
 New York Science Journal 2017;10(7)           http://www.sciencepub.net/newyork 

 

102 

Theoretical Study Of Energy Gap Of Metals And Linear Deformation 
 

Adesakin G. E. 
 

Department of Physics, Ekiti State University, Ado-Ekiti, Nigeria 
G-mail of corresponding author: adesakingbenga@gmail.com 

 
Abstract: The effects of deformation on the energy gap of different elemental metals were computed and studied 
based on envelop function formalism. The electron density parameters of deformed metals under the application of 
different strains were obtained for different metals. The poison ratio relating the transversal compression to 
elongation in the direction of applied deformation for different elemental metals were computed using elastic moduli 
for homogeneous isotropic material and used in this work. The results obtained revealed that there is a good 
agreement between the computed and experimental value. The experimental value used in this work is theoretically 
obtained by applying the experimental value of Fermi energy obtained from solid state physics by Charles Kittel to 
the model obtained for the energy gap of metals in this work. Metals in the region of high density limit have high 
energy gap which decreases towards the region of the low density limit. There is high electron concentration in the 
region of high density limit than the low density limit. This seems to suggest that metals in this region have high 
conductivity in nature. The energy gap of all the metals investigated decreases as deformation increases. These 
seems to suggest that as deformation increases the strength of interaction between the electron decreases which 
forces the energy gap of the metals to decrease as deformation increases. The trend exhibited by metals in this work 
revealed that the energy gap of metals is greatly affected by deformation. 
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1.0 Introduction 

Metals achieve structural stability by letting their 
valence electrons roam freely through the crystal 
lattice. These valence electrons are the equivalents of 
the molecules of an ordinary gas (Pillai, 2010). 
Electrons are the subatomic particles that carry a 
negative charge, and also surround the nucleus of an 
atom. When electrons move together in the same 
direction, they form an electric current (Aswani, 
2001). Energy gap is an energy range in a solid where 
no electrons states can exist (Pillai, 2010). The energy 
band structure plays a crucial role in the theory of 
electron conductivity in the solid state and explains 
why materials can be classified as insulators, 
conductors and semiconductors (Ashcroft and 
Mermin, 1976). The energy band structure present in a 
semiconductor is a crucial ingredient in understanding 
how semiconductor devices work (Animalu, 1977). 
The band into which the ground state level splits is 
termed the valence band (Rudden and Wilson, 1995). 
The Band gap theory, combined with the Pauli 
Exclusion Principle, and some thermal physics, 
explains many of the basic conduction properties of 
crystals (Kittel, 1976). Energy band gap is usually 
referred to as the energy difference between the 
conduction band and the valence band. The 
conduction band is the outermost energy band where 
the free electrons lie and below that there is the 
valence band (Animalu, 1977). An electron residing in 

the valence band cannot jump to the conduction band 
unless it is provided the amount of energy needed for 
the electron to cross the energy barrier between the 
bands (Kaldis, 1979). 

