Period Of Rotation Of Rotating Blackhole

Mark Herbert

Abstract: The Rotational Kinetic Energy of Rotating Black Hole is given by $\mathbf{E_k} = \mathbf{J^2/2\ I}$ (1). Here $\mathbf{I} = \mathbf{Moment}$ of Inertia of this Black Hole, $\mathbf{J} = \mathbf{Angular}$ momentum of this Black Hole. Spin parameter of rotating Black Hole is given by $\mathbf{a} = \mathbf{J/MC}$(2). Here $\mathbf{M} = \mathbf{Mass}$ of this Black Hole, $\mathbf{J} = \mathbf{Angular}$ momentum of this Black Hole. Thus, (1) becomes $\mathbf{E_k} = \mathbf{a^2\ M^2\ C^2/2\ I}$(3).

[Period Of Rotation Of Rotating Blackhole. Report and Opinion 2010;2(12):126-127]. (ISSN: 1553-9873).

Keywords: Rotational; Kinetic Energy; Rotating; Black Hole

The Rotational Kinetic Energy of Rotating Black Hole is given by

$$E_k = J^2/2 I \dots (1)$$

Here I = Moment of Inertia of this Black Hole, J = Angular momentum of this Black Hole.

Spin parameter of rotating Black Hole is given by

$$a = J/MC....(2)$$

Here M = Mass of this Black Hole, J = Angular momentum of this Black Hole.

Thus, (1) becomes
$$E_k = a^2 M^2 C^2 / 2 I$$
 (3)

Assuming the shape of rotating Black Hole to be spherical then MI about an axis passing through the

Diameter is given by $I = 2/5 \text{ MR}^2$

Here $\mathbf{R} = \text{Radius}$ of this Black Hole, $\mathbf{I} = \text{moment}$ of inertia of this blackhole.

Thus, (3) becomes $E_k = 5a^2 M^2 C^2/4 MR^2$

$$E_k = 5a^2 M^2 C^2/4R^2.....(4)$$

Rotational Kinetic Energy of rotating Black Hole is given by $E_k = 1/2 I \omega^2$

Here ω =angular velocity of this blackhole

$$\mathbf{E}_{k} = \mathbf{M}\mathbf{R}^{2} \, \mathbf{\omega}^{2} / 5 \dots \dots (5)$$

By Comparison of (4) & (5) we get

$$\omega = 5aC/2 R^2 \dots (6)$$

Angular velocity of rotating blackhole is given by $\omega = 2 \pi/T$

Here **T=**Time period of rotation of this blackhole

Thus (6) becomes $T=4 \pi R^2/5aC$ (7)

Assuming the area of rotating black hole is given by $A_B=4~\pi~R^2$

Thus (7) becomes $T=A_B/5aC$

Here T= Time period of rotation of this blackhole, A_B =Area of this blackhole, a=Spin parameter of this blackhole, C =speed of light in vaccum.

7/8/2010