Fermat Last Theorem was Proved in 1991

Chun-Xuan Jiang

Institute for Basic Research, Palm Harbor, FL34682-1577, USA
And: P. O. Box 3924, Beijing 100854, China
jiangchunxuan@sohu.com, cxjiang@mail.bcf.net.cn, jcxuan@sina.com, Jiangchunxuan@vip.sohu.com
Abstract: We found out a new method for proving Fermat last theorem (FLT) on the afternoon of October 25, 1991. We proved FLT at one stroke for all prime exponents $p>3$, It led to the discovery to calculate $n=15,21,35,105, \cdots \cdots$. To this date, no one disprove this proof. Anyone can not deny it, because it is a simple and marvelous proof. It can fit in the margin of Fermat book.
[Chun-Xuan Jiang. Fermat Last Theorem was Proved in 1991. N Y Sci J 2016;9(1):43-47]. ISSN 1554-0200 (print); ISSN 2375-723X (online). http://www.sciencepub.net/newyork. 7. doi:10.7537/marsnys09011607.

Keywords: Fermat last theorem (FLT); prime; exponent; marvelous proof; book.
We found out a new method for proving Fermat last theorem (FLT) on the afternoon of October 25, 1991. We proved FLT at one stroke for all prime exponents $p>3$, It led to the discovery to calculate $n=15,21,35,105, \cdots \cdots$. To this date, no one disprove this proof. Anyone can not deny it, because it is a simple and marvelous proof. It can fit in the margin of Fermat book.

In 1974 we found out Euler formula of the cyclotomic real numbers in the cyclotomic fields [1].

$$
\begin{equation*}
\exp \left(\sum_{i=1}^{n-1} t_{i} J^{i}\right)=\sum_{i=1}^{n} S_{i} J^{i-1} \tag{1}
\end{equation*}
$$

where J denotes a n-th root of unity, $J^{n}=1, n$ is an odd number, t_{i} are the real numbers.
S_{i} is called the complex hyperbolic functions of order n with $n-1$ variables,

$$
\begin{equation*}
S_{i}=\frac{1}{n}\left[e^{A}+2 \sum_{i=1}^{\frac{n-1}{2}}(-1)^{(i-1) j} e^{B_{j}} \cos \left(\theta_{j}+(-1)^{j} \frac{(i-1) j \pi}{n}\right)\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
A & =\sum_{\alpha=1}^{n-1} t_{\alpha}, B_{j}=\sum_{\alpha=1}^{n-1} t_{\alpha}(-1)^{\alpha j} \cos \frac{\alpha j \pi}{n}, \theta_{j}=(-1)^{j+1} \sum_{\alpha=1}^{n-1} t_{\alpha}(-1)^{\alpha j} \sin \frac{\alpha j \pi}{n}, \\
A+2 \sum_{i=1}^{\frac{n-1}{2}} B_{i} & =0 \tag{3}
\end{align*}
$$

Using (1) the cyclotomic theory may extend to totally real number fields. It is called the hypercomplex variable theory [1]. (2) may be written in the matrix form

$$
\left[\begin{array}{c}
S_{1} \\
S_{2} \\
S_{3} \\
\cdots \\
S_{n}
\end{array}\right]=\frac{1}{n}\left[\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
1 & -\cos \frac{\pi}{n} & -\sin \frac{\pi}{n} & \cdots & -\sin \frac{(n-1) \pi}{2 n} \\
1 & \cos \frac{2 \pi}{n} & \sin \frac{2 \pi}{n} & \cdots & -\sin \frac{(n-1) \pi}{n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & \cos \frac{(n-1) \pi}{n} & \sin \frac{(n-1) \pi}{n} & \cdots & -\sin \frac{(n-1)^{2} \pi}{2 n}
\end{array}\right]\left[\begin{array}{c}
e^{A} \\
2 e^{B_{1}} \cos \theta_{1} \\
2 e^{B_{1}} \sin \theta_{1} \\
\cdots \\
2 \exp \left(B_{\left.\frac{n-1}{2}\right)}^{n} \sin \left(\theta_{\frac{n-1}{2}}^{2}\right)\right.
\end{array}\right],
$$

