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Abstract: We establish the Santilli’s isomathematics based on the generalization of the modern mathematics.

~ a »
. . a+b=—1 . n -
Isomultiplication 4*Xa = abT , isodivision b , where 1 #1 is called an isounit, 11 =1, T

inverse of isounit. Keeping unchanged addition and subtraction, (=% %) are four arithmetic operations in

Santilli’s isomathematics. Isoaddition 4 +b=a+b+0 , isosubtraction 4~ b=a-b-0 where 0#0 i

called isozero, (% %,) are four arithmetic operations in Santilli-Jiang isomathematics. We give an example to
illustrate the Santilli-Jiang isomathematics.
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Santilli [1] suggests the isomathematics based on the generalization of the multiplication X division + and
multiplicative unit 1 in modern mathematics. It is epoch-making discovery. From modern mathematics we establish
the foundations of Santilli’s isomathematics and Santilli-Jiang isomathematics.

(1) Division and multiplican in modern mathematics.
Suppose that

ara=a’=1 ’ D
where 1 is called multiplicative unit, 0 exponential zero.
From (1) we define division + and multiplication x

a+b:%,b¢0,axb:ab

) (2)
— . — 0 —
a=ax(a+a)=axa =a (3)
We study multiplicative unit 1
axl=a,a+1=a,1+a=1/a 4
(+1)n — 1’ (+1)a/b — 1, (_l)n — (_l)n’ (_l)a/b — (_l)a/b (5>

The addition +, subtraction —, multiplication x and division + are four arithmetic operations in modern
mathematics which are foundations of modern mathematics. We generalize modern mathematics to establish the
foundations of Santilli’s isomathematics.

(2) Isodivision and isomultiplication in Santilli’s isomathematics.

We define the isodivision and isomultiplication X [1-5] which are generalization of division + and
multiplication x in modern mathematics.

no_ 0 _ 7 n
a+ra=a =1=#1, O¢O’ 6)
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A

where I is called isounit which is generalization of multiplicative unit 1, 0 exponential isozero which is
generalization of exponential zero.
We have

a@b:f%,b;to,a%b:af"b

) D
Suppose that
aza%(a%a)za%aozafiza 2)
From (8) we have
TI =1 (9)
where T is called inverse of isounit { .
We conjectured [1-5] that (9) is true. Now we prove (9). We study isounit 1
axl=a, a 1] = a, [ia=a'= I/a (10)
(+0)' =1, (+D) =1,(=D)" = (=)' L.(-D)" = (-D)"1 (1)

Keeping unchanged addition and subtraction, (= %) are four arithmetic operations in Santilli’s

isomathematics, which are foundations of isomathematics. When I=1 , it is the operations of modern
mathematics.

(3) Addition and subtraction in modern mathematics.
We define addition and subtraction

x=a+b, y=a-b

12>
ata—a=a (13)
a-a=0 (14
Using above results we establish isoaddition and isosubtraction
(4) Tsoaddition and isosubtraction in Santilli’s new isomathematics.

We define isoaddition t and isosubtraction ~.

atb=a+b+c, arb=a-b—c, (15)
a=ata*a=a+c —c,=a (16)
From (16) we have

a=4 a7
Suppose that ¢=c,=0 ,
where O is called isozero which is generalization of addition and subtraction zero

We have

a+b=a+b+0, a=b=a-b-0 (18)

When 0=0 , it is addition and subtraction in modern mathematics.
From above results we obtain foundations of santilli’s new isomathematics

X=xTx, +=+0+; *=x[+, 2=-0—axb=abT,a*b=a+b+0;

R a-x ~ A n
a+bzgl,aib:a—b—0;a:axa+a:a,a:a+aia:a;
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a?<azazT,a-T-a=2a+6;a$a:fil,aiaz—f)io;fle. (19)

(+, % %,) are four arithmetic operations in Santilli-Jiang isomathematics.

Remark, ax(b+c)= ax(b+c+0),From left side we have
ax(btc)=akb+aki+akc)=ak(b+++c)=ax(b+0+c)

A A

, where T= 0 also is a number.
ax(b=c)=ax(b-c-0) . From left side we have

ax(b=c)=axb-ax>-aXxc) :a?((b—i—c)zaﬁ(b—O—c)’Where 2=0 also is a number.

~ A

It is satisfies the distributive laws. Therefore "> >> and ~ also are numbers.
It is the mathematical problems in the 21st century and a new mathematical tool for studying and

understanding the law of world.

(5) An Example
We give an example to illustrate the Santilli-Jiang isomathematics.
Suppose that algebraic equation
y=a,x(b+c¢)+a,+(b,—c,) (20)
We consider that (20) may be represented the mathematical system, physical system, biological system, IT
system and another system. (20) may be written as the isomathematical equation

P=a k(b re)ta, b, 2e)=aT (b +¢+0)+0+a, I T(h,—c,-0) ),
if T=1 and OZO,then Y=y,

Let =2 and 9=3 From (21) we have the isomathematical subequation

v, =2a,(b,+¢,+3)+3+a,/2(b,—c,-3) (22)
Let 7' =5 and 0=6_ From (21) we have the isomathematical subequation

¥, =5a,(b,+c,+6)+6+a,/50b,—c,—6) (23)
Let 7' =8 and 0=10 From (21) we have the isomathematical subequation

v, =8a,(b +¢,+10)+10+a, / 8(b, —c, —10) (24)
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