When electron acquire an energy equal to or 
greater than the band gap energy, it can go to the 
conduction band, become a free electron which is the 
main reason behind the high conductivity of metals 
(Kakani and Kakani, 2004). In the construction of 
energy band of solids, it is customary to omit the inner 
bands since they have little effect on the main 
electronic properties of solid. This is entirely 
analogous to the free atom in which the valence 
electrons are of primary importance (Theraja and 
Theraja, 2000). The importance of energy band 
theories for a crystalline solid is due to the fact that 
many important physical and optical properties of a 
solid can be readily explained using its energy band 
structure (Vijaya and Rangerajan, 2003). In insulators 
the electrons in the valence band are separated by a 
large gap from the conduction band, in conductors like 
metals the valence band overlaps the conduction band, 
and in semiconductors there is a small enough gap 
between the valence and conduction bands that 
thermal or other excitations can bridge the gap 
(Animalu, 1977). In solid-state physics, the electronic 
band structure of a solid describes the range of 
energies that an electron within the solid may have and 
ranges of energy that it may not have (Kachava, 1992). 
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Most solid substances are insulators, and in terms of 
the band theory of solids, there is a large forbidden 
gap between the energies of the valence electrons and 
the energy at which the electrons can move freely 
through the material (Pillai, 2010). The power of band 
theory lies in its application to specific problem in 
solid state physics, such as in the quantum theory of 
conduction and the operation of semiconductor 
devices (Guy, 1976). In most cases theoretical 
calculations of the energy band structures for 
semiconductor materials are guided by the 
experimental data from the optical absorption, 
photoluminescence, and photoemission experiments in 
which the fundamental absorption process is closely 
related to the density of states and the transitions from 
the initial to the final states of the energy bands Kittel, 
(1976). The envelop-function approach is most widely 
used due to its simplicity. With several refinements, 
this method become quite effective in dealing with 
many problems such as band mixing, the effects of 
external fields, impurities, and exciton states (Elliott, 
1997). Deformation is the change in shape or size of 
solid (Backofen, 1972). A solid body is deform when a 
stress is applied to it, all solid materials exhibit nearly 
Hookean behaviour for small enough strain or stress 
(Borg,1990). When a material is subjected to external 
forces its behaviour depends not only on the 
magnitudes of the forces and the inherent strength of 
the material itself but also on the way the forces are 
applied and combined. These particular combinations 
of forces may cause the material to deform elastically 
or plastically. The amount of deformation depends on 
knowing the intensity of the forces at all points 
throughout the material (Hugh Ford and Alexander, 
1977). Metals can be deformed by compressive, 
tensile and torsion force. During deformation, atoms at 
the surface and interior of metals changes together 
with their atomic distance depending on the metallic 
surface area that is subjected to different deformation. 
The contact potential difference on the metal surface 
also changes during deformation (Borg, 1990). 
Consequently, a lot of efforts have been made to study 
the effect of deformation on some properties of metals 
theoretically and experimentally. Salah Daoud et al 
(2014) calculated the near neighbor distance (bond 
length) and the average energy gap using the 
pseudopotential plane wave method, in the frame work 
of the density functional theory (DFT) within the local 
density approximation (LDA) and the Hartungen- 
Goedecker-Hutter (HGH) scheme for pseudopotential 
of Boron-Bismuth compound in its structure 
zincblende phase and predicted the refractive index 
and some optoelectronic and thermal properties of 
boron-bismuth compound by means of some empirical 
formulas. The results obtained are analyzed and 
compared with the available theoretical data of the 

literature. Ahmad and Mohib-ul Hag (2014) develop a 
simple relation between the optical electronegativity, 
energy gap, refractive index and electronic 
polarizability for tenary chalcopyrite semiconductors. 
He obtained the energy gap from electronegativity 
while the refractive index and the electronic 
polarizability were obtained from the energy gap by 
proposing a linear relation between them. The 
calculated values are in agreement with the 
experimental values and the result obtained by their 
earlier researchers. Kiejna and Pogosov (1999) 
performed an experimental investigation on the effect 
of deformation on some electronic properties of metals 
by taking the direct measurement of deformed metal 
using Kelvin method. They observed that the contact 
potential difference of the metals increase when 
compressed and decreases when tensed. Pogosov and 
Shtepa, (2006), calculated the surface stress and the 
contact potential difference of elastically deformed 
metals based on structureless pseudopotential model 
using self-consistent Kohn Sham method. The results 
of surface stress obtained were in agreement with 
experimental results, and also confirmed that the 
contact potential difference obtained for the deformed 
metallic surfaces by Kelvin method correspond to 
change in surface potential. Adeshakin et. al (2015) 
investigated the effect of linear deformation on the 
electronic properties of metals based on the modified 
structureless pseudopotential model to compute and 
study the effects of deformation on the electron 
density parameter, Fermi energy, Fermi wave vector 
and chemical potential of different metals. The results 
obtained revealed that increase in deformation causes 
an increase in electron gas parameter, and decrease in 
Fermi wave vector, Fermi energy and chemical 
potential of metals. Adesakin, (2016) develop a model 
to compute the electrical conductivity of different 
elemental metals based on pseudopotential formalism. 
The results obtained revealed that there is a good 
agreement between the computed and experimental 
value of the electrical conductivity of metals. There is 
high concentration of electron in the high density 
region than the low density region. The electrical 
conductivity of metals decreases as deformation 
(strains) increases for all the metals investigated. The 
effect of deformation is more pronounced on the 
electrical conductivity of noble and transition metals 
than in alkaline metals. Adesakin 2017 computed the 
effects of deformation on the bulk modulus and 
compressibility of different elemental metals based on 
pseudopotential formalism. The results obtained 
revealed that there is a good agreement between the 
computed and experimental value of the bulk modulus 
and compressibility of metals. There is high 
concentration of electron in the high density region 
than in the low density region for the bulk modulus 
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and compressibility of metals these seems to suggest 
that the bulk modulus and compressibility of metals 
depend on the density of valence electron in metals. 
The bulk modulus of all the metals investigated 
decreases as deformation increases while the 
Compressibility increases with an increase in 
deformation for all the metals investigated. In this 
work, the energy gap of undeformed and deformed 
elemental metals were computed based on envelop 
function formalism. The results obtained for the 
energy gap of undeformed metal were compared with 
the theoretical experimental value to validate the 
model used in this work. How the energy gap of 
metals varies with deformation is also computed and 
studied. The metals used in this work were selected 
based on the availability of experimental data, their 
industrial and technological applications and 
availability of some physical constants of metals that 
is required for computation. 

