().,(),,(















  ZYXgZXYPZYXR
xxx


  (2.6) 

,0),;( 









Zp YX
x   (2.7) 

 

Where 
)(



x
 is a tensor of type (1,1), is a solution of the equation: 
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))(,(),(



  XYgYXP

x
x 

  (2.8) 
 

Furthermore, when ,3dim M we can show that, the condition (2.7) is a direct result, of the condition (2.6). 
Remark (2.1) In equations (2.6) and (2.7), there exists an alternation with respect to the underlined vectors, that 

does not involve division by 2. This convention will be used henceforth. 
Proof: It is sufficient to prove this theorem, locally, with respect to an arbitrary chart. 

Necessity: We assume that ),,( EUc   is a chart at the point Mx


such that 
,g

 and R  are the 

models of 



,g and , R  respectively with respect to this chart. 

Also, assuming that, the Riemannian Banach manifold ),(


gM is locally plane. Then there exists a locally 

plane metric '


g , conformal to ,


g  such that: 

,0',.'
)(

 xx

x

x Rgeg


  (2.9) 

for all .)()( EUxx 


 Therefore, we obtain: 

)].,;('),;('),;('[
2

1
)),(',(' ZYXDgYYZDgZXYDgZYXg xxxxx 

 
Applying (2.9) in this last equation, yields: 









),().((
2

1
)),(,(2[

).,().(),;(

),().(),;(

),()(),;([
2

1
)),(',('

)(

)()(

)()(

)()(

ZXgYDZYXge

ZYgXDeZYXDge

XYgZDeXYZDge

ZXgYDeZXYDgeZYXg

xxxx

x

xx

x

x

x

xx

x

x

x

xx

x

x

x

xx

















 
))].,().(),().( ZYgXDYXgZD xxxx  

  (2.10) 
But, from equation (2.9), we have: 

)).,(',(.)),(',('
)(

ZYXgeZYXg xx

x

xx 


  (2.11) 
Using equations (2.10) and (2.11), we get: 

 )),(,()),(',( ZYXgZYXg xx
x

x
 

),().(),().([
2

1
YXgZDZXgYD xxxx  

 
)].,().( ZYgXD xx   (2.12) 

Now, the function 
IRXDEXD xx  )(: 

 is linear and continuous [1]. This means that 

*,);( EIRELD x 
where *E  is the dual space of the space .E  Hence, taking into account that the metric 

g is strong non-singular, then there exists a vector 
EBX   such that: 

),(),( XDBXg xxx 
  (2.13) 

 

for all .EX   
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Using equation (2.13) into equation (2.12), we get: 

].).,().().([
2

1
),(,(

)],().,(),().(),().([
2

1

)),(,()),(',(

xxxxxx

xxxxxx

xxxx

BZYgYZDZYDZYXg

ZYgBXgYXgZDZXgYD

ZYXgZYXg











 
Since, g is non-singular, we get: 

).]).,().().([
2

1
),(),(' xxxxxx BZYgYZDZYDZYZY  

  (2.14) 

But, the curvature tensor x

R'

of the space M with respect to the linear connection 





x  takes the 

form [ 2 ]: 

),),,('('),;('),;(' ZYXYXZDZYXR xxxx 
  (2.15) 

where 
'xR
is the model of 'xR with respect to the chart ),,( EUc  at the point Mx . 

Differentiating both sides of equation (2.14) in the direction of a vector Z , we have: 

)].().,().,;().;(

).;([
2

1
),;(),;('

2

2

ZDBYXgBYXZDgXYZD

YXZDYXZDYXZD

xxxxx

xxx












  (2.16) 
Another time, from equation (2.14), we can get: 

.)),,((
2

1
).,().,(

4

1
).().,(

4

1

),().,(
2

1
.)().(

4

1

)).,((
2

1
)),,(()),,('('

xxxxxxxxxx

xxxxx

xxxxxx

BZYXgBZBgYXgYBDZXg

ZBYXgYZDXD

YZXDZYXZYX













  (2.17) 
 
