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INTRODUCTION 
Definition 1 

The importance of fixed-point theorem in Functional Analysis is due to its 
usefulness in the theory of ordinary differential equation. The existence of construction of 
a solution to a differential equation is often reduced to the location of a fixed point for an 
operator defined on a subset of a space of a function. We use fixed point theorem on 
many occasions to determine the existence of periodic solution for Functional 
Differential Equation when solution are already known to exist {1.2]. 

Perhaps as a result of the importance of fixed theory in Applied Mathematics and 
Functional Analysis, it has developed into area of independent research, where several 
areas of Mathematics such as Homology theory, Degree theory and Differential 
Geometry have come to play a very significant role 

Various attempts have been made by researchers to study and locate existence of 
solution to a family of Mappings. Thus this study includes the investigation of fixed point 
theorem for mapping of a set into its power   set    in I relation to a single-valued mapping 
{3.4}.  

Furthermore, the study of fixed point theorem has developed its own method and 
ideas as illustrated by Kick {5}  
 
Theorems (1.1)  
(1.1) Let (x, d) be a complete metric space. Let T:x →7 X be a mapping in the real 
space. If there exist a number a<1 such that d(T(x), T(y) dα≤ (x,y)) for each x and y in 

Xj when the sequence of iterates ( ){ } ∞
−1

n XT n  converges to point of T for any X £ x . { 4 } 
 
Remark (1.1)  
Remark (1.1): Mapping T: X→7X satisfying the condition d(T(x), T(y) : dα≤ (x,y)) are 
called contraction mapping. Theorem (1.1) is involved in many of the existence and 
uniqueness proofs of Ordinary differential equations.  
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In order to generalize, the Contraction Mapping theorem to a wider class of 
function, we have the Brower fixed point theorem stated as follows.  
 
Theorem (1.2): BROWER FLXED POINT THEOREM  

Let U be a closed unit ball of any finite dimensional Euclidean spaces. Let 
T:U→U be continuous, then T has a fixed point. Theorem (1.2): is weaker than theorem 
(1.1) because the sequence of iterates need not converge to a unique fixed point.  

An important generalization of theorem (1.2) is the Letschetz Fixed Point theorem 
which states that given a finite simplicial complex K and a continuous function T:K→k, 
it is possible to define a non-negative W(T) called the Lefchetz number of T (with the 
property that T≠ 0) implies the existence of a fixed point of T.  

Another important generalization of the Brower Fixed Point theorem is the 
Schander-Tychoner theorem which is stated as follows:  
(1.3) Let K be a compact subset of a locally convex topological space X. If T is a 
continuous  mapping from K into k, then T has a fixed point. Attempts at making 
Theorem (1.3) easier to apply in Functional Analysis leads to the following modification.  
(1.4) Let K be a bounded, closed and convex subset of a Banach space X. Let T:K→k 

be a compact mapping, then T has a fixed point in K.  
We need to note that consideration of domains which are only bounded and 

convex, are example given by Vidossich. Lipschitzian mapping with Lipschitz constant I, 
may fail to have a fixed point, even under the additional assumption that the domain be 
compact in the weak-star topology.  

This problem was however resolved by Kirk's Theorem which gives further 
condition ensuring the existence of a fixed point. We thus consider the following 
definitions before stating Kirks theorem;  
 
Definition (1)  

Let X be a Banach space and let D X. A mapping D into X is said to be a non-

expansive, if for each x,y

⊂

ε D, IIT(x)-T(y) II yx −≤  
 
Definition (2) 

Let K⊂K, be non convex subset, K is said to have a normal structure, if for each 
convex subset H of K consist of one point H consists of a non-dimensional point, that is 
there is a point X0 in H such that sup  

[ ] ( )HyyxHxXX εε :sup:0 −<−  
Theorem (1.5) 

Let X be a Banach space and K a weakly compact convex subset of X, and 
suppose K has a normal structure, then any non-expensive mapping T:K K has a fixed-
point. 

