A study of Pseudolinear functions with convex optimization

Ritu Sharma ${ }^{1}$, Mayank Pawar ${ }^{2}$, Sanjeev Rajan ${ }^{3}$
${ }^{1}$ Research Scholar, Hindu College, Moradabad
${ }^{2}$ Teerthanker Mahaveer University, Moradabad
${ }^{3}$ Hindu College, Moradabad

Abstract

In this paper we introduced Pseudolinear functions as a generalization of convex functions Rep Opinion 2013;5(1):42-44]. (ISSN:1553-9873). http://www.sciencepub.net/report. 7

Keywords: Pseudolinear functions, ρ-convex functions, convex optimization, Concave Optimization, non linear programming

Introduction

Pseudolinear functions were defined by (5) as functions which are both pseudoconvex and pseudoconcave. The following example illustrates the fact that if f and g are two pseudolinear functions with respect to same proportional function ρ, then f / g is not necessarily pseudolinear with respect to same proportional function p .

Example 1: The real valued functions f and g defined on $] 0,1[$ by

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=(7 \mathrm{x}+3) /(2 \mathrm{x}+5) \\
& \mathrm{g}(\mathrm{x})=(9 \mathrm{x}+4) /(2 \mathrm{x}+5)
\end{aligned}
$$

are pseudolinear with respect to same proportional function $p(x, u)=(2 u+5) /(2 x+5)$. But the function $f(x) / g(x)=(7 x+3) /(9 x+4)$ defined on $] 0,1[$ is not pseudolinear with respect to proportional function $p(x$, u) because for $x=1 / 2, u=1 / 4$

$$
\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}) \neq \mathrm{f}(\mathrm{u}) / \mathrm{g}(\mathrm{u})+\mathrm{p}(\mathrm{x}, \mathrm{u})(\mathrm{x}-\mathrm{u}) \nabla(\mathrm{f}(\mathrm{u}) / \mathrm{g}(\mathrm{u}))
$$

The following result illustrates that f / g is, however, pseudolinear with respect to a different proportional function.

Theorem 1: If f and g are two pseudolinear functions defined on an open convex subset X of R^{n} with the same proportional function $p(x, u)$ and $g(x)>0$ for every x in X, then f / g is also pseudolinear on X with respect to proportional function $\overline{\mathrm{p}}(\mathrm{x}, \mathrm{u})=\mathrm{p}(\mathrm{x}, \mathrm{u}) \mathrm{g}(\mathrm{u}) / \mathrm{g}(\mathrm{x})$.
Proof : Since f and g are pseudolinear functions with respect to same proportional function p it follows that for x, u in X

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{u})+\mathrm{p}(\mathrm{x}, \mathrm{u})(\mathrm{x}-\mathrm{u})^{\mathrm{T}} \nabla \mathrm{f}(\mathrm{u}) \\
& \mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{u})+\mathrm{p}(\mathrm{x}, \mathrm{u})(\mathrm{x}-\mathrm{u})^{\mathrm{T}} \nabla \mathrm{~g}(\mathrm{u})
\end{aligned}
$$

It can be shown that

$$
\mathrm{p}(\mathrm{x}, \mathrm{u})(\mathrm{x}-\mathrm{u})^{\mathrm{T}} \nabla(\mathrm{f}(\mathrm{u}) / \mathrm{g}(\mathrm{u}))=\mathrm{g}(\mathrm{x})[(\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}))-(\mathrm{f}(\mathrm{u}) / \mathrm{g}(\mathrm{u}))] / \mathrm{g}(\mathrm{u})
$$

Thus,

$$
\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})-\mathrm{f}(\mathrm{u}) / \mathrm{g}(\mathrm{u})=\mathrm{p}(\mathrm{x}, \mathrm{u}) \mathrm{g}(\mathrm{u})(\mathrm{x}-\mathrm{u})^{\mathrm{T}} \nabla(\mathrm{f}(\mathrm{u}) / \mathrm{g}(\mathrm{u})) / \mathrm{g}(\mathrm{x})
$$

which implies that f / g is pseudolinear with respect to proportional function $\bar{p}(x, u)=p(x, u) g(u) / g(x)$.

Remark 1 : In the example considered above, the function f / g is pseudolinear with respect to the proportional function

$$
\begin{aligned}
\overline{\mathrm{p}}(\mathrm{x}, \mathrm{u}) & =\mathrm{p}(\mathrm{x}, \mathrm{u}) \mathrm{g}(\mathrm{u}) / \mathrm{g}(\mathrm{x}) \\
& =(9 \mathrm{u}+4) /(9 \mathrm{x}+4)
\end{aligned}
$$

The class of pseudolinear functions is generalized to a new class of functions called $\eta_{\text {-pseudolinear functions. Let }}$ $f: X \rightarrow R, p: X \times X \rightarrow R, \eta: X \times X \rightarrow R^{n}$, where X is an open subset of R^{n}.