Substituting from equations (2.16) and (2.17) into equation (2.15), we can obtain: 

].).,(
2

1
)().[,(

2

1

)].().,(
4

1
)().(

4

1

));((
2

1
[),;(),;('

xxxxx

xxxxx

xxx

BZBgZBYXg

YBDZXgZDXD

XzDZYXRZYXR











  (2.18) 
 
Now, if denoting: 

),(
2

1
)( XDX xx  

  (2.19) 

 )().(
4

1
)),((

2

1
),( YDXDYXDYXP xxxx 

 

),,().,(
8

1
xxxx BBgYXg

  (2.20) 
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we have: 

).,().,(
8

1
)().();(),( xxxxxxxx BBgYXgYXYXYXP  

  (2.21) 
In this case, equation (2.18) takes the form: 

].).,(
8

1
).,(

4

1

)(
2

1
).[,().,(),;(),;('

YBBgBYBg

YBZXgYXZPZYXRZYXR

Xxxxxx

xxxxx





  (2.22) 
 

Using x as a solution of the equation: 

),,())(,( YXPYXg xxx 
  (2.23) 

then considering equations (2.20) and (2.23), we get: 

).,().,(
8

1
)().(

4

1
));((

2

1
),())(,( xxxxxxxxxx BBgXYgXDYDXYDYXPYXg  

(2.24) 
From equation (2.13), we have: 

)).(,(),;();( YBXgBXYgXYD xxxxx  
 

Applying this last equation into equation (2.24), yields: 

),,().,(
8

1
),().(

4

1
))(,(

2

1
))(,( xxxxxxxxx BBgXYgBYgXDXBYgXYg  

 
and since g  is non-singular, we obtain: 

.).,(
8

1
).,(

4

1
)(

2

1
)( XBBgBBXgXBX xxxxxxxx 

  (2.25) 
Now, from equations (2.22) and (2.25), it is clear that: 

).().,().,(),,(),;(' YZXgYXZPZYXRZYXR xxxxx 
  (2.26) 

Putting 
,0),;(' ZYXRx  into equation (2.26), we have: 

).(),().,(),;( ZYXgZXYPZYXR xxxx 
  (2.27) 

This means that, the equality (2.6) in the theorem, is satisfied. 

By covariant differentiation of equation (2.19), locally with respect to EY  , we get: 

)].,(();([
2

1
);( 2 XYDXYDXY xxxx  

 
From this equation, we get: 

.0);(  XYx   (2.28) 
Using equations (2.21) and (2.28), we have: 

,0),( YXPx this means that, the tensor ),( YXP x


 is symmetric. Furthermore, from equation (2.21) we 
get: 

).,().,(
8

1
)().(),(),( xxxxxxxx BBgZYgZYZYPZY  

  (2.29) 

Covariant differentiation of equation (2.29) locally with respect to EX  yields: 
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).,;().,(
8

1

),().,;(
8

1
);().(

)().;(),;(),;)((

xxxx

xxxxxx

xxxx

BBXgZYg

BBgZYXgZXY

ZYXZYXPZYX











 
Using equation (2.29) into this last equation, we have: 

)).(,().,(
4

1

)],().,(
8

1
)().(),().[(

)().;(),;(),;)((

XBBgZYg

BBgZXgZXZXPY

ZYXZYXPZYX

xxxx

xxxxxxxx

xxxx











 

Applying the alternation convention with respect to the vectors YX , and using Ricci's identity [ 1 ] , we 
obtain the condition of complete integration of equation (2.29) as follows: 

 ),().,().(
8

1
),().(),;( xxxxxxxx BBgZXgYZXPYZYXP 

 

.0)),;(())(,().,(
4

1
 XYZRXBBgZYg xxxxxx 

  (2.30) 
Now, using equations (2.25) and (2.27) into equation (2.30), we can get: 

.0)().,().,(
8

1

)().,().,(
4

1
)(().,(

2

1
))(,().,(

4

1

)().,().(
8

1
),;( ,







YBBgXZg

BYZgBXgXBYZgXBBgZYg

BBgZXgYZYXP

xxxxx

xxxxxxxxxxxx

xxxxxx







  (2.31) 
Finally, applying equations (2.13) and (2.19) into equation (2.31), we obtain:- 

,0),;(  ZYXPx   (2.31) 

for all .,,,)()( EZYXEUxx   This means that, the equality (2.7) in the theorem, is satisfied. 