→

Non-expensive mapping have proved to be a great importance in the study of non 
linear operator, interest in such mappings stems from the fact that they are intimately 
connected with an important class of operators, the accretive operators, introduced by T. 
Kato and F.E. Browder in (1967).. Roughly speaking, a mapping T of a normal linear 
space into itself is accretive if the solution U(t, x) to the initial value problem. 
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( ) 0)( =+ tTu
t
tu

δ
δ

, 
where u(0) = x is non expansive in x for each t > 0. 

 
2.1 Definition (3) (Contraction) 

Let X=(x,d) be a complete metric space. A mapping T:X→x is called a 

contraction on X if there exist a positive number, 0<α < 1, such that Ty-Tx  
=  

( ) ( yxTyTx ,, ∂≤ )αδ   
Definition (4) (Complete metric space 

A metric space m is called complete metric space if every Cauchy’s sequence 
converges to a point in M. 
 
2.2 BANACH FIXED POINT THEOREM 

Contraction Mapping Principle 
Let X = (x,d) be a complete metric space. If T:X→x is a contraction, there exist X 

£ X, such that Tx=x, then T has precisely one fixed point. 
Proof: We construct a sequence (Xn) and show that it is Cauchy, so that it converges in 
the complete space X and then we prove that its limit X is a fixed of T has no fixed 
points. 

We construct a sequence of iterates 

 TX  X :X
TX  X :X

 TX  X :X
 TX1  X

232

 12l

010

nln

=
=
=
+=+

      (1.0) 

nTxXX nn =:
...
...
...

 

 (Tx,Ty) ∂ ∂≤α (x,y)  (a< 1)     (1.1)  
Clearly, the set of equations (1.0) is a sequence of the images of Xo under 

repeated application of T. 
To show that Xn is Cauchy. 
By (1.0) and (1.1), we have 
 
∂ (Xn+l, Xn)  =  (TXm, TXm-l)  ∂
∂α  (Xm, Xm-1) 

0 ∂≤α (TXm-, TXm-2)       (1.2)  
  (Xm_l, Xm-3)  ∂≤ 2α

∂≤ mα  (XI, X0)  
By using triangle inequality which stated that for every x,y∈X.  
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∂ (Xn, Xn)  (Xm, Xm 1) + ≤ ∂ + ∂  (Xm+l, Xm+2) +……+ ∂ (X0-1, Xn)  
( ) ( )10

11 ,... XXnmm δααα −+ +++≤  
By using the formula for the sum of a geometric progression where n>m 

( )
α−

−
=

−
−

=
−

1
1

1
1Sn

mu
m aa

r
ura

     (1.3) 
Since 0<α <1 and also  11 <− −mnα

∂  (Xm, Xu) 
( )10 ,

1
XX

m

δ
α

α
−

≤
, 0<α <l.      (1.4)  

Therefore, ∂ (Xo, X1) is fixed and shows that Xm is Cauchy. 
Since X is complete, Xm converges, say Xm X, as m → ∞→   
To show that this limit X is a fixed point of the mapping T. 

Let,  and       (1.5)  xTx = y Ty =

Then, 
( ) ( ) ( TxxxxTxx mm ,,, ∂+∂≤∂ ) ( ) ( )Tyyxx nm ∂+∂≤ α,  

Also,  ( ) ( ) ( TyyyyTyy nn ∂+∂≤∂ ,, )
We conclude that ∂ (x, Tx) = 0, so that x=Tx. These shows that X is a fixed point 

of T and is the only fixed point of T because from Tx=x and Ty=y, we obtain by (1.2)  
∂  (x, y) =  (Tx, Ty)  ∂ → ∂α (x, y)  

∂⇒ (x,y) = 0, since α < 1 
Therefore, x=y and hence the solution is unique. 
 