Definition 1 : The function f is said to be η-pseudolinear if there exist functions $p(x, u)$ and $\eta(x, u)$, such that, $\mathrm{p}(\mathrm{x}, \mathrm{u})>0$ for $\mathrm{x}, \mathrm{u} \in \mathrm{X}$ and

$$
\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{u})+\mathrm{p}(\mathrm{x}, \mathrm{u}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla \mathrm{f}(\mathrm{u})
$$

The following theorem follows on the lines of Theorem 1.

Theorem 2 : If f and g are two η-pseudolinear functions defined on an open subset X of R^{n} with same proportional function $P(x, u)$ and $g(x)>0$ for every x in X, then f / g is η-pseudolinear on X with respect to new proportional function $\bar{p}(x, u)=p(x, u) g(u) / g(x)$.

The following theorems establish certain sufficient conditions for composite functions to be η pseudolinear.
Theorem 3 : Let $\phi: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ be a surjective function with $\nabla \phi(\mathrm{x})$ onto for each $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ and $\mathrm{f}_{\mathrm{i}}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}, \mathrm{i}=1,2, \ldots, \mathrm{k}$ be pseudolinear functions with respect to proportional function p_{i}, then the function $\mathrm{h}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ defined by

$$
h(x)=\left(f_{1}(\phi(x)), f_{2}(\phi(x)) \ldots \ldots, f_{k}(\phi(x))\right)
$$

is η-pseudolinear.
Proof: Let $\mathrm{x}, \mathrm{u} \in \mathrm{R}^{\mathrm{n}}$. Let $\mathrm{w}=\phi(\mathrm{x}), \mathrm{z}=\phi(\mathrm{u})$. We have

$$
\begin{aligned}
\mathrm{f}_{\mathrm{i}}(\phi(\mathrm{x}))-\mathrm{f}_{\mathrm{i}}(\phi(\mathrm{u})) & =\mathrm{f}_{\mathrm{i}}(\mathrm{w})-\mathrm{f}_{\mathrm{i}}(\mathrm{z}) \\
& =\mathrm{p}_{\mathrm{i}}(\mathrm{w}, \mathrm{z})(\mathrm{w}-\mathrm{z})^{\mathrm{T}} \nabla \mathrm{f}_{\mathrm{i}}(\mathrm{z})
\end{aligned}
$$

and f_{i} is pseudolinear with respect to proportional function $p_{i}, i=1,2, \ldots, k$. Since $\nabla \phi(u)$ is onto, the equation $\mathrm{w}-\mathrm{z}=\nabla \phi(\mathrm{u})^{\mathrm{T}} \eta(\mathrm{x}$,$) is solvable. Thus, we get$

$$
\begin{aligned}
\mathrm{f}_{\mathrm{i}}(\phi(\mathrm{x}))-\mathrm{f}_{\mathrm{i}}(\phi(\mathrm{u})) & =\mathrm{p}_{\mathrm{i}}(\mathrm{w}, \mathrm{z}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla \phi(\mathrm{u}) \nabla \mathrm{f}_{\mathrm{i}}(\mathrm{z}) \\
& =\mathrm{p}_{\mathrm{i}}(\mathrm{w}, \mathrm{z}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla\left(\mathrm{f}_{\mathrm{i}} \circ \phi\right)(\mathrm{u}) \\
& =\mathrm{p}_{\mathrm{i}}(\phi(\mathrm{x}), \phi(\mathrm{u})) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla\left(\mathrm{f}_{\mathrm{i}} \circ \phi\right)(\mathrm{u}) \\
& =\overline{\mathrm{p}}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla\left(\mathrm{f}_{\mathrm{i}} \circ \phi\right)(\mathrm{u})
\end{aligned}
$$

where $\bar{p}_{i}(x, u)=p_{i}(\phi(x), \phi(u))$. Since each component of h is η-pseudolinear, it follows that h is η pseudolinear.

Theorem 4 : Let $g: R^{n} \rightarrow R$ be continuity differentiable η-pseudolinear with respect to proportional function q and $f: R \rightarrow R$ be pseudolinear with respect to proportional function p. Then $(f \circ g)(x)$ is η-pseudolinear with respect to new proportional function.
Proof: Let $x, u \in R^{n}$. Let $w=g(x), z=g(u)$.

$$
\begin{align*}
\mathrm{f}(\mathrm{~g}(\mathrm{x}))-\mathrm{f}(\mathrm{~g}(\mathrm{u})) & =\mathrm{f}(\mathrm{w})-\mathrm{f}(\mathrm{z}) \\
& =\mathrm{p}(\mathrm{w}, \mathrm{z})(\mathrm{w}-\mathrm{z}) \nabla \mathrm{f}(\mathrm{z}) \tag{1}
\end{align*}
$$

as f is pseudolinear with respect to p. Also

$$
\begin{aligned}
\mathrm{w}-\mathrm{z} & =\mathrm{g}(\mathrm{x})-\mathrm{g}(\mathrm{u}) \\
& =\mathrm{q}(\mathrm{x}, \mathrm{u}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla \mathrm{~g}(\mathrm{u})
\end{aligned}
$$