Now, if ,3dim M  we show that, the condition (2.7) follows directly from the condition (2.6) in the 
considered theorem: 

In this case, we use Bianchi's identity [ 1 ] , which states that: 

,0),;;(),;;(),;;(  YSXZRSZXYRZYXSR xxx  (2.33)  for all 

.,,,,)()( EXZYSEUxx   
Also, denoting: 

),,,,()),;(,( ZYXSrZYXRSg xxx 
  (2.34) 

and using the equations (2.23) and (2.27) into equation (2.34), we have: 

).,().,(),(),(),;;( WXPZYgYZPWXgWZYXr xxxxx 
  (2.35) 

Applying identity (2.34) into equation (2.33), we get: 

.0),,;;(),,;;(),,;;(  ZSYXWrSWYXZrWZYXSr xxx   (2.36) 

Covariant differentiation of equation (2.35) with respect to ES  , we obtain: 

).,;().,(),;().,(),,;;( WXSPZYgYZSPWXgWZYXSr xxxxx 
 



 Report and Opinion 2015;7(3)           http://www.sciencepub.net/report 

 

12 

Similarly, we get: 

).,;().,(),;().,(),;;(

),,;().,(),;().,(),,;;(

ZXWPSYgYSWPZXgZSXWr

SXZPWYgYWZPSXgSWYXZr

xxxxx

xxxxx





 
Substituting these last three equations into equation (2.36), we have: 

0),;().,(),;().,(

),;().,(),;().,(

),;().,(),;().,(







ZXWPSYgYSWPZXg

SXZPWYgYWZPSXg

WXSPZYgYZSPXXg

xxxx

xxxx

xxxx

  (2.37) 
 
 
Applying lemma(2.2) into equation (2.37), we obtain: 

,0),;().,(),;(.),(),;.),( (  ZXWPSYgSXZPWYgWXSPZYg xxxxx  

for all .,)( EYEUx   

Taking into account , in the last equation , that xg
 is non – singular yields: 

.0),;(.),;(.);(.  ZXWPSSXZPWWXSPZ xxx x  

Since Z is linearly independent of W and S  , then we get : 

.0),;(  XWSPx  

This means that , we have three arbitrary vectors 
,,, 3EXWS  satisfy the equations: 

,0),(),(  SXgWXg xx  and satisfy, also the equation 
.0),;(  XWSPx  Furthermore, since 

),;(),( 2 IRELXWPx 
then 

);(),;( 3 IRELWWSPx 
 is a trilinear, anti-symmetric form with respect to the 

vectors S  and W . Hence, from this and by using lemma (2.3.5) [ 2 ], we deduce that, 
),;( XWSPx

 
 
can be represented as follows: 

),,().(),;( XWgSXWSP xxx 
  (2.38) 

where 
);( IRELx

 is a linear, continuous form. From equations (2.37) and (2.38), ewe can find: 

,0),().,().(),().,().(

),().,().(),(),().(

),().,()(),().,().(







ZYgSXgWSYgZXgW

SYgWXgZWYgZXgZ

WYgZXgSZYgWXgS

xxxxxx

xxxxxx

xxxxxx







  (2.39) 
 

for all EUx  )(  and for all .,,, EWSYX   
Remark (2.2): 

Since ,3dim M  then for all ,,,, EZWXS   we can find EY  such that 
0),(),(  ZYgSYg xx

