## Period Of Rotation Of Rotating Blackhole

## Mark Herbert


#### Abstract

The Rotational Kinetic Energy of Rotating Black Hole is given by $\mathbf{E}_{\mathrm{k}}=\mathbf{J}^{\mathbf{2}} / \mathbf{2} \mathbf{I}$ $\qquad$ .(1). Here I = Moment of Inertia of this Black Hole, $\mathbf{J}=$ Angular momentum of this Black Hole. Spin parameter of rotating Black Hole is given by $\mathbf{a}=\mathbf{J} / \mathbf{M C} \ldots \ldots$. (2). Here $\mathbf{M}=$ Mass of this Black Hole, $\mathbf{J}=$ Angular momentum of this Black Hole. Thus, (1) becomes $\mathbf{E}_{\mathbf{k}}=\mathbf{a}^{\mathbf{2}} \mathbf{M}^{\mathbf{2}} \mathbf{C}^{\mathbf{2}} / \mathbf{2} \mathbf{I} \ldots \ldots$. (3). [Period Of Rotation Of Rotating Blackhole. Report and Opinion 2010;2(12):126-127]. (ISSN: 1553-9873).


Keywords: Rotational; Kinetic Energy; Rotating; Black Hole

The Rotational Kinetic Energy of Rotating Black Hole is given by

$$
\begin{equation*}
\mathbf{E}_{\mathrm{k}}=\mathbf{J}^{2} / 2 \mathbf{I} \tag{1}
\end{equation*}
$$

$\qquad$
Here $\mathbf{I}=$ Moment of Inertia of this Black Hole, $\mathbf{J}=$ Angular momentum of this Black Hole.
Spin parameter of rotating Black Hole is given by

$$
\mathbf{a}=\mathbf{J} / \mathbf{M C} \ldots \ldots . \text { (2) }
$$

Here $\mathbf{M}=$ Mass of this Black Hole, $\mathbf{J}=$ Angular momentum of this Black Hole.
Thus, (1) becomes $\mathbf{E}_{\mathrm{k}}=\mathbf{a}^{\mathbf{2}} \mathbf{M}^{\mathbf{2}} \mathbf{C}^{\mathbf{2}} / \mathbf{2} \mathbf{I} \ldots \ldots$.
Assuming the shape of rotating Black Hole to be spherical then MI about an axis passing through the
Diameter is given by $\mathbf{I}=\mathbf{2} / \mathbf{5} \mathbf{M R}^{\mathbf{2}}$
Here $\mathbf{R}=$ Radius of this Black Hole, $\mathbf{I}=$ moment of inertia of this blackhole.
Thus, (3) becomes $\mathbf{E}_{\mathbf{k}}=\mathbf{5} \mathbf{a}^{\mathbf{2}} \mathbf{M}^{\mathbf{2}} \mathbf{C}^{\mathbf{2}} / \mathbf{4} \mathbf{M R}^{\mathbf{2}}$

$$
\begin{equation*}
\mathbf{E}_{\mathrm{k}}=5 \mathbf{a}^{2} \mathbf{M}^{2} \mathbf{C}^{2} / 4 \mathbf{R}^{2} \ldots \ldots \tag{4}
\end{equation*}
$$

Rotational Kinetic Energy of rotating Black Hole is given by $\mathbf{E}_{\mathbf{k}}=\mathbf{1} / \mathbf{2} \mathbf{I} \boldsymbol{\omega}^{\mathbf{2}}$
Here $\boldsymbol{\omega}=$ angular velocity of this blackhole

$$
\begin{equation*}
\mathbf{E}_{\mathrm{k}}=\mathbf{M R}^{2} \omega^{2} / 5 \ldots \ldots \tag{5}
\end{equation*}
$$

By Comparison of (4) \& (5) we get

$$
\begin{equation*}
\omega=5 \mathrm{aC} / 2 \mathbf{R}^{2} \ldots \ldots \tag{6}
\end{equation*}
$$

Angular velocity of rotating blackhole is given by $\boldsymbol{\omega}=\mathbf{2} \boldsymbol{\pi} / \mathbf{T}$

Here $\mathbf{T}=$ Time period of rotation of this blackhole
Thus (6) becomes $\mathbf{T}=\mathbf{4} \boldsymbol{\pi} \mathbf{R}^{\mathbf{2}} / \mathbf{5 a C}$ $\qquad$
Assuming the area of rotating black hole is given by $\mathbf{A}_{\mathbf{B}}=\mathbf{4} \boldsymbol{\pi} \mathbf{R}^{\mathbf{2}}$

Thus (7) becomes $\mathbf{T}=\mathbf{A B}_{\mathbf{B}} / \mathbf{5 a C}$
Here $\mathbf{T}=$ Time period of rotation of this blackhole, $\mathbf{A}_{\mathbf{B}}=$ Area of this blackhole, $\mathbf{a}=$ Spin parameter of this blackhole, $\mathbf{C}=$ speed of light in vaccum.

7/8/2010

