
 Report and Opinion 2014;6(11)           http://www.sciencepub.net/report 

 

80 

Calculation of Creeping Flow Past a Sphere Using Indirect Boundary Element Method 
 

Ghulam Muhammad*, Nawazish Ali Shah 
 

Department of Mathematics, University of Engineering & Technology Lahore – 54890, Pakistan 
Corresponding Author, e-mail: chgm2004@yahoo.com 

 
Abstract: In this paper, a steady, incompressible creeping flow past a sphere is calculated using indirect boundary 
element method (IDBEM). The surface of the sphere is discretised into quadrilateral elements over which the 
velocity distribution is calculated. The computed results are compared with analytical results. It is found that both 
these results are in good agreement.  
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Introduction 

In recent past, the well-known computational 
methods such as finite difference method (FDM), 
finite element method (FEM) and boundary element 
method (BEM) have been applied for the flow field 
calculations around objects and in such methods, the 
whole region of flow field is discretised. Whereas in 
boundary element method only the surface of the 
body under consideration is discretized into different 
types of boundary elements (C.A.Brebbia & 
S.Walker,1980). BEM is well–suited to two-and 
three-dimensional problems for which finite elements 
are not suitable or insufficient, especially for 
problems where domain is exterior to the boundary, 
as in the case of flow past bodies. The most important 
features of BEM are the much smaller system of 
equations and considerable reduction in data, which 
are essential to run a computer program efficiently. 
That is why; BEM is more accurate, efficient and 
economical than other competitive computational 
methods. Boundary element methods are further 
classified into direct and indirect methods. In present 
paper, DBEM is applied to calculate creeping flow 
past a sphere. The study of flow past a sphere is of 
great practical importance in fluid dynamics. In 
creeping flow, the inertial effects become very small, 
whereas, the viscous effects become dominant. 
Therefore, the steady flow Navier-Stokes’ equations 
are greatly simplified by neglecting the inertia terms 
(J.F. Dougles, J.. Gasiorek & J. A. Swaffield,1990). 
Indirect boundary method (IDBEM) is based on the 
distribution of singularities, like sources or doublets, 
over the surface of the body and computes the 
unknowns in the form of singularity strengths. This 
method has been applied for several years in the past 
for the calculation of flow fields owing to its 
simplicity. The flow field calculations around three-
dimensional bodies and around arbitrary bodies were 
calculated (Hess and Smith,1962;1967). In recent 

past, the indirect element method has been applied by 
the author for flow field calculations around two- and 
three-dimensional bodies. 
Mathematical Formulation of Steady and 
Incompressible Creeping Flow 

The differential equations governing the 
creeping flow are the continuity equation and the 
Navier – Stokes’ equations 

. V  = 0 (1) 
and 
 V

 t
 + ( V .  ) V = –

1
  p + v  2 V   (2) 

In the case of very creeping motion or in the 
case of very highly viscous fluid, the Reynold’s 
number will be small ( Re << 1 ). In such cases the 
inertia term or convective acceleration term 
(V .  ) V is approximately zero. Thus equations (1) 
and (2) reduce to 

. V  = 0 (3) 
and 
 V

 t
  = – 

1
  p + v  2 V  (4) 

These equations are known as Stokes’ equations 
for very creeping motion. Flows which satisfy 
equation (4) are called creeping flows. 

Equation (4) represents the following three 
scalar equations. 






 u

 t
  =  – 

1
  

 p

 x
 + v  2 u

 
 v

 t
  =  – 

1
  

 p

 y
 + v  2 v

 
 w

 t
  =  – 

1
  

 p

 z
 + v  2 w

    (5) 

These equations together with the continuity 
equation (1) represent four scalar equations in four 
unknown u, v, w, and p. The great simplification in 
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Stokes’ equations is that these equations are now 
linear. In the case of steady flow, Stokes’ equation 
(4) reduces to 

 p =   2 V  (6) 
Equation (6) can be written in scalar form as 






 p

 x
  =    2 u

 
 p

 y
  =    2 v

 
 p

 z
  =    2 w

    (7) 

The Stokes’ equations are considerably simple 
from mathematical point of view as they are linear 
differential equations. Moreover, their order remain 
the same as that of full Navier – Stokes’ equations so 
that as many boundary conditions may be satisfied 
with the Stokes’ equations as with the full Navier – 
Stokes’ equations. 

The Navier-Stoke equations for creeping 
incompressible viscous flow in the absence of body 
force is as follows: 

 V

 t
  = – 

1
  p + v  2 V  (8) 

To obtain the equation governing the pressure, 
take the divergence of both sides of equation (8), we 
get 

. 
 V

 t
  = – 

1
  .  p + v  .  2 V  (9) 

or

 

 t

 (  . V )  = – 
1
  2 p + v  2 (  . V )  

(10) 
Using continuity equation (1), equation (10) 

becomes 
 2 p = 0 (11) 
i.e. for very slow motion the pressure p satisfies 

Laplace’s equation and is therefore a harmonic 
function. 
Steady Creeping Flow Past a Sphere 

This problem was first solved by Stokes’ and is 
often referred to as Stokes’ flow or Stokes’ law. 
Stoke was the first who analytically solved the 
problem of creeping flow. 

