Generalized Fermat's Last Theorem(1) $R^n = y_1^3 + y_2^3$

Chun-Xuan, Jiang

Institute for Basic Research, Palm Harbor, FL34682-1577, USA And: P. O. Box 3924, Beijing 100854, China

jiangchunxuan@sohu.com, cxjiang@mail.bcf.net.cn, jcxuan@sina.com, Jiangchunxuan@vip.sohu.com

Abstract: In this paper we prove $R^2 = y_1^3 + y_2^3$ has infinitely many nonzero integer solutions. We prove $R^n = y_1^3 + y_2^3 (n > 2)$ has no nonzero integer solutions.

[Chun-Xuan, Jiang. **Generalized Fermat's Last Theorem(1)** $R^n = y_1^3 + y_2^3$. N Y Sci J 2016;9(1):60-62]. ISSN 1554-0200 (print); ISSN 2375-723X (online). http://www.sciencepub.net/newyork. 11. doi:10.7537/marsnys09011611.

Keywords: Generalize; Fermat's Last Theorem; $R^n = y_1^3 + y_2^3$

In this paper we prove $R^2 = y_1^3 + y_2^3$ has infinitely many nonzero integer solutions. We prove $R^n = y_1^3 + y_2^3 (n > 2)$ has no nonzero integer solutions.

We define the supercomplex number [1,2,3]

$$W = x_1 + x_2 J + x_3 J^2 \tag{1}$$

where J denotes a 3-th root of unity, $J^3 = 1$, Then from (1)

$$W^{n} = (x_{1} + x_{2}J + x_{3}J^{2})^{n} = y_{1} + y_{2}J + y_{3}J^{2}$$
(2)

Then from (2) we have the modulus of supercomplex number

$$R^{n} = \left| x_{i} \right|^{n} = \left| y_{i} \right| \tag{3}$$

where

$$R^{n} = x_{1}^{3} + x_{2}^{3} + x_{3}^{3} - 3x_{1}x_{2}x_{3}, \tag{4}$$

$$|y_i| = y_1^3 + y_2^3 + y_3^3 - 3y_1y_2y_3$$
(5)

We prove that (3) has infinitely many nonzero integer solutions.

We define the stable group [1,4]

$$G = \{g_2, g_3\} \tag{6}$$

where

$$g_2 = \begin{pmatrix} 123 \\ 123 \end{pmatrix}, g_3 = \begin{pmatrix} 123 \\ 123 \end{pmatrix}_{g_2}$$

Theorem 1. Suppose n=2 and $y_3=0$. Then from (3) and (5)

$$R^2 = y_1^3 + y_2^3 \tag{7}$$

when n = 2 from (2)

$$y_1 = x_1^2 + 2x_2x_3, \ y_2 = x_3^2 + 2x_1x_2, \ y_3 = x_2^2 + 2x_1x_3$$
 (8)

which are the homogeneous and irreducible polynomials.

$$g_3: x_1 \rightarrow x_1, x_2 \rightarrow x_3, x_3 \rightarrow x_2$$

$$g_3: y_1 \to y_1, y_2 \to y_3, y_3 \to y_2$$
 (9)

$$g_3 y_2 = y_3 = 0 ag{10}$$

If $y_3 = 0$ has nonzero integer solutions, then $y_2 = 0$ also has nonzero integer solutions, and vice versa.

Put $x_1 = P^2$, $x_2 = 2P$, $x_3 = -2$, $y_3 = 0$, where P is an odd number.

From (7) and (9)

$$(g_3R)^2 = (g_3y_1)^3 + (g_3y_2)^3, \tag{11}$$

$$R^2 = y_1^3 + y_3^3 \tag{12}$$

Put $x_1 = P^2$, $x_2 = -2$, $x_3 = 2P$, $y_2 = 0$, where P is an .odd number.

Suppose $y_1 = 0$ and n = 2. From (3) and (5)

$$R^2 = y_2^3 + y_3^3 \tag{13}$$

Put $x_1 = 2P$, $x_2 = -2$, $x_3 = P^2$, $y_1 = 0$, where P is an odd number. (7), (11) and (12) are the same equation. We prove that every

$$y_1 = 0, \quad y_2 = 0, \quad y_3 = 0$$
 (14)

has infinitely many nonzero integer solutions.