(4)
where $(n-1) / 2$ is an even number.
From (4) we may obtain its inverse transformation

$$
\left[\begin{array}{c}
e^{A} \tag{5}\\
e^{B_{1}} \cos \theta_{1} \\
e^{B_{1}} \sin \theta_{1} \\
\cdots \\
\exp \left(B_{\frac{n-1}{2}}\right) \sin \left(\theta_{\frac{n-1}{2}}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & -\cos \frac{\pi}{n} & \cos \frac{2 \pi}{n} & \cdots & \cos \frac{(n-1) \pi}{n} \\
0 & -\sin \frac{\pi}{n} & \sin \frac{2 \pi}{n} & \cdots & \sin \frac{(n-1) \pi}{n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & -\sin \frac{(n-1) \pi}{2 n} & -\sin \frac{(n-1) \pi}{n} & \cdots & -\sin \frac{(n-1)^{2} \pi}{2 n}
\end{array}\right]\left[\begin{array}{l}
S_{1} \\
S_{2} \\
S_{3} \\
\cdots \\
S_{n}
\end{array}\right]
$$

From (5) we have

$$
\begin{gather*}
e^{A}=\sum_{i=1}^{n} S_{i}, e^{B_{j}} \cos \theta_{j}=S_{1}+\sum_{i=1}^{n-1} S_{1+i}(-1)^{i j} \cos \frac{i j \pi}{n} \\
e^{B_{j}} \sin \theta_{j}=(-1)^{j+1} \sum_{i=1}^{n-1} S_{1+i}(-1)^{i j} \sin \frac{i j \pi}{n} . \tag{6}
\end{gather*}
$$

In (3) and (6) t_{i} and S_{i} have the same formulas such that every factor of n has a Fermat equation. Assume $S_{1} \neq 0, \quad S_{2} \neq 0, \quad S_{i}=0$ where $i=3,4, \cdots, \quad n . S_{i}=0$ are $n-2$ indeterminate equations with $n-1$ variables. From (6) we have

$$
\begin{equation*}
e^{A}=S_{1}+S_{2}, \quad e^{2 B_{j}}=S_{1}^{2}+S_{2}^{2}+2 S_{1} S_{2}(-1)^{j} \cos \frac{j \pi}{n} \tag{7}
\end{equation*}
$$

From (3) and (7) we may obtain the Fermat equation

$$
\begin{equation*}
\exp \left(A+2 \sum_{j=1}^{\frac{n-1}{2}} B_{j}\right)=\left(S_{1}+S_{2}\right) \prod_{j=1}^{\frac{n-1}{2}}\left(S_{1}^{2}+S_{2}^{2}+2 S_{1} S_{2}(-1)^{j} \cos \frac{j \pi}{n}\right)=S_{1}^{n}+S_{2}^{n}=1 \tag{8}
\end{equation*}
$$

Theorem. Fermat last theorem has no rational solutions with $S_{1} S_{2} \neq 0$ for all odd exponents.
Proof. The proof of FLT is difficult when n is an odd prime. We consider n is a composite number.
Let $n=\Pi n_{i}$, where ${ }^{n_{i}}$ ranges over all odd number. From (3) we have

$$
\begin{equation*}
\exp \left(A+2 \sum_{j=1}^{\frac{f-1}{2}} B_{\frac{n}{f} j}\right)=\left[\exp \left(\sum_{\alpha=1}^{\frac{n}{f}-1} t_{f \alpha}\right)\right]^{f} \tag{9}
\end{equation*}
$$

From (7) we have

$$
\begin{equation*}
\exp \left(A+2 \sum_{j=1}^{\frac{f-1}{2}} B_{\frac{n}{f} j}\right)=S_{1}^{f}+S_{2}^{f} \tag{10}
\end{equation*}
$$

where f is a factor of n. From (9) and (10) we may obtain Fermat equation

$$
\begin{equation*}
\exp \left(A+2 \sum_{j=1}^{\frac{f-1}{2}} B_{\frac{n}{f} j}\right)=S_{1}^{f}+S_{2}^{f}=\left[\exp \left(\sum_{\alpha=1}^{\frac{n}{f}-1} t_{f \alpha}\right)\right]^{f} \tag{11}
\end{equation*}
$$