Let a solid sphere of radius ‘a’ be held fixed in a 
uniform stream U flowing steadily in the positive 
direction of the z – axis. Let the centre of the sphere 
be the origin of the coordinate system. Let z – axis be 
in the direction of the uniform stream in the 
coordinate system, as shown in figure (1). The 
streamlines are symmetrical around the sphere; 
therefore there is no wake on the rear of a sphere. 
The flow past a sphere varies with the Reynolds 

number. In general, the larger the Reynolds number, 
the smaller the region of flow field in which the 
viscous effects are paramount and vice versa. 

 

 
 

Figure (1) 
 
Stream Function for Creeping Flow 

 = – 
1
4

  
U a 3

r
 sin 2  + 

3
4

 U a r sin 2    

                     – 
1
2
 U r 2 sin 2   

= 
3
4
 U a r 



 1 – 

1
3

  
a 2

r 2   –  
2
3

  
r
a
  sin 2  (12) 

Velocity Distribution 
The velocity components in terms of Stokes’ 

stream function are 

v r =–
1

r 2 sin 
  
 
 

  and v =
1

r sin 
  
 
 r

  (13) 

The velocity components in this case are 

v r = – 
1

r 2 sin 
  
Ψ

 
  

= U 



 1 – 

3 a
2 r

 + 
a 3

2 r 3  cos   

v  = 
1

r sin 
  
 
 r

  

= U 



 – 1 + 

3 a
4 r

 + 
a 3

4 r 3  sin   

V = v 

2
r  + v 

2


  

= U     (13) 
The boundary conditions which must be 

satisfied by the flow are 
v r = 0,  v  =  0   at   r  =  a 

and   =  – 
1
2

 U r 2 sin 2    at   r  =  . 

 
Equation of IDBEM: 

For three-dimensional exterior flow problems, 
the equation of direct boundary element method over 
the surface ‘S’of the body is given by 
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 
1
2
  i    + 

 
 

S–i
  


 n

 




 

1

4  r
  d S  = zi 

(14) 
 
Discretization of Sphere: 

The surface of the sphere is discretized into 
quadrilateral elements. The scheme of discretization 
is as shown in the figure (2). 

The direct boundary element method is applied 
to calculate the creeping flow solution around the 
sphere for which the analytical solution is available 

Consider the surface of the sphere in one octant 
to be divided into three quadrilateral elements by 
joining the centroid of the surface with the mid points 
of the curves in the coordinate planes as shown in 
figure (2) (Mustaq et al,2009). 

Then each element is divided further into four 
elements by joining the centroid of that element with 
the mid–point of each side of the element. Thus one 
octant of the surface of the sphere is divided into 12 
elements and the whole surface of the body is divided 
into 96 boundary elements. The above mentioned 
method is adopted in order to produce a uniform 
distribution of element over the surface of the body. 

 

 
Figure (2) 

 
Figure (3) shows the method for finding the 
coordinate (xp, yp, zp) of any point P on the surface of 
the sphere. 

 
Figure (3) 

 
From above figure, we have the following 

equation 
|r p|  = 1 

r p . r 1  = r p . r 2  
(r 1 − r 2) . r p  = 0 
(r 1 x r 2) . r p  = 0 
or in cartesian form 

x
2
p + y

2
p + z

2
p  = 1 

xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2) = 0 
xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2) 
+ zp (x1 y2 – x2 y1) = 0 
As the body possesses planes of symmetry, this 

fact may be used in the input to the program and only 
the non–redundant portion need be specified by input 
points. The other portions are automatically taken 
into account. The planes of symmetry are taken to be 
the coordinate planes of the reference coordinate 
system. The advantage of the use of symmetry is that 
it reduces the order of the resulting system of 
equations and consequently reduces the computing 
time in running a program. As a sphere is symmetric 
with respect to all three coordinate planes of the 
reference coordinate system, only one eighth of the 
body surface need be specified by the input points, 
while the other seven–eighth can be accounted for by 
symmetry. 

The sphere is discretised into 96 and 384 
boundary elements and the computed velocity 
distributions are compared with analytical solutions 
for the sphere using Fortran programming. 

 

 
(a)                                (b) 

Figure (4): Discretization of sphere into 96 boundary 
elements. The point of observation is (a) on the z-
axis; (b) at 45º to all axes. 

 

 
(a)                                   (b) 

Figure (5): Discretization of sphere into 384 
boundary elements. The point of observation is (a) on 
the z-axis; (b) at 45º to all axes. 
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Figure (6): Comparison of computed and analytical 
velocity distributions over the surface of the sphere 
using 96 boundary elements. 
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Figure (7): Comparison of computed and analytical 
velocity distributions over the surface of the sphere 
using 384 boundary elements. 

 
Since the streamlines are symmetrical around 

the sphere, the graphs shown above are symmetrical 
on both sides. At the top of figure (7), the computed 
results are convergent with the exact results and as 
we come down, the computed results are slightly 
different with the analytical ones due to increase of 
viscous effects. 

 
Conclusion: 

Indirect boundary element method has been 
used to calculate slow flow past a sphere using 
different number of boundary elements. The 
computed velocities obtained in this way are 

compared with exact velocities for this flow over the 
boundary of the sphere. From the above figures, it is 
concluded that the computed values are in good 
agreement with the exact values for the body of the 
sphere. 
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