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ABSTRACT: A theory describing the response of a loaded beam subjected to moving masses and external 
forces is considered. The governing equation is a fourth order partial differential equation. The finite Fourier 
sine transformation is used to transform the governing partial differential equation into second order ordinary 
differential equations. The ordinary differential equations for moving forces and moving masses are solved with 
Laplace transformation method. Number examples are used to demonstrate the efficiency of the solution. 
Numeric analysis shows that for a simple supported beam, the resonance frequency is lower with corresponding 
decrease in maximum amplitude when inertial is considered.  
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1.0 INTRODUCTION 
 A beam or “girder” bridge is the simplest kind of bridge. In the past they may have taken the form of a 
log across a stream, but today they are more familiar to us as large box steel girder bridges. There are lots of 
different types of beam. A beam bridge needs to be stiff. It needs to resist twisting and bending under load. In its 
most basic form, a beam bridge consists of a horizontal beam that is supported at each end the pair. The weight 
of the beam pushes straight down on the pairs under load. 
 Moving loads causes solid bodies to vibrate intensively. Particularly at high velocities. Thus, the study 
of the behaviors of bodies subjected to moving lends has been the concern of several investigators. Among the 
earliest work in this area of study was the work of Timoshenko (1992) who considered the problem of simply 
supported Unite beams resting on an elastic Foundation and traversed by moving loads. In his analysis, he 
assumed that the loads were moving with constant velocities along the beam. Furthermore, Kenny (1954) took 
up the problem of investigating the dynamic response of infinite elastic beams on elastic foundation when the 
beam is under the influence of a dynamic load moving with constant speed. Lie included the effects of viscous 
damping in the governing differential equation of motion. More recently, Oni (1990) considered the problem of 
a harmonic time variable concentrated force moving at a uniform velocity over a Unite deep beam. The methods 
of integral transformations are used. In particular, the Unite Fourier transform is used for the length coordinate 
and the Laplace transform the time coordinate. Series solution, which converges as obtained for the deflection of 
simply supported beams. The analysis of the solution was carried out for various speeds of the load. Oni (2001) 
used the Galerkin method to obtain the response to several moving masses of a non-uniform beam resting on an 
elastic foundation. The effects of the elastic foundation on the transverse displacement of the non-uniform beam 
were analyzed for both the moving mass and the associated moving force problems. Awodola,T.O (2005) 
worked on the influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli 
Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving 
with variable velocity is investigated in the paper. The governing equation is a fourth order partial differential 
equation. For the solution of this problem, in the first instance, the finite Fourier sine transformation is used to 
reduce the equation to a second order partial differential equation. The reduced equation is then solved using the 
Laplace transformation. Numerical analysis shows that the transverse deflection of the thin beam, resting on a 
uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity 
decreases as the foundation constant increases. It also shows that as the axial force increases, the transverse 
deflection of the thin beam decreases. 

 Furthermore, Milormir, Stanisic .M, and Hardin, J. C. (1969) developed a theory describing the 
response of a Bernoulli-Euler beam under an arbitrary number of concentrated moving masses. The theory is 
based on the Fourier technique and shows that, for a simply supported beam, the resonance frequency is lower 
with no corresponding decrease in maximum amplitude when the inertia is considered. 
 
ii. Formulation of the problem  
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           The vibration of a uniformly simply supported beam carrying an arbitrary number of discrete masses m, 
m2, -----mN is considered. This mass mt is assumed to strike the beam at t = 0 and travel across it with velocity 
vit. The equations of motion, with damping neglected is written as 
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Where f (x, t)=                                                                              (2) 
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 EI = the flexural rigidity of the beam 
f (x,t) = the transverse deflection of the beam  
ρ = the mass density of the beam material  
A = cross sectional area of the beam  
g = the acceleration due to gravity  
k = the foundation constant. 
L = the length of the beam  
( )tvx i−∂  is the Dirac delta function define to be zero everywhere except x=vit, i.e ( )tvx i−∂ =0,  x and 

in addition        (3)  
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The boundary conditions are 
Y (o, t) = Y (L, t) = 0 
Yxx (o, t) = Yxx (L, t) = 0           (4)  
Applying the Fourier finite sine transform, i.e 
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Solving equation (6) by integration by part, we obtained difference series solution which added together. 
The result becomes  
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By the equation 9 we obtained the transformation equation. 
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3.0 Solution of the transformed equation. 
 