Every factor of n has a Fermat equation. From (11) we have

$$
\begin{aligned}
& f=1, B_{n}=B_{0}=0, \quad e^{A}=S_{1}+S_{2}=\exp \left(\sum_{\alpha=1}^{n-1} t_{\alpha}\right) \\
& f=n, t_{n}=t_{0}=0, \quad \exp \left(A+2 \sum_{i=1}^{\frac{n-1}{2}} B_{j}\right)=S_{1}^{n}+S_{2}^{n}=1
\end{aligned}
$$

$$
f=3, \exp \left(A+2 B_{\frac{n}{3}}\right)=S_{1}^{3}+S_{2}^{3}=\left[\exp \left(\sum_{\alpha=1}^{\frac{n}{3}-1} t_{3 \alpha}\right)\right]^{3}
$$

If $S_{1}=1, S_{2}=0$ and $S_{1}=0, S_{2}=1$, then $A=B_{j}=0$. Euler proved (13), therefore (11) has no rational solutions with $S_{1} S_{2} \neq 0$ (and so no integer solutions with $S_{1} S_{2} \neq 0$) for all odd exponents f. (11) and (13) can fit in the margin of Fermat book.

$$
\begin{align*}
& \text { Let } n=3 p \text { where } p \text { is an odd prime. From (3) and (7) } \tag{15}\\
& \exp \left(A+2 \sum_{i=1}^{\frac{3 p-1}{2}} B_{j}\right)=S_{1}^{3 p}+S_{2}^{3 p}=\left(S_{1}^{p}\right)^{3}+\left(S_{2}^{p}\right)^{3}=1 \tag{16}\\
& \left.\exp \left(A+2 B_{p}\right)=S_{1}^{3}+S_{2}^{3}=\left[\exp \sum_{\alpha=1}^{p-1} t_{3 \alpha}\right)\right]^{3} \tag{17}\\
& \exp \left(A+2 \sum_{i=1}^{\frac{p-1}{2}} B_{3 j}\right)=S_{1}^{p}+S_{2}^{p}=\left[\exp \left(t_{p}+t_{2 p}\right)\right]^{p}
\end{align*}
$$

Euler proved (15) and (16), therefore (17) have no rational solutions with $S_{1} S_{2} \neq 0$ (and so no integer solutions with $S_{1} S_{2} \neq 0$) for any odd prime $p>3$. (15)-(17) can fit in the margin

Let $n=5 p$ where p is an odd prime. From (3) and (7) we may derive Fermat eqations

$$
\begin{equation*}
\exp \left(A+2 \sum_{j=1}^{\frac{5 p-1}{2}} B_{j}\right)=S_{1}^{5 p}+S_{2}^{5 p}=1 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\left.\exp \left(A+2 B_{p}+2 B_{2 p}\right)=S_{1}^{5}+S_{2}^{5}=\left[\exp \sum_{\alpha=1}^{p-1} t_{5 \alpha}\right)\right]^{5} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\exp \left(A+2 \sum_{j=1}^{\frac{p-1}{2}} B_{5 j}\right)=S_{1}^{p}+S_{2}^{p}=\left[\exp \left(\sum_{\alpha=1}^{4} t_{p \alpha}\right)\right]^{p} \tag{20}
\end{equation*}
$$

(18)-(20) can fit in the margin.

Let $n=7 p$ where p is an odd prime. From (3) and (7) we may derive Fermat equations
$\exp \left(A+2 \sum_{i=1}^{\frac{7 p-1}{2}} B_{j}\right)=S_{1}^{7 p}+S_{2}^{7 p}=1$
$\left.\exp \left(A+2 B_{p}+2 B_{2 p}+2 B_{3 p}\right)=S_{1}^{7}+S_{2}^{7}=\left[\exp \sum_{\alpha=1}^{p-1} t_{7 \alpha}\right)\right]^{7}$

$$
\begin{equation*}
\left.\exp \left(A+2 \sum_{i=1}^{\frac{p-1}{2}} B_{7 j}\right)=S_{1}^{p}+S_{2}^{p}=\left[\exp \sum_{\alpha=1}^{6} t_{p \alpha}\right)\right]^{p} \tag{22}
\end{equation*}
$$

(21)-(23) can also fit in the margin.

