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Abstract: 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly
marvelous proof, which this margin is too small to contain.” This means: X" + )" =z"(n >2) has no integer
solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been

called Fermat’s last theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P . Fermat
proved FLT for exponent 4. Euler proved FLT for exponent 3. In this paper using automorphic functions we prove

FLT for exponents 3P and P, where P is an odd prime. We find the Fermat proof. The proof of FLT must be
direct. But indirect proof of FLT is disbelieving.
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In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields
n—1 n
exp[z t,.J’j:z SJ (D
i=1 i=1
where J denotesa 7 throot of negative unity, J" =—1, n isan odd number, #, are the real numbers.
S, is called the automorphic functions(complex trigonometric functions) of order n with 7—1 variables
[1-7].

at
s D 1)1 1 +2Z (1) " cos(8, +(~1)’ @=Njz,, 2
where i=1,2,3,...,n; "
A= ri t, (=1, B, = ’i t, (~1HUHe cos%, (3)
0, = (—1)]'“"2 £, (=Y sin%”, A+2ZZ: B, =0
p— =

(2) may be written in the matrix form
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where (n—1)/2 isan even number.
From (4) we have its inverse transformation
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n n n
exp(B i1 ) sin(ﬁn;1 ) | | e S
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From (5) we have
n n—1 ..
e' =S, (-, " cosd =8+ 8, () cos %
i=l i=1 n
gz 6)

n—1
B, . _ j+1 i—1)i -
e”sing, =(-1)""> S, (=Y sin —
i=1
In (3) and (6) ¢, and S, have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT.
Using (4) and (5) in 1991 Jiang invented that every factor of exponent 7 has the Fermat equation and proved FLT
[1-7] .Substituting (4) into (5) we prove (5).
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L 2n n 2n
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From (3) we have
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exp(4+2) B)=1.

From (6) we have

by S
exp(A+2) B)=|"

oS,
S), =—=I[7]
(S); o (7]

J

where

Jj=1
-l Sl _Sn _SZ
S, - =S,
Jj=1
Sn Sn—l Sl

From (8) and (9) we have the circulant determinant
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nel Sl _Sn _Sz
& S, S -8
exp(A+2) B)=|" =1 (10)
j=l cee :
Sn Sn—l Sl

If S;#0,where i=1,2,---,n, then (10) has infinitely many rational solutions.

Assume S, #0, §,#20, S, =0 where i=3,4,---,n.5,=0 are n—2 indeterminate equations with

n—1 variables. From (6) we have

o' =S -8, & =8> +52+28,5,(-1)" cos L. (1D
n
From (3) and (11) we have the Fermat equation
n-1 n—1
& 2w 2 -1 Jr
exp(A4+2) B,)=(S,-S5,) (S +8; +28,8,(-D) " cosZ=) =5 =8; =1 (1D
j-l = n

Example[l]. Let n=15. From (3) we have
A= _(tl _t14)+(t2 _t13)_(t3 _t12)+(t4 _tn)_(ts _t10)+(t6 _to)_(t7 _ts)

T 2r 3z 4r
B =( —tl4)cosE+(t2 —1‘13)cosg+(z‘3 —z‘lz)cosgnt(z‘4 —tn)cosg

Sz 6 T
+(t. —t,,)cos— + (¢, —t,)cos— + (¢, —¢,) cos—,
(5 10) 15 (6 9) 15 (7 8) 15

2r 4r 67 &
B, =—(, —z‘lé‘)cosgvt(z‘2 —1‘13)cosg—(z‘3 —z‘lz)cosgnt(z‘4 —tn)cosg

107 127 14z
—(t; —z‘lo)coanL(z‘6 —z‘g)cosF—(z‘7 —l‘S)COSF,

3z 67 Or 127
B, =(, —1‘14)cosg+(z‘2 —1‘13)cosg+(z‘3 —z‘lz)cosgnt(z‘4 —tn)cos?