Hence (7), (12) and (13) have infinitely many nonzero integer solutions.

Theorem 2. Suppose n=3 and $y_3=0$. Then from (3) and (5)

$$R_1^3 = y_1^3 + y_2^3 \tag{15}$$

when n = 3 from (2)

$$y_1 = x_1^3 + x_2^3 + x_3^3 - 3x_1x_2x_3, \quad y_2 = 3(x_1x_3^2 + x_2x_1^2 + x_3x_2^2), \quad y_3 = 3(x_1x_2^2 + x_2x_3^2 + x_3x_1^2)$$
(16)

which are the homogeneous and irreducible polynomials.

From (6)

$$g_3: x_1 \rightarrow x_1, x_2 \rightarrow x_3, x_3 \rightarrow x_2$$

$$g_3: y_1 \to y_1, y_2 \to y_3, y_3 \to y_2$$
 (17)

$$g_3 y_2 = y_3 = 0 ag{18}$$

If $y_3 = 0$ has no nonzero integer solutions then $y_2 = 0$ has no nonzero integer solutions, and vice versa [1,5]

Euler prove that (15) has no nonzero integer solutions. Hence y_2 and $y_3 = 0$ have no nonzero integer solutions

From (15) and (17) we have

$$(g_3 R)^2 = (g_3 y_1)^3 + (g_3 y_2)^3$$
(19)

$$R^3 = y_1^3 + y_3^3 (20)$$

From (18) $y_2 = 0$ has no nonzero integer solutions, Hence (20) has no nonzero integer solutions, Euler

prove that (20) has no nonzero integer solutions, hence y_3 and $y_2 = 0$ have no nonzero integer solutions.

Suppose
$$n=3$$
 and $y_1 = 0$ from (3) and (5)
 $R^3 = y_2^3 + y_3^3$ (21)

Euler prove (21) has no nonzero integer solutions, hence $y_1 = 0$ also has no nonzero integer solutions. We prove that every

$$y_1 = 0, \quad y_2 = 0, \quad y_3 = 0$$
 (22)

has no nonzero integer solutions. Hence we prove that (15), (20) and (21) are the same equation and have no nonzero integer solutions.

Theorem 3. when n > 3, y_1, y_2 and y_3 are homogenous and irreducible polynomials. Suppose $y_3 = 0$. From (3) and (5)

$$R_1^n = y_1^3 + y_2^3 (23)$$

From (18) $y_3 = 0$ has no nonzero integer solutions. Hence (23) has no nonzero integer solution. From (17) and (23) we have

$$(g_3 R)^n = (g_3 y_1)^3 + (g_3 y_2)^3$$
(24)

$$R^n = y_1^3 + y_3^3 (25)$$

From (18) $y_2 = 0$ has no nonzero integer solutions, Hence (25) has no nonzero integer solutions.

Suppose
$$n > 3$$
 and $y_1 = 0$. From (3) and (5)

$$R_1^n = y_2^3 + y_3^3 (26)$$

We prove that every

$$y_1 = 0$$
, $y_2 = 0$ and $y_3 = 0$ (27)

has no nonzero integer solutions.

References

- Chen-xuan Jiang, A general proof of Fermat's last theorem, July 1978, Mimeograph papers. On the afternoon of July 19. 1978 this paper was disproved by Chinese mathematics institute of Academia Sinica.
- Chun-Xuan Jiang, Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. Inter. Acad. Press, 2002, 299-306, MR2004c:11001.(http://www.i-b-r.org/docs/jiang. pdf) (http://www.wbabin.net/math/xuan13.pdf)

(http://vixra.org/pdf/1004.0027v1.pdf).

- 3. Chun-Xuan Jiang, The Diophantine equations $a^2 \pm mb^2 = c^n$, $a^3 \pm mb^3 = d^2$ and $y_1^4 \pm my_2^4 = R^2$
- 4. Chun-Xuan Jiang, The application of stable groups to biological structure, Acta Math. Sci. 5, 3(1985) 243-260.
- Z. I. Borevich and I. R. Shafarevich, Number theory. Academic Press, New York, 1966.

1/24/2016