 
2.0 Theoretical Consideration 

Due to the thermal dependence of the electron 
flow, we can use Maxwell-Boltzmann statistics to 
describe the I − V characteristics of the diode. We find 

I = I0(eV/kT − 1)  (1) 
where I0 is the current through the diode when 

there is no bias applied to it (also known as the reverse 
saturation current), I is the applied current, V is the 
applied voltage, e is elementary charge, k is the 
Boltzmann constant, and T is the temperature at which 
the system in thermal equilibrium. 

Also, I0 and energy gap Eg are related by 
 
ln (I0) = ln (BT2/3) − (Eg/hk) (1/T)  (2) 
 
so we simplify Eq. (2) as 
 
ln (I0) = (−Eg/hk) (1/T)  (3) 
The probability P (E) that an electron gains 

sufficient thermal energy at an absolute temperature T 
such that it will be found occupying a particular 
energy level E, is given by the Fermi-Dirac 
distribution: 

P (E) = 1/(1 + exp (E –EF)/kBT)  (4) 
where kB is the Boltzmann constant, kBT is the 

thermal energy and EF is the Fermi energy or Fermi 
level. 

The total number of electrons in the conduction 
band and the total number of holes in the valence band 
is obtained as 
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Where ��  is the energy in the conduction band, 
�� is the energy in the valence band, �� is the electron 
mass, ��  �� �ℎ� mass of hole, �� is the Fermi energy, 

E is the energy, �� is the Boltzmann constant, T is the 
temperature and h is the Planck’s constant. 

 
For a metal under the action of a deforming 

force, the average electron density in such a metal as a 
function of deformation is expressed as (Pogosov and 
Shtepa, 2006). 

� =  ��[1 − (1 − 2�)���] + 0���
�   (7) 

where � is the Poisson ratio relating compression 
to elongation in the direction of applied deformation, 
uxx is the applied deformation or strain and ��  is the 
average electron density in the bulk of undeformed 

metal and is given as 
3

0 3 4 sn r
 and rs  is the 

electron density parameter of undeformed metal. For a 
metal under the action of a strain or deforming force, 
the electron density parameter of the metal is 

��[1 + (1 − 2�)���]�/�  (8) 
The behaviour of electrons in the deformed metal 

is governed by the Schrodinger time independent 
equation 
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The normalized solution of equation (9) has the 

form 
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The eigenvalues are given by 
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or by 
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where kx, ky, kz are the components of the wave 

vector k. In computing the quantities that requires 
summation over the wave vector, k the summation 
over k is replaced by integration according to the 
transformation. 
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The factor of two appearing in the denorminator 

comes from the spin, According to Pauli Exclusion 
Principle; two one-electron states with opposite spins 
can be assigned to every k-point. In the ground state, 
each of the states up to the maximum, kmax is occupied 
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by two electrons filling a sphere in k-space of radius 
kmax called Fermi sphere. For the system of N free 
electrons in the volume, , the average electronic 
density nave in terms of kf is 

23

f

ave

kN
n


 
  (12) 

The energy of the highest occupied state at 
absolute zero temperature is called the Fermi energy 
expressed as 
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The electron gas parameter, rsu of the deformed 

metal is defined as 
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The Fermi wave vector kf and the Fermi energy 

Ef of deformed metals in terms of the electron gas 
parameter, rsu is obtained as 
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While the energy gap of deformed metals is 

obtained as 
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where, ��  is the electron density parameter of 

undeformed metal, �  is the Poisson ratio relating 
compression to elongation in the direction of applied 
deformation and uxx is the applied deformation or 
strain. In this work, the energy gap of undeformed 
metals were computed using envelop function 
approach for different elemental metals of different 
group and period, and how deformation affects energy 
gap of this metals is also studied. 