. Appling this remark, into equation (2.39), we get: 
,0)).,().().,().(,(  ZYWgSSYWgZXg xxxxx 
for 

all ,)( EUx   and for all .EX   

Taking into account, that g is non-singular, we have: 
,0).,()().,().(  ZYWgSSYWgZ xxxx 

 
 (2.40)
 for all 

EUz  )(  and for all .,, EWZS   

Assuming that the vector S is linearly independent of the vector Z , we obtain: 
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,0),().( YWgZ xx
 for all EUx  )(  and for all ., EWZ   

Since W  is arbitrary vector and the metric g is non-singular, we have: 
,0)( Zx

 for all 

.,)( EZEUx   this means that .0   (2.41) 

Hence,
,0),;(  YWZPx   (2.42) 

for all EUx  )(  and for all ,,, EWYZ   which is required. 
Sufficiency: 

For this aim, we assume that M  is a Riemannian Banach manifold with a strong non-singular metric .g  Also, 

we suppose that the curvature tensor R  of the space M , satisfies the equality (2.27) with the condition (2.32) such 

that the tensor ),( YXP x is symmetric. Then, we show that the space M  is locally plane. 

But, since the condition (2.32) is satisfied, then the equation (2.29) has a solution 
)(Yx . Also, the equation 

(2.19) will has a solution  . In this case, we make the transformation 
,.' )(

x
x

x geg 
and we get the Riemannian 

Banach manifold ( )', gM with a curvature tensor .0'R  Hence the space ),( gM  is conformal to the locally 

plane space ( )', gM  and this completes the proof of the theorem. 
Now, we introduce the following lemma: 

Lemma (2.3): Let E  be a vector space such that dim ,4E  with a strong non-singular operator 

).;(2 IRELg  If EYX ,  are arbitrary vectors such that 0X  and X  is perpendicular to Y  with respect 

to the operator g , then there exists a vector EZ  , such that Z is perpendicular toY  and the vectors ZX ,  are 
linearly independent. 

Proof: We have the following two cases: 

(1) If Y is a non-

isotropic vector )0),(( YYg  and X  is perpendicular toY  , then X and Y  are linearly independent vectors. 

(2) If Y is an isotropic vector, then we, also have two cases: 

(a) The vectors X  and Y are linearly independent. 

(b) The vectors X  and Y  are linearly dependent. These cases are considered as follows: 
(1) In this case 

we have 0),( YYg  and since dim 4E , then there exists a vector ES  , which is linearly independent of 

the vectors X  and Y . Furthermore, if S  is not perpendicular to Y , then we can take a vector EZ   to be 

perpendicular to Y as follows: 

,).,().,( SYYgYYSgXZ    where   is an arbitrary number. It is clear that the vectors Z and X  
are linearly independent and the lemma is valid in this case. 

(2) (a) In the 

present case 0),( YYg  and the vectors YX , are linearly independent. Then, if we take ,YZ   we get 

0),( YZg  such that the vectors X  and Z  are linearly independent and the lemma is true. 

(2) (b) In this case IRmmYXX  ,,0  is constant and .0),( YXg  But the lemma is valid also. 

Since, if the lemma is not true, then there exists a vector EZ   such that Z  is perpendicular to Y  and the vectors 

X  and Z are linearly dependent. And, in this case we have that ,1dim  Y  where 
 Y  is the 

orthogonal complement [3] of the hypersurface  Y . This means that dim 2E , which is a contradiction with 
the fact that 
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dim .4E  This completes the proof of the considered lemma. 
 
3. Riemannian Banach manifolds of constant sectional curvature: 

Let 
),(



gM
 be a Riemannian Banach manifold of constant sectional curvature [2]. In this case, the curvature 

tensor 
),;( 213 XXXR

x




 on the Banach manifold M has the form [2]: 

],).,().,([),;( 231123213 XXXgXXXgXXXR xx
x

x




  
  (3.1) 

for all 
,,,, 321 MTXXXMx

x




 where 


x


 is a real function of points of the space M  and is called the 

Gaussian curvature of the manifold M . Now, we consider the following theorem: 

Theorem (3.1): A Riemannian Banach manifold ),( gM  of constant sectional curvature, such that dim 4M  is 
a locally plane space. 