Theorem (2.3.0) (Contraction on ball) 

Let T be a mapping a complete metric space X = (x,d) into itself. Suppose T is a 

contraction on closed by Y = ( ) ⎭⎬
⎫

⎩⎨
⎧ ≤∂ rxx

x
0,  

That is, T satisfies (1.2) and converges to YXε . This X is a fixed point of T and is 
the only fixed point of T in Y. 
Proof:We merely have to show that Xm is as well as X lie in Y. We put m = 0 in (2.2.4), 

change n to m. and use equation (1.6) to get 
( ) ( ) rxxxx m <∂

−
<∂ 100 ,

1
1,
α  

Hence, all Xm’s are in Y 

Also, εyx, , since  and Y is closed. XX m →

 
2.0  APPLICATION OF FIXED POINT THEOREM 

Banach's fixed point theorem has important application to iteration. Three 
important field of application of the Banach's Linear Space are: 

(i). Linear algebraic equation 
(ii). Ordinary differential equation 
(iii). Integral equation 
 

Here, we restrict ourselves to linear algebraic equation. and consider an 
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application to Linear equation.  
We take the set X of all ordered n-turples of real numbers written as 

( ) ( ) ( )Sznnynx n ........,/,...........,,.....,, 11321 ∂<== εεεε  
On x, we define a metric d by 

∂ (x, z) = max /ε i-ε j/      (1.6) 
X = (x, d) is complete 

On X, we define T:X  by y = Tx = cx+b   (1.7) X→
where C=(Cjk) is a fixed real nxn matrix and bε X, a fixed vector. In this study, all 

vectors considered are column vectors, because of the usual conventional of matrix 
multiplication. 
We now  have: 

(∑
=

=+=
n

K
j njjKjkn

1
.....,,.........2,1,βε

 
where b = ( )iβ  
Setting W = (wj) = Tz. We-obtain (1.2) and (1.6)  

 
∂ (y,w) = δ (Tx, Tz) = max/nj-wj/ 

( )//max
1

∑
−

∞+=
n

kj
kKcjk ε

 

∑
=

−≤
n

kjjj
Cjki

1
//max//max εε
 

( ) ∑
=

∂=
n

k
j Cjkzx

1
//max,

 

Therefore, 
( ) ( zxwy ,, ∂≤∂ )α , 

where        (1.7) 
∑
=

=
n

kj
Cjk

1
/maxα

 
Theorem (2.5)  (Linear Equation) 

If a system x=cx+b, c=(Cjk), be given as n linear equation in n unknown 
nεεεε ,.....,, 321  (the component of x). 

Satisfies      (1.8) 
( )njCjk

n

k
,.....,2,1//

1
=<∑

=

It has precisely one solution x. This solution can be obtained as the limit of the 

iteration sequence ( ),......,, )2()1()0( xxx , where x(0) is arbitrary and  
X(m+1) = cx(m) +, m = 10. 1       (1.9)  

Error bounds are 

( ) ( )( ) ( ) ( )( )101 ,
1

,
1

xxxxxx
m

mmm ∂
−

≤∂
−

≤=∂ −

α
α

α
α

    (1.10)
 

 21



Report and Opinion, 1(1), 2009, http://www.sciencepub.net, sciencepub@gmail.com  

 

 
Remarks 

Condition (1.9) is sufficient for convergence. It is a row sum criteria because it 
involve row sum obtain by summarizing the absolute values of the elements in row C. if 
we replaced (1.2) 

By other metrics, we would obtain other conditions. A system of non linear 
equations in n unknown is usually written as Ax = C. where A is an n-rowed square 
matrix. Many iterative methods for (1.9) with det 0≠A , are such that one writes A=B-G 
with a suitable non-singular matrix B. then (1.10) becomes Bx=Gx+C or x = e-1(G-x+C) 
 This suggest the iteration (1.9) where, C = B-1G, b=. B-1C. this is illustrated using the 
following by two standard methods: 

i. The Jacobi, which is largely of theoretical interest. 
ii. The Gauss-Seidel iteration, which is largely of use in Applied Mathematics. 

 
(i) JACOBI ITERATION 

This iteration methods is defined as 

( ) )4.1...(...........................,,.........2,1,11
1

njajkj
ajj

mj
k

cm
k =⎟

⎠

⎞
⎜
⎝

⎛
−∂=+ ∑

=

εε
 

where C = (vj) in (2.5.3) and we assume ajj 0≠  for j=1,2,…………n. 
This iteration is suggested by solving the jth equation in (1.4) for ε . It is not 

difficult to verify that (1.5) can be written as this. 
C= -D-l(A-O), b=D-IC.  
where D = diag(ajj) is the matrix whose non-zero elements are those of the 

principal diagonal of A.  
Condition (1.4) applied to C in (1.5) is sufficient for the convergence of the Jacobi 

iteration. Since C in (1.5) is relatively simple, we can express (1.4) directly in terms of 
the element of A. 