 
3.0 Results and Discussion 

Figure 1 shows the variation of energy gap with 
electron density parameter for some elemental metals 
belonging to different groups and period. Figure 1 
revealed that energy gap of metals decreases as the 
electron density parameter increases. Figure 1 revealed 
that there is agreement between the experimental and 
computed value of energy gap. The experimental 
value used in this work is theoretically obtained by 

applying the experimental value of Fermi energy 
obtained from solid state physics by Charles Kittel 
(1976) to the model obtained for the energy gap in this 
work. This agreement between the computed and 
experimental value could be due to the fact that the 
model take into consideration most of the factors that 
the energy gap of metals depend upon such as 
conduction and valence electron, excitation and 
vacancy formation energy and some Fermi and bulk 
properties of metals. The trend exhibited by metals in 
figure 1 also revealed that metals in the region of high 
density limit have high energy gap which decreases 
towards the region of the low density limit. This may 
be due to the dependence of the energy gap on the 
electronic excitation, electron mobility, electronic 
concentration and the density of states of the electrons 
in the metals. Also, the observed trend in figure 1 
revealed that there is high electron concentration in the 
region of high density limit than the low density limit. 
This seems to suggest that metals in this region have 
high conductivity in nature. 
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Figure 1: Variation Of Energy Gap With Electron 
Density Parameter Of Metals 
 

Figure 2 shows the variation of energy gap with 
deformation for some monovalent, divalent, trivalent 
and polyvalent metals. Figure 2 revealed that the 
energy gap of all the metals investigated decreases as 
deformation increases. This decrease in energy gap of 
all the metals could be due to an increase in the 
scattering of phonon electron and decrease in the bond 
strength of the metals during deformation which forces 
the energy gap of all the metals to decrease as 
deformation increases. The trend exhibited by metals 
in figure 2 revealed that potassium has the lowest 
energy gap while molybdenum and tunasten were 
found to be having the highest energy gap among all 
the metals subjected to different deformation. These 
could be due to the fact that the valence level in the 
molybdenum and tunasten split at larger separation 
than potassium and the electron begin to move away 
from the parent nucleus due to external influence 
(deformation/strain).  
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Figure 2: Variation Of Energy Gap Of Some Metal 
With Strain 
 

Figure 2 also revealed that metals in the high 
density region has high energy gap while metals in the 
low density region has low energy gap for all the 
metals subjected to different deformation. These 
seems to suggest that as deformation increases the 
strength of interaction between the electron decreases 
which forces the energy gap of the metals to decrease 
as deformation increases. Furthermore, the trend 
exhibited by metals in figure 2 revealed that as 
deformation increases, there is an increase in the 
collision between the electron due to delocalization of 
the electron from their position which result in the 
decrease in some of the properties that the energy gap 
of metals depend upon. The trend exhibited by metals 
in these work revealed that the energy gap of metals is 
greatly affected by deformation.  

Table 1 shows the Energy Gap of Deformed 
Metals (Hartree) (Table 1). 

Table 2 shows the Calculated Energy Gap of 
Undeformed Metals and their Experimental values 
(Table 2).  

 
 