For the purpose of the solution we consider only one mass m traveling with velocity υ . The solutions for 
greater numbers of masses may be obtained in the same manner .Evidently the following special cases from 
equation 11 follow: 
(a) Moving force: - If we neglect the inertia term, we have the classical case of a moving force. Under the 
above assumption equation 11 becomes 
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(b) Moving Mass:-first approximation only the linear inertial term is considered, Equation 11 becomes. 
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(a) For moving force  
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Now solving equation for moving force, we have 
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For Zc; equation (12) becomes 

mt
tt

mt
t

mt

eMtmZ

MetmZ
etmZ

2),(

),(
),(

=

=

=

 

( )
0;0

0

0

65
2

65
2

5
2

=++≠

=++

=+

⇒

KmKthenMe

KmKMe

MeKeM

mt

mt

mtmt

 

By quadratic solution 

65

2

,1
2

4 KandcKba
a

acbbM ===
−±−

=  

2
4

,
2

4
2

4

6
2
55

2
6

2
55

1

6
2
55

KKK
M

KKK
M

KKK
M

−−−
=

−+−
=

−±−
=

⇒

 

Therefore 

tmm
c BeAez

t
21 +=  

= 2

4

2

4 6
2
556

2
55 tKKKtKKK

BeAe
⎟
⎠
⎞⎜

⎝
⎛ −−−⎟

⎠
⎞⎜

⎝
⎛ −+−

+  

 70



Report and Opinion, 1(1), 2009, http://www.sciencepub.net, sciencepub@gmail.com  

 
 
Applying these boundary conditions 
Z (m, o) = 1 
Zt (m, o) = 0 
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for Z (m,o) = 0; 
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For, the solution Z (m,t) = Zc + Zp 
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Fig. 2 Convergence of coefficient for moving mass solution  
 
 

By using the same method for solving the equation for moving force i.e equation (13) for moving mass 
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The solution for the moving mass becomes 
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While this equation is resistant to analytic technique, it yields readily to numerical procedures. For z (m,t), the 
solutions for m=1,2 are tabulated in table below 
Moving mass 
 
 
S/N  t Z(1,t)  Z(2,t) 
1  0.0 0.000  0.000 
2  0.1 0.139  0.300 
3  0.2 1.078  1.726 
4  0.3 3.479  4.581 
5  0.4 7.785  8.025 
6  0.5 14.209  9.009 
7  0.6 22.766  6.817 
8  0.7 33.311  1.686 
9  0.8 45.559  3.321 
10  0.9 59.089  7.369 

 
Table 1.0 moving mass 

Obviously higher approximations are possible by considering more terms of the series and following the 
same procedure. However, considering the rate of convergence of the lower-order solutions, it should not be 
necessary to continue this process.  
 
4.0 Remark on the solution 

In a problem such as this, one is interested in the maximum amplitude of vibration and the condition under 
which is can occur. For the classical solution, Eq.20, it can been shown that under certain values of the velocity 
the condition of resonance occurs. In this case, the amplitude of vibration becomes a linear function of time. 
Fig.5. the maximum value of the amplitude, which occurs when the mass is at the end of the beam. 
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5.0 Conclusion 
A theory is presented on the response of a loaded beam subjected to moving masses and external force. 

The theory is simple enough to be used in computation for design considerations. The equation of motion is 
given in terms of δ-Dirac functions and is solved through the use of Fourier finite sine transforms. An analytic 
approximation is obtained and compared with the solution for a moving force. The figure five shown the 
amplitude of the graph which growth under a resonance conditions and figure two shown the convergence of 
coefficient of moving mass solution, while figures 3 and 4 shows the comparison of the solution for moving 
mass and moving force, which moving mass is equal to moving force solution, of It is found that, for a simply 
supported beam, the resonant frequency is lower with no corresponding decrease in maximum amplitude when 
the inertia is considered. For any higher approximation, the solution can be obtained by means of numerical 
techniques and for future work; the convergence of the solution can be established. 
 
6.0 RECOMMENDATION 
(a) This work will assist the practicing engineer to evaluate the dynamic response of a loaded beam 
subjected to moving masses and external forces. 
(b) This work can be applied to calculations involving prestressed or reinforced beams often encountered 

in structural design and Construction Company. 
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