The result is the row sum criteria for the Jacobi iteration 

)6.1(                                                                       .,..1,1//
1

nj
a
an

jK
K jj

jk =≤∑
≠
=

 

)7.1(                                                                 ,...2,1,//
1

njaa

or

jj

n

JK
K

jk =≤∑
≠
=

 
This shows that convergence is guaranteed if the elements in the principal 

diagonal of A are sufficiently large. 
 
(ii) GAUSS-SEIDEL ITERATION 

This is a method of successive corrections in which at every instance all the latest 
known component are used. The method is defined by: 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑∑

+=

+
−

=

+
n

jk

m
jk

m
j

k
jk

m kaKaVjj
1

1
1

1

1 1 εεε

    (1.8)
 

where j=1,2, ..... , n and we again assume ajj≠ 0 for all j. We obtain a matrix form of (1.8) 
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above by writing A=-L+D-V  
where D is as in the Jacobi iteration and L and V, are lower and upper triangular matrix 
respectively with principal diagonal elements all zero, the minus being a matter of 
convention and convenience.  

 
Fig (10) Decomposition of A 
 
Also,  
C= (D-L)-lU b=(D-L)-lC      (1.9) 
Condition 1 applied to C in (1.9) sufficient for the convergence of the Gauss-

Seidel iteration. Since C is complicated, the remaining practical problem is to get simpler 
conditions sufficient for the validity of (1.6).  
 
 
Example (1.0) 
Consider the system  

zl - 0.25z2 - 0.25z3 = 0.50 
- 0.25z1 + z2 -0.25z4 =0.50 

- 0.25z1 + z2 -0.25z4=C 
- 0.25z1 + g3 -0.25z4 =0.25 
- 0.25z2 - 0.25z3 + z4 =0.25 

(a). Equations of these form arise in the numerical solution of partial differential 
equation.  

(ii) Apply the Jacobi iteration, starting from X(0) with components (1, 1 , 1 , 1) 
the performing three stages.  

Compare the approximating value with the exact values  
zl=z2=O.875, z3=z4=O.625  

(b). Apply the Gauss-Seidel iteration, performing the same tasks as in (a) 
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SOLUTION TECHNIQUE 

25
25
50
50

10025250
100252525

25010025
02525100

4

3

2

1

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−−
−−

z
z
z
z

 
Axj=Bj 

( )

( )
( )
( )
( ) ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
=
=
=

=

10
10
10
10

0

4

3

2

1

z
z
z
z

x

 

(a) Using the formular zj (m + l) = 

( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂−∑

≠
=

n

k
k

m
kj

jj

jkv
a

1
1

1 ε

  
where Vj =diagonal elements, m=0, j=1 

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
−∂= ∑

=

n

k
kka

a
z

2

0
11

11

1
1

1 ε
 

= 100
1

(50+50) 
0000.1=  

 
When J=2, m=0 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂−= ∑

≠
=

n

k
k

m
kj jkv

a
z

2
122

2
11 ε

 

= 100
1

 (50+50) 
=  0000.1

When m=0,J=3 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂−= ∑

≠
=

n

k
k

m
kj jkv

a
z

3
133

3
11 ε

 

= 100
1

 (50+25) 
 

=  7500.0
When m=0,J=4 
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( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂−= ∑

≠
=

4

4
1

0

44
4

11
k
k

kj jkv
a

z ε

 

= 100
1

 (50+25) 
=  7500.0

( )

( )

( )

( )

( ) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

7500.0
7500.0
0000.1
0000.1

1
4

1
3

1
2

1
1

1

x
x
x
x

X

 
From m=1, j =1 
Using the fomular 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−= ∑

≠
=

4

1

12
1

1

jk
k

kjkj
jj

a
a

z εγ

 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

4
1

0
1

11

2
1

1

k
k

kkj a
a

z ε

 