Proof: It is sufficient to prove this theorem locally with respect to a chart ),,( EUc   at a point .Mx


 

We assume that the manifold M  is of class 
),3( rC r

 with a strong non-singular metric g [2]. 

Now, the curvature tensor xR  of the space M , with respect to a chart ),,( EUc  at a point 
Mوx



takes the form: 

],).,().,([),;( YXZgZXYgZYXR xxx  
  (3.2) 

for all .,,,)()( EZYXEUxx 


 Where xR
 and xg

 are the models of the tensor 

x

R
 and the 

metric 

x

g
 with respect to the chart c, respectively. Hence, by using theorem (2.1) we will find a symmetric tensor 

),( YXP
x


 satisfies the following conditions: 

 ZXYPYXZgZXYg xxxx ).,(]).,().,([
 

),().,()().,().,( YZXgZYXgYXZP xxxxx  
  (3.3) 

,0),;(  ZYXPx   (3.4) 

such that 
)),(,(),( YZgZYP xxx 

  (3.5) 

for all .,,,)( EZYXEUx   

Multiplying both sides of equation (3.3) by the arbitrary vector ES   and using the equality (3.5) , gives us: 

 )],().,(),().,([ YSgXZgZSgXYg xxxxx  
).,().,(),().,(),().,(),().,( SYPZXgZSPYXgYSgXZPZSgXYP xxXxxxxx 

 (3.6) 

Now, using lemma (2.1) we find that: for all 0Y , ES   and S  is perpendicular to Y , there exists a 

vector EZ   such that S  is perpendicular to Z  and the vectors YZ ,  are linearly independent. 
Hence, from equation (3.6) we get: 

,0),().,(),().,(  SYPZXgZSPYXg xxxx  

for all .,)( EXEUx   

Since the metric g  is non-singular, we obtain: 
.0).,().,(  ZSYPYZSP xx  
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Taking into account that the vectors Z  and Y  are linearly independent, we get: 
.0),( SYPx  

Also, using lemma (2.3.3) [2] which states that: If for all a pair of vectors 
2),( ESY 

 satisfies the condition 

,0),( SYg x  the following condition 
0),( SYPx  is also, satisfied, where 

).;(2 IRELPx   Then there 

exists a real number x  such that 
).,(.),( YXgYXP xxx 

  (3.7) 
Thus, from the relations (3.3) and (3.7) we have: 

 ZXYgYXZgZXYg xxxxx ).,(.]).,().,([ 
 

).().,()().,().,( YZXgXYXgYXZg xxxxxx  
  (3.8) 

Also, from equations (3.5) and (3.7) we obtain : 
)),(,(),(. YZgZYg xxxx  

 

for all .,,)( EZYEUx   

But, since the metric g  is non-singular, we get: 
...)( YY xx  
 

From this result and using equation (3.8), it is clear that: 

 ZXYgYXZgZXYg xxxxx ).,(.2]).,().,([ 
 

,).,(.2 YXZg xx  

for all .,,,)( EZYXEUx   

Hence, by taking the vectors Z and Y  are linearly independent we have: 

),,(.2),(. XYgXYg xxxx  
 

for all, .,)( EXEUx   

Since the metric g  is non-singular and the vector X  is arbitrary , we obtain: 
.0),( YXg x  This means 

that .2 xx  
 . From which and considering equation (3.7) yields: 

).,(
2

),( YXgYXP x
x

x




  (3.9) 

Furthermore, the tensor 
),( YXPx  satisfies the condition (3.4) which in the form: 

,0),,(  YXSPx  for all  )(Ux .,,, EYXSE   Hence, the tensor 
),( YXPx satisfies all the 

required conditions and this completes the proof of the considered theorem. 
 