157 187 21z
+(t. —t,,)cos—+ (¢, —t,)cos——+ (¢, —t, ) coOs—,
(5 10) 15 (6 9) 15 (7 8) 15

4 87 127 167
B, =—(t, —z‘lé‘)cosgvt(z‘2 —1‘13)cosg—(z‘3 —z‘lz)costL(z‘4 —tll)cosl—

207 24w 287
—(t, —z‘lo)coanL(z‘6 —z‘g)cos?—(z‘7 —tg)cosF,

Sm 107 157 207
B, =(, —z‘lé‘)cosgnt(z‘2 —l‘13)COSF+(l‘3 —z‘lz)cos?nt(z‘4 —tn)cosl—

257 307 357
(15 —z‘lo)costL(t6 —tg)cos?vt(t7 —tg)cosF,

67 127 187 247
By =—(1, —l‘14)COSE+(l‘2 —l‘13)COS?—(l‘3 _tlz)COSF+(Z‘4 _tll)COSF

307 367 42
—(t, —z‘lo)cos?vt(z‘6 —z‘g)cos?—(z‘7 —Z‘S)COSF,

T 147 21 287
B, =(t, —z‘lé‘)cosgvt(z‘2 —l‘n)COSF-i-(Z‘} —tlz)coanL(t4 —tll)cosl—
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+(t, —z‘lo)coanL (, —z‘g)cos?vL (, —tg)cos? ,
7
A+2) B, =0,  A+2B,+2B =5(—1;+1,). (13)
J=
Form (12) we have the Fermat equation
7
exp(4+2> B)=S8"-8"=(8) -(S;)’ =1. (14)
J=
From (13) we have
exp(A+ 2B, +2B,) =[exp(~t; +1,)] . (15
From (11) we have
exp(A+2B,+2B,) =S’ -5, (16)
From (15) and (16) we have the Fermat equation
exp(A+2B,+2B,)=5; - S, =[exp(—t, +1,,)] . a7

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational
solutions for exponent 5[1].

Theorem 1. Let n =3P ,where P >3 is odd prime. From (12) we have the Fermat’s equation

exp(A+23ilBj)=Sl3P—S§P =Sy —(87) =1. (18)
From (3) we have a
=
exp(A+2Zle3j) =[exp(—t, +1,,)]". (19)
From (11) we have .
=
exp(A+ 222: B,)=5-8;. (20)
From (19) and (20) we have the Ferma]t:;quation
Pl
exp(A+2Zle3j):SlP—Sf =[exp(~t, +1,,)]". QD
=

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational
solutions for P >3 [1,3-7].
Theorem 2. We consider the Fermat’s equation

3P _y3P _ 3P (22)
we rewrite (22)
(") =) =" (23)
From (24) we have
(xP—yP)(x2P+xPyP+y2P)=Z3P (24)

X y .
Let S, =—, S, ==.From (20) and (24) we have the Fermat’s equation
z z

(xzp +xPyP + yzp = zzp[exp(tp —tzP)]P (25)

P P P
x' =yt =[zxexp(—t, +1,,)] (26)
Euler proved that (23) has no integer solutions for exponent 3[8]. Therefore we prove that (26) has no integer
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solutions for prime exponent P .
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (22)

() =) =) 27)
Euler proved that (23) has no integer solutions for exponent 3 [8]. Therefore we prove that (27) has no integer

solutions for all prime exponent P [1-7].
We consider Fermat equation

4P _y4P _ AP (28)
We rewrite (28)
(") =) =" (29)
(N =N = (30)
Fermat proved that (29) has no integer solutions for [3] Jiang, C-X, On the factorization theorem of
exponent 4 [8]. Therefore we prove that (30) has no circulant determinant, Algebras, Groups and
integer solutions for all prime exponent P Geometries, 11. 371-377(1994), MR. 96a: 11023,
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