as g is $\eta_{-p s e u d o l i n e a r ~ w i t h ~ r e s p e c t ~ t o ~} q$. Substituting the value of $w-z$ in (1), we get

$$
\begin{aligned}
\mathrm{f}(\mathrm{~g}(\mathrm{x}))-\mathrm{f}(\mathrm{~g}(\mathrm{u})) & =\mathrm{p}(\mathrm{w}, \mathrm{z}) \mathrm{q}(\mathrm{x}, \mathrm{u}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla \mathrm{~g}(\mathrm{u}) \nabla \mathrm{f}(\mathrm{z}) \\
& =\mathrm{p}(\mathrm{~g}(\mathrm{x}), \mathrm{g}(\mathrm{u})) \mathrm{q}(\mathrm{x}, \mathrm{u}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}} \nabla(\mathrm{f} \circ \mathrm{~g})(\mathrm{u})
\end{aligned}
$$

$$
=r(x, u) \eta(x, u)^{T} \nabla(f \circ g)(u)
$$

where $r(x, u)=p(g(x), g(u)) q(x, u)$. Thus it follows that $(f \circ g)(x)$ is η-pseudolinear with respect to r.
We now define second order pseudolinear twice differentiable functions. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ be a twice differentiable function defined on a non-empty open subset X of R^{n}. Let $p: X \times X \rightarrow R^{n}, q: X \times X \rightarrow R$.

Definition 2: The function f is said to be second order pseudolinear at $u \in X$ with proportional function q if there exist functions $\mathrm{p}(\mathrm{x}, \mathrm{u}), \mathrm{q}(\mathrm{x}, \mathrm{u})$ such that $\mathrm{q}(\mathrm{x}, \mathrm{u})>0$ and for $\mathrm{x} \in X$

$$
\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{u})+\frac{1}{2} \mathrm{p}^{\mathrm{T}} \nabla^{2} \mathrm{f}(\mathrm{u}) \mathrm{p}=\mathrm{q}(\mathrm{x}, \mathrm{u})(\mathrm{x}-\mathrm{u})^{\mathrm{T}}\left(\nabla \mathrm{f}(\mathrm{u})+\nabla^{2} \mathrm{f}(\mathrm{u}) \mathrm{p}\right)
$$

Remark 2: Every second order pseudolinear function is both second order pseudoconvex and second order quasiconvex.

Second order $\eta_{\text {-pseudolinear functions are defined as an extension of } \eta \text {-pseudolinear functions and }}$ second order pseudolinear functions. Let $\eta: X \times X \rightarrow R^{n}$.

Definition 3 : The function f is said to be second order $\eta_{\text {-pseudolinear at } u} u X$ with proportional function q if there exist functions $p(x, u), q(x, u)$ and $\eta(x, u)$ such that $q(x, u)>0$ and for $x \in X$

$$
\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{u})+\frac{1}{2} \mathrm{p}^{\mathrm{T}} \nabla^{2} \mathrm{f}(\mathrm{u}) \mathrm{p}=\mathrm{q}(\mathrm{x}, \mathrm{u}) \eta(\mathrm{x}, \mathrm{u})^{\mathrm{T}}\left(\nabla \mathrm{f}(\mathrm{u})+\nabla^{2} \mathrm{f}(\mathrm{u}) \mathrm{p}\right)
$$

Conclusion

In the above examples it is concluded that if f and g are two pseudolinear functions with respect to same proportional function ρ, then f / g is not necessarily pseudolinear with respect to same proportional function p .

References

[1]. C. R. Bector and C. Singh, B-vex Functions, Journal of Optimization Theory and Applications, 71(2), 237-253(1991).
[2]. E. Castagnoli and P. Mazzoleni, About Derivatives of Some Generalized Concave Functions, Continuous-Time Fractional and Multiobjective Programming, edited by C. Singh and B. K. Dass, Analytic Publishing Company, New Delhi, 53-63(1989).
[3]. Goran Lesaja And Verlynda N. Slaughter, Interior-Point Algorithms For A Class Of Convex Optimization Problems, Yugoslav

Journal Of Operations Research Volume 19 Number 2, 239-248(2009).
[4]. J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. Springer, 2000.
[5]. K. L. Chew and E. U. Choo (1984), Pseudolinearity and Efficiency, Mathematical Programming, 28, 226-239
[6]. M.P. Bendsøe, A. Ben-Tal and J. Zowe, "Optimization methods for truss geometry and topology design," Structural Optimization, vol. 7, pp. 141-159, (1994).
[7]. O. L. Mangasarian, Non-linear Programming, McGraw-Hill, New York(1969).
[8]. Stephen Boyd and Lieven Vandenberghe, " Convex Optimization", cambridge university press.
[9]. V. Jeyakumar and B. Mond, On Generalized Convex Mathematical Programming, Journal of Australian Mathematical Society, Ser. (B), 34(1), 43-53 (1992).