4. The metric tensor of a Banach space of constant sectional curvature: 

Let M  be a Riemannian Banach manifold of constant sectional curvature x  [2] of class 
),3( rCr

 

modeled on a Banach space E  . Assume that the metric tensor 




xg
 on the space M is strong non-singular [2]. 

Now, we consider the following theorem: 

Theorem (4.1): If the metric tensor 




xg
 on the manifold M , with respect to a chart ),,( EUc   at the 

point Mx


 has the form: 

,/),(),(
21

xx YXgYXg 
  (4.1) 

for all EYXEUx  ,,)( . Where 
1g

 is a bilinear continuous symmetric strong non-singular, 

constant form, does not depend on the point )(Ux  and is defined on the space E  . Then the scalar function 

x
on the set )(U will has the form: 



 Report and Opinion 2015;7(3)           http://www.sciencepub.net/report 

 

16 

).,(.
4

1 1 xxgx
x




 

Proof: Differentiating the relation (4.1) with respect to the point EUx  )(  in the direction of the vector

EZ  , we get: 

,
)().,(2

),;(
3

1

x

x
x

ZDYXg
YXZDg






 
similarly we have: 

,
)().,(2

),;(
3

1

x

x
x

YDZXg
ZXYDg






 

.
)().,(2

),;(
3

1

x

x
x

XDZYg
ZYXDg






 
Using the relations (1) and (4.1), we can obtain: 





 ])).().([

1
,()),(,( 11 XYDYXDZgYXZg xx

x

x

 

).().,(
1 1 ZDYXg x

x




  (4.2) 

Now, for all EUx  )( we have that: 

IRXDEXD xx  )(:
 is a linear continuous form [1] . And since the form 

1g  is strong non-

singular, then there exists a vector 
EBx   such that: 

),,()( 1
xx BXgXD 

  (4.3) 

for all .,)( EXEUx   

Hence, from equations (4.2), (4.3) and by taking into account that the form 
1g  is non-singular, we can get: 

].).().().,([
1

),( 1 XYDYXDBYXgYX xxx

x

x 



  (4.4) 

Differentiating the relation (4.4) with respect to EUx  )(  in the direction of the vector EZ   , we 
obtain: 




 YXZDZDBYXgYXZD xx

x

x ).;()().,([
1

),;( 21

 

].).().().,([
)(

]).;( 1

2

2 XYDYXDBYXg
ZD

XYZD xxx
x

x
x 






  (4.5) 
Also, from relation (4.4) we can have: 

 


 xxxx

x

xx BZYgXDBZBgYXgZYX ).,().().,().,(
1

),,(( 111

2

 

 ZYDXDZBDYXgBZXgYD xxxxxx ).().(2).().,().,(),( 11

 

 YXDZDBZDYXg xxxx ).().().().,(1

 
.).().( XYDZD xx 

  (4.6) 
Now, from equations (4.5) and (4.6), we can get: 

 )),,((),;(),;( ), ZYXYXZDZYXR xxxx
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


]).;()().,([
1 21 YXZDZDBYXg xx

x  

,).().,(
1 1

2
YBDZXg xx

x




  (4.7) 

where in this equation(4.7), 
),;( ZYXRx  is the model of the curvature tensor ),;( ZYXR x  of the space 

M with respect to the chart c. 

Since the space M has constant curvature [2], then by using equation (4.1) into equation (4.7) yields: 




]).,().,([]).,().,([ 11

2
YXZgZXYgYXZgZYXg xxx

x

x 


 







)().,(
1

)().,(
1 11 YDBZXgZDBYXg x

x

x

x  







ZXYDYXZD x

x

x

x

).;(
1

).;(
1 22

 

,).().,(
1

).().,(
1 1

2

1

2
ZBDYXgYBDZXg xx

x

xx

x







  (4.8) 

for all .,,,)( EZYXEUx   

Now, assuming that dim 4M  and using lemma (2.1) , we deuce that: for all arbitrary perpendcular vectors 