=
( ) ( )( )( )1

313
1

11250
100

1 εε aa +−
 

=
(( )( )75.02512550

100
1

×−+×−−
 

= 0.9375 
Using similar approach 
Where m=1, J=2 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

1

1
22

22

2
2

1

jk
k

kka
a

z ε

 
=0.9375 

In the same way, 
When m=1, J=3 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

3
1

1
33

33

2
3

1

k
k

kka
a

z ε

 
=0.6875 

 
 
Also, when m=1, J=4 
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( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

4
1

1
44

44

2
4

1

k
k

kka
a

z ε

 
 

⎟
⎠
⎞

⎜
⎝
⎛ +=

4
17525

100
1

 
=0.6875 

Therefore, 

( )

( )

( )

( )

( ) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

6875.0
6875.0
9375.0
9375.0

2
4

2
3

2
2

2
1

2

z
z
z
z

x

 
When m=2, J=1 
Using the following  formula  

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−= ∑

≠
=

+
4

1

11 1

jk
k

kjk
jj

m aYj
a

Zj ε

 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

1
1

2
14

11

3
1

1

k
k

kka
a

z ε

 

= 100
625.90

 
When m=2, J=2 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

2
1

2
22

22

3
2

1

k
k

kka
a

z ε

 

= 
(( )( )1875.174375.2350

100
1

−+−−
 

= 
( )625.4050

100
1

+
 

= 100
90.625

 
= 0.90625 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

3
1

2
33

33

3
3

1

k
k

kka
a

z ε

 
( ) ( )( )6875.02509375.02525

100
1

×−++×−−=
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= 0.65625 
When m=2, J=4 

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∂= ∑

≠
=

4

4
1

2
44

44

3
4

1

k
k

kka
a

z ε

 

= 
( ) ( ) ( )(( )2
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2
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2

14125
100

1 gagaga ++−
 

= 
(( ) ({ }6875.0259375.025025

100
1

×−+×−+− )
 

= 0.65625 
Therefore, 

( )

( )

( )

( )

( ) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
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65625.0
90625.0
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3
4

3
3

3
2

3
1

3

z
z
z
z

X

 
To compare the approximation with the exact value 625.0,825.0 4321 ==== gggg  
Actual Error = Approximate-exact value 

= 0.90625-0.875 
= 0.03125 (for z1=z2) 

 
 
 
Actual error for (g3=g4) 
= Approximate value-exact value 

= 0.65625-0.625 
=0.03125 

But X= 

⎥
⎦

⎤
⎢
⎣

⎡
625.0
875.0

 
The maximum value is 0.3125<1 

The actual error is 0.3125, which indicates that the formula is still good for 
stability and convergence. To calculate error bound we have 

( )( ) ( ) ( ) ( )( )3233 ,
1

//, XXXXXX
α

α
−

≤−=∂
 

( ) ( )( )10

1
XX

m

∂
−

≤
α

α

  m = 3 
( ) ( )( )10

3

,
1

XX∂
−

=
α

α

. 
We pick largest value from X(3) 
i.e. 5.0=α  from convergence criteria 
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But,    

( ) ( )( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
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⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

=∂

25.0
25.0
0
0

75.01
75.01
11
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, 10 dXX

But 0.25 is the maximum. 
Error bound now is  

( )( ) ( )
5.0

031625.0
5.0

031625.0
5.01
25.0.5.0,

3
3 ==

−
=∂ XX

 
= 0.0625 

Which is the same as the first method 
 

Actual error  =  Exact-eApproximat  
= 0.90625-0.875  = 0.03125 
= 0.65625-0.625  = 0.03125 

Which shows that the formular is also accurate for the stability and convergence of the 
solution. 
(b) Using the Formular, 

j -1  n 
( ) ( ) ( )

⎟⎟
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⎞
⎜⎜
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⎛
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1 1
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m
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1
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When m=0, J=2 
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⎠
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⎜
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When m=0, J=3 
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⎠

⎞
⎜
⎝

⎛
−−∂= ∑∑

==

4

4

0
3
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1
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1
3

1
k
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k
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a

Z εε
 

( )252525
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1 1
1 ++=

 

100
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=
   =0.7500 

When m=0, J=4 
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(((( )7500.025125025
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1