Using this method we proved FLT in 1991 [2-5].
Let $n=p$ where p is an odd prime. From (3) and (7) we have

$$
\begin{equation*}
\exp \left(A+2 \sum_{i=1}^{\frac{p-1}{2}} B_{j}\right)=S_{1}^{p}+S_{2}^{p}=1, e^{2 B_{1}}=S_{1}^{2}+S_{2}^{2}-2 S_{1} S_{2} \cos \frac{\pi}{p} \tag{24}
\end{equation*}
$$

Let $a=S_{1} e^{-B_{1}}$ and $b=S_{2} e^{-B_{1}} \quad$ From (24) we have

$$
\begin{align*}
& a^{p}+b^{p}=\left(e^{-B_{1}}\right)^{p} \tag{25}\\
& a^{2}+b^{2}-2 a b \cos \frac{\pi}{p}=1 \tag{26}
\end{align*}
$$

The proof of (25) is transformed into studying (26). (26) has no rational solutions with $a b \neq 0$,
because $\quad \cos \frac{\pi}{p}$ is an irrational number for $p>3$. any odd prime $p>3$. (25) and (26) can also fit in the margin.
Remark. If $S_{i} \neq 0$, where $i=1,2,3, \cdots, n$, then (11)-(23) have infinitely many rational solutions [1].

Note:

Let one knew the important results, we gave out about 600 preprints in 1991-1992. There were my preprints in Princeton, Harvard, Berkeley, MIT, Uchicago, Columbia, Maryland, Ohio, Wisconsin, Yale, … ... England, Canada, Japan, Poland, Germany, France, Finland, … ... Ann. Math., Mathematika, J. Number Theory, Glasgow Math. J., London Math. Soc., In. J. Math. Math. Sci., Acta Arith., Can. Math. Bull. (They refused the publicaitons of my papers). Both papers were published in Chinese. FLT is as simple as Pythagorean theorem. This proof can fit in the margin of Fermat book. We think the game is up. We sent dept of math (Princeton University) a preprint on Jan. 15, 1992. Wiles claims the second proof of FLT in England (not in U. S. A.) after two years. We wish Wiles and his supporters disprove my proof, otherwise

Wiles work is only the second and complex proof of FLT. We believe that the Princeton is the fairest University and history will pass the fairest judgment on proofs of FLT and other problems. We are waiting for word from the experts who are studying this paper.

Preprint (January 1994).

After Wiles was about to announce his proof of FLT to the world on June 23, 1993. Jiang wrote this paper.
Tepper Gill, Kexi Liu, and Eric Trell, Editors
Fundamental Open Problems in Science at the End of the Milennium
Proceedings of the Beijing Workshop, August 1997
Hadronic Press, Palm Harbor, FL 34682-1577, U. S. A
ISBN 1-57485-029-6, pp. 555-558.

References

1. Jiang, Chun-xuan. Hypercomplex variable theory, Preprints, 1989.
2. Jiang, Chun-xuan. Fermat last theorem has been proved (Chinese, English summary) Qian Kexue, 2(1992)17-20. Preprints (English), December, 1991. (It is sufficient to prove $S_{1}^{3}+S_{2}^{3}=1$ for FLT of odd exponents).
3. Jiang, Chun-xuan. More than 300 years ago Fermat last theorem was proved (Chinese, English summary). Qian Kexue, 6(1992) 18-20. (It is sufficient to prove $S_{1}^{4}-S_{2}^{4}=1$ for FLT.)
4. Jiang, Chun-xuan. Fermat proof for FLT. Preprints (English), March, 1992.
5. Jiang, Chun-xuan. Factorization theorem for Fermat equation. Preprints (English), May, 1992.