EZX , with respect to the form 
1g and 0Z , there exists a vector EY  such that YX , are perpendicular 

with respect to 
1g  and the vectors ZY ,  are linearly independent. Hence, from this and using equation (4.8) we can 

obtain: 

.0);(2  XZD x   (4.9) 
Also, considering lemma (2.3.3) [2], 

then there exists a real number 
IRx 

such that: 

).,(.);( 12 XZgXZD xx 
  (4.10) 

We will show that 




x  is a scalar Quantity, does not depend on the point. Differentiating equation (4.3) in the 

direction of a vector EY  and using (4.10), we get: 

),;(.);())(,( 121 XYgXYDYDBXg xxx 
 

for all .,,)( EYXEUx   

Since, the form 
1g  is non-singular, we can obtain: 

.).();(2 XYDYXBD xx 
 

But 
),;();( 22 XYBDYXBD xx 

 from which, assuming that the vectors YX , are linearly independent, 
we have: 

.0)( XD x  This means that x  is a scalar, does not dependent on .)( EUx   Hence, from (4.10) 

we deduce that: 
).,();( 12 YXgYXD x 

  (4.11) 

Now, to find a solution for the differential equation (4.11) with respect to , we remark that: 
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)),;(;();(.)( 2
12 IRELELIRELgDDD xx  

is a constant function. Hence, if we put

,)( fDD x 
 where )),;(;( IRELELf   

then we get: 
,)()( CxfxDD x 
 

Where );( IRELC  is a constant function and ).;(,.)()( 1 IRELxgxf    
Finally, we obtain: 

0)()))(((
2

1
)( CxCxxfxx 

 

,)(),(.
2

1
0

1 CxCxxgx  
  (4.12) 

for all EUx  )(  such that 
.0 IRC 
 

Furthermore, all the solutions of equation (4.11) will be in the form (4.12). Since, if x  is another solution of 

the equation (4.8), then xxX  
will be a solution of the equation: 

.02 xD 
 

This means that 
),;( IRELhD x 

 is a constant function. And we get: 

,)()( 0hxhxx 
 for all EUx  )(  such that 

IRh 0 . From which, it is clear that: 

 0
1 )(),(.

2

1
CxCxxgxxx 

 
,)(),(.

2

1
)( 21

1
0 CxCxxghxh  

 

where ),;()()()(1 IRELxhxCxC   
.002 IRhCC 
 

This shows that, all the solutions of the differential equation (4.11) have the form (4.12). 

Furthermore, since );( IRELC   is a covector and since the form
1g  is strong non-singular, then there exists 

a vector EA  such that: 

),,()( 1 XAgxC  for all .)( EUx   
From which and using (4.12), we obtain: 

.),(),(.
2

1
)( 0

11 CXAgxxgxx  
  (4.13) 

Therefore, it is clear that: 

).,(),(.)( 11 YAgYxgYD x  
  (4.14) 

Hence, we get: 

),,(.);( 12 YZgYZD x 
  (4.15) 

for all .EZ   

Also, by using equations (4.3) and (4.14) we deduce that: 
 )(),(1 YDYBg xx  

),,(),(. 11 YAgYxg    

for all .,)( EYEUx   

And we get: 
,0).,(1  AxBYg x 

 for all .),( EYUx   Taking into account that 
1g

 is non-

singular, we have 
.. AxB xx  
  (4.16) 

Thus: 
,.)( YYDB xx 

  (4.17) 

for all .EY   
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Similarly, considering equations (4.14) and (4.16), it is clear that: 

).,(2),(),(.)( 1112 AxgAAgxxgBD xx  
  (4.18) 

Now, applying equations (4.13), (4.15),(4.17), and (4.18) into equation (4.8) and then comparing the 

coefficients of the vector Z in both sides of the result, we can obtain: 

)],,(),(.2),(.).[,(.
1

),(.
2

),(. 11121

2

11 AAgAxgxxgYXgYXgYXg
xxx

x 











 

for all .,,)( EYXEUx   

From which, by considering equation (4.13) and using the non-singularity of 
1g  , we can have: 

.0),(.2 1
0  AAgC x

  (4.19) 
Now, to complete the proof of theorem (4.1), we must consider the following theorem: 

Theorem (4.2): For a strong non-singular Riemannian metric g of a Banach Riemannian manifold M of 

constant sectional curvature x , which represents, locally with respect to a chart ),,( EUc   in the form: 

,
),(

)2(),(
2

1

x

x

YXg
YXg




 where 
.),(),(.