×−+×+−= }
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1
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( )

( )
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⎥
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⎣

⎡

=
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1
1
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g
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For m=1, J=1 

( ) ( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
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= 0.9063 
When m=1, J=3 
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When m=1, J=4 
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⎜
⎝

⎛
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When m=2, J=1 
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When m=2, J=3 
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6329.0=  
When m=2, J=4 

( ) (3) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
−−= ∑∑

==

n

k
k

k
K aaV

a
Z

5

2
4

3

1
44

44

3
4

1 εε
 

( ) ( ) ( )( )025
100

1 2
343

2
242

3
141 +++−= zazaza

 
( )( )6329.0258829.025025

100
1

×−×−−=
 

( )( )895.3725
100

1
−−=

 

100
895.62

=
 

62895.0=  

( )

( )

( )

( )

( ) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

6290.0
6329.0
88290
8907.0

3
4

3
3

3
2

3
1

3

z
z
z
z

X

 

.

 
Example (1.1) 

onsider the system 
5z1-z2=7 

-3z1 + 10z2 = 24 
ob iteration  satisfies function starting with 

. Calculate x(1), x(2) and the error bounds for x(2). 
 
Solution: 

Ax = d 

C

(a) Determine the Jac . Does C
( ) ( ) 20,1 2
0 == xX

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
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,
103

1,5

2

1

x
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/ <<
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<∑
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n

k ajj
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( ) ⎥
⎦

⎤
⎢
⎣

⎡
= 0

2

0
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,1
,1
z
zX

 
Using the Formular  

=   
( ) ⎟

⎠

⎞
⎜
⎝

⎛
−= ∑

=

+
n

k
kjk

m aj
ajj

zj
1

1 1 εγ  

When m=0, J=1 
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hen m=0, j=2 

 
 
W
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⎟
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When m=a, J=1 
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⎥
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⎢
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2X

To calculate the error bound 
( )( ) ( ) ( ) ( )( )1122 ,

1
//, xxxxxx

α
α
−
∂

<−=∂
 

( ) ( )( )10
2

,
1

xx∂
−

≤
α

α

 

5
3=α

  
From convergence criteria 

( )( ) ( ) ( )( ) ( ) ( )( )10222 ,
531

53
,

531
53

, xxxxxx ∂
−

≤∂
−

≤∂
 

//max iij
yx −

 
( ) ( )( ) ( )10

17,5
3max, 10 =∂ xx

 Now, 
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 Now, 
Error bounds 
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 NB: Absolute choice of higher value is 
When m=0,j=3 
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When m=J=4 
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NON-EXPANSIVE MAPPING 

(3.0) 
ecall from the definition above that if x is a Banach space and DCX, then a 

mapping D into X is said to be non-expansive if for each x,y
R

ε ≤D //Tx-Ty//
heme ..................., XxTxX n ε=

//x-y//. 
Consider the iterative Sc )0.3....(...........01n+  

If T is non-expensive, that is if //Tx-Ty//≤ //x-y// are there exist ,, KCXKX ε∗ such 
that ∗∗ = XTX . 

Can we approximate ∗X  by a sequence of iterates of T? 
The answer is NO 
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 34

on Reas
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⎭
⎬
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xpensive 
To see this 

* Is a norm, T is Non-e
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=

( )////
11
111 ⎡ −

2
, yx

⎥
⎦

⎤
⎢
⎣ −  

Therefore, //Tx-Ty// //x-y// which shows that T is Non-expansive. 
Now, Tx=x………………………..(3.1) 

≤

As = 

( )x

⎥
⎦

⎢
⎣ 1,12

⎤⎡ −1,1

Tx-X=0 

lies that = 

1

 
From (3.0.1) 

)2.3.....(....................0
1,0
0,1

1,1
1,1

2
1

=
⎭
⎬
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⎩
⎨
⎧

It imp ⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣
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x  

3.2) implies x=0 
This implies that the iterates cannot converse.  

linear operator in Banach Space. 
ume 54, Page 1,041 to 1,044  

hidnme (1989): Functional Analysis: An Introduction to metric 

7/2

Solving (
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