Table 1: Energy Gap of Deformed Metals (Hartree) 
  Strain 
Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
K 4.96 0.1389 0.1299 0.1222 0.1156 0.1098 0.1047 0.1001 0.0960 0.0923 
Cu 2.67 0.4794 0.4483 0.4218 0.3989 0.3789 0.3612 0.3455 0.3314 0.3186 
Ag 3.02 0.3748 0.3504 0.3297 0.3117 0.2961 0.2823 0.2701 0.2590 0.2491 
Be 1.87 0.9774 0.9139 0.8598 0.8132 0.7724 0.7364 0.7043 0.6756 0.6496 
Mg 2.65 0.4867 0.4551 0.4282 0.4049 0.3846 0.3667 0.3507 0.3364 0.3235 
Cr 1.86 0.9879 0.9238 0.8691 0.8219 0.7807 0.7443 0.7119 0.6829 0.6566 
Fe 2.12 0.7605 0.7111 0.6690 0.6327 0.6010 0.5730 0.5480 0.5256 0.5054 
Ni 2.07 0.7977 0.7458 0.7017 0.6636 0.6303 0.6010 0.5749 0.5513 0.5301 
Zn 2.31 0.6405 0.5989 0.5635 0.5329 0.5062 0.4826 0.4616 0.4427 0.4257 
Cd 2.59 0.5095 0.4764 0.4482 0.4239 0.4026 0.3839 0.3672 0.3522 0.3386 
Al 2.07 0.7977 0.7458 0.7017 0.6636 0.6303 0.6010 0.5748 0.5513 0.5301 
Bi 2.25 0.6751 0.6313 0.5939 0.5617 0.5335 0.5087 0.4865 0.4666 0.4487 
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  Strain 
Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
Ti 1.92 0.9272 0.8669 0.8156 0.7714 0.7327 0.6985 0.6681 0.6408 0.6162 
Y 2.61 0.5017 0.4691 0.4414 0.4174 0.3965 0.3780 0.3616 0.3468 0.3335 
Sn 2.22 0.6935 0.6484 0.6101 0.5770 0.5480 0.5225 0.4998 0.4793 0.4609 
Pb 2.30 0.6461 0.6041 0.5684 0.5375 0.5106 0.4868 0.4656 0.4466 0.4294 
Mo 1.61 1.3186 1.2329 1.1600 1.0970 1.0420 0.9934 0.9501 0.9114 0.8763 
W 1.62 1.3024 1.2177 1.1457 1.0335 1.0292 0.9812 0.9385 0.9002 0.8655 
Au 2.39 0.5984 0.5595 0.5264 0.4978 0.4729 0.4508 0.4312 0.4136 0.3977 
Pt 2.00 0.8545 0.7990 0.7517 0.7109 0.6752 0.6438 0.6157 0.5906 0.5679 
Ta 2.84 0.4238 0.3962 0.3728 0.3526 0.3349 0.3193 0.3054 0.2929 0.2816 

 
Table 2: Calculated Energy Gap of Undeformed Metals and their Experimental values 

Metals 
Electron Density Parameter rs 

(a.u) 
Experimental Energy Gap 
(Hartree) 

Computed Energy Gap 
(Hartree) 

Potassium 4.96 0.1558 0.1497 
Copper 2.67 0.5145 0.5167 
Silver 3.02 0.4028 0.4039 
Beryllium 1.87 1.0393 1.0533 
Magnesium 2.65 0.5241 0.5245 
Chromium 1.86 - 1.0647 
Iron 2.12 0.8158 0.8195 
Nickel 2.07 - 0.8596 
Zinc 2.31 0.8085 0.6903 
Cadmium 2.59 0.5483 0.5491 
Aluminium 2.07 0.8548 0.8596 
Bismuth 2.25 0.7276 0.7276 
Titanium 1.92 - 0.9992 
Yttrium 2.61 - 0.5407 
Tin 2.22 0.7372 0.7474 
Lead 2.30 0.66887 0.6963 
Molybdnum 1.61 - 1.4210 
Tunasten 1.62 - 1.4035 
Gold 2.39 0.4050 0.6448 
Platinum 2.00 - 0.9208 
Tantalum 2.84 

 
0.4567 

 
 
4.0  Conclusion 

In this work, a generalized model is developed 
and used to study the effect of linear deformation on 
energy gap of metals using the envelop function 
approach formalism. The energy gap of undeformed 
metals were in agreement with the experimental values 
which shows the validity of the formalism used in the 
work. The result obtained revealed that metals in the 
region of high density limit have high energy gap 
which decreases towards the region of the low density 
limit. There is high electron concentration in the 
region of high density limit than the low density limit. 
This seems to suggest that metals in this region have 
high conductivity in nature. The energy gap of all the 
metals investigated decreases as deformation increases 
this suggest that as deformation increases the strength 

of interaction between the interacting electron 
decreases which forces the energy gap of the metals to 
decrease as deformation increases. These revealed that 
energy gap of metals is strongly affected by 
deformation. 
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