2

1
)14()( 0

11 CxAgxxgx xx  
 such that the 

constants
IRC 0,

, and the vector EA  satisfy the condition (4.19), we can find another chart 

),,( EUc  in which the metric g  takes the form: 

,

)],(
4

1[

),(
),(

21

1

xxg

YXg
YXg

x
x




 

  (4.20) 

which is a special case of the functions (4.1) and (4.13) when: 
,1,

2
0  Cx

 

and .0A  

Proof: According to the values of the constants  and  the following cases are considered: 

Case 1: If ,0 , then equation (4.12), by taking into account the condition (4.19) takes the form: 

.
2

).,.(.
2

1 1







x

x AxAxg 
  (4.21) 

Now, we consider the transformation: 

].
),(

2
[1)(

1
A

xxg

x
xFx 




 

  (4.22) 
Thus we have: 

,
).,.(

).(2
)(

1

1

AxAxg

Ax
xFx




 





  (4.23) 

and this gives us a new chart ),,,(' EUc   for which the metric
),( YXg x  takes the form: 

,
))](([

))(),((

))((

),(
),(

2

1

2

1
11

xF

YDFXDFg

x

YXg
YXg xx

x 







  (4.24) 

where 

],
)),(

),(2.

),(
[

2
)(

21

1

1 xxg

xxgx

xxg

X
XDFx 








   (4.25) 

,0C
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and similarly 

].
)),(

),(2.

),(
[

2
)(

21

1

1 xxg

Yxgx

xxg

Y
YDFx 








   (4.26) 

Hence, from equations (4.21), (4.24), (4.25) and (4.26) we can get: 

),,(

)],(
4

1([

),(
),(

21

1

YXg

xxg

YXg
YXg x

x
x
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


 

 
which is required. 

Case 2: If 
0

 and 
,00 C

, then equation (4.12) takes the form: 

.),()( 0
1 CxAgx 

  (4.27) 
Also, the condition (4.22) becomes: 

.),(1
xAAg 

  (4.28) 
Then, we consider the transformation: 

,
),(

2
)(

1

1

xxg

x
xFx




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  (4.29) 

and 

.
),(

2
)(

1

1

xxg

x
xFx


 

  (4.30) 

With respect to this transformation, the metric xg
 has the form: 








 

2

1

2
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1

1

))](([
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]),([
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),(
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YXg xx
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,
)],(),(.

2
[

),(

2110

1

xAgxxg
C

YXg






 

which is the first case with 
AAC  ,00

and 
.00 


C

 

Case 3: If 0  and 
,00 C
 then we obtain: 

),,()( 1 xAgx    (4.31) 

and 
.),(1

xAAg 
 

Hence 0A , and since the form 
1g  is a strong non-singular, then there exists a vector ES  such that: 

.0),( 0
1  SSAg

  (4.32) 

Thus, by considering the transformation 
),(,)( 1 xFSxxSxxxF 

 then the metric g will 

be in the form: 

.
)],([

),(
),(

21

1

XAg

YXg
YXg x 

 
This means that: 
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21
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1
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YXg
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  (4.33) 
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which is the second case with AA   and 00 SC 
. This completes the proof of theorem (4.1). Hence, in the 

case of a Riemannian Banach manifold of constant Gaussian curvature, and at any point Mx  , there exists a chart 

),,( EUc  , such that the metric tensor of this space takes the canonical form (4.20) with respect to this 
chart. Which is a generalization of this result in the finite-dimensional Riemannian geometry. 
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