
 New York Science Journal 2015;8(7) http://www.sciencepub.net/newyork

42

A Comparison of API of Key-Value and Document-Based Data-Stores with Python Programming

Ehsan Azizi Khadem1, Emad Fereshteh Nezhad2

1. MSc of Computer Engineering, Department of Computer Engineering, Lorestan University, Iran
2. MSc of Computer Engineering, Communications Regulatory Authority of I.R of Iran

Abstract: Today, NoSql data-stores are widely used in databases. NoSql, is based on NoRel (Not Only Relational)
concept in database designing. Relational databases are most important technology for storing data during 50 years.
But nowadays, because of the explosive growth of data and generating complex type of it like Web2, RDBMS are
not suitable and enough for data storing. NoSql has different data model and API to access the data, comparing
relational method. NoSql data-stores can be classified into four categories: key-value, document-based, extensible
record or column-based and graph-based. Many researches are analyzed and compared data models of these
categories but there are few researches on API of them. In this paper, we implement python API to compare
performance of key-value and document-based stores and then analyze the results.
[Ehsan Azizi Khadem, Emad Fereshteh Nezhad. A Comparison of API of Key-Value and Document-Based
Data-Stores with Python Programming. N Y Sci J 2015;8(7):42-48]. (ISSN: 1554-0200).
http://www.sciencepub.net/newyork. 7

Keywords: NoSql, DataBase, Python, Key-value, Document-based

1. Introduction

Databases re very important part of any
software that is used by an organization or a simple
user. For years, relational database management
systems (RDBMS) has been the only solution for data
engineers to design and implement a data store [1].
But in 21th century, some problems occur that
RDBMS can’t solve them completely. For example,
in social networks we face Web2 applications. It
means that we must store and retrieve user’s activities
and relations in addition to their profiles. Indeed, we
need schema-less and very flexible database
management system with simple replications, high
availability, horizontal scaling and different access
methods against RDBMS. NoSql (Not Only Sql) is
the result of NoRel (Not Only Relational) that
focuses on persistence, high availability and data
partitioning based n distributed file systems like GFS,
Hadoop, and Dynamo. Today there are more than
fifty NoSql data-store systems available that each of
them has its data model, characteristics, API, and
etc[2][3]. But according to their data model, we can
classified them into four categories:

- Key-Value: The key-value store is a simple
model for NoSql databases. It stores pairs keys to
values in the same way that an unique id is assigned
to an object in some programming languages like
Python. It provides a retrieval service like hash table
and each node in the system can retrieve the value
associated with the key. This model is used in
caching content and main advantage of it is early
access. Some of tools in this category are Redis,
OracleBDB, Voldemort, TokyoVabinet/Tyrant, Riak,
Memcached-DB[4].

- Document-Based: In this model, data stored
in document format. Each document can consist of
scalar values, metadata lists or even nested
documents. This systems is uniquely named fields
and of values can be different. There is no limitation
in size of text and number of elements. The syntax of
document is JSON or XML. This model is used in
web applications and content representation in social
networks. The advantage of it is resistant against
incomplete content and weakness are slow querying
and has no standard query language. Some of tools in
this category are Couch-DB and Mongo-DB[5][6].

- Extensible Record or Column-Based: This
model is a hybrid concept between RDBMS and
document-based stores. Data is stored in columns and
extensible rows. Extensible row means that each row
has its own set of columns. Some terms like super-
column and super-table are defined in this model. It is
used in common distributed file systems like GFS
and Hadoop. The advantages of it are fast searching
and retrieval, and benefit distributed storing data and
weakness is low level API. Some of tools, in this
category are Cassandra, Hbase, and Riak[7].

- Graph-Based: When the data can be
represented in the form of a graph with interlink
elements, this model is mapped to graph theory in
mathematics. For example, when we need to find
shortest route between two persons in a social
network like Linked-In, graph-based model do it
perfectly. It is used in social networks and links FAQ.
The advantages of the model are availability of graph
algorithms like find shortest route, the connection’s
degree and weaknesses are navigating hole of graph
to find results and difficult clustering. Some tools of
this model are Neo4j, InfoGrid, InfiniteGraph[8][9].

 New York Science Journal 2015;8(7) http://www.sciencepub.net/newyork

43

In this paper, we peruse Redis as a key value
store and MongoDB as a Document-Based store
systems and implement an API for access the data in
them by Python programming and then use the API
for storing and retrieval several rows in these systems
then compare and analyze the results[10][11].

2. A Key-Value Store DBMS: Redis

Redis is a famous and mostly used key-value
store DBMS that easy to use. It has sophisticated set
of commands and when comes to speed, is hard to
bit. It supports advanced data structures, though on
the degree document-based stores would. It provides
set-based query operations but not with the
granularity or type support in a relational
database[12]. It is very fast. Redis is a blocking
queue (or stack) and a publish-subscribe system. It is
written with C programming language and its engine
has tremendous speed. It is an in-memory key-value
store and open source. It can handle up to 232 keys.
Redis exposes five different data structures: strings,
hashes, lists, sets, sorted sets. Strings are the mostly
used basic data structure available in Redis. Hashes
are like strings but the the important difference is that
they provide an extra level of indirection: a field.
Lists let you store and manipulate an array of values
for a given key. You can add value to the list, get the
first or last value and manipulate values at a given
index. Sets are used to store unique values and
provide a number of set-based operations. Sets aren’t
ordered but they provide value-based
operations[13][14]. The most powerful data structure
of Redis is sorted set. Sorted sets are like sets but
with a score. The scores provides sorting and ranking
capabilities. Redis supports replication, which means
that as you write to one Redis instance (the master),
one or more other instances (the slaves) are kept up-
to-date by the master. Backing up Redis is very
simple because by default Redis saves its snapshots
to a file named ‘dump.rdb’[15][16]. Redis distributes
your keys across multiple Redis instances which
could be running on the same box. It Not only will
offer horizontal scaling, include rebalancing.

3. A Document-Base Store: MongoDB

MongoDB is a famous and popular NoSql
DBMS. It is open source and written with Java. It has
flexible data model (JSON) and rich query language.
It supports auto-sharding and replication with
automatic failure. It hasn’t transaction nor joins.
MongoDB is closer to MySql than other NoSql tools.
It has main advantages over RDBMS. Any thing you
can do in JSON, you can do in MongoDB. Within a
MongoDB instance, you can have several databases,
each acting as a high-level containers for everything
else[17]. A database has some collections. A

collection likes a table in relational model but it is a
dynamic schema that can storing different data for
several rows. Collections are made up 0 or more
documents. Document is similar to row or tuple in
relational model. A document is made up one or more
fields which like a column in relational model.
Indexes in MongoDB function mostly like their
RDBMS counterparts. When you ask MongoDB for
data, it returns a pointer to the result set called a
cursor, which we can do things, to , such as counting
or skipping ahead, before actually pulling down
data[18]. You can use insert or create command to
input a new row in a document of a collection and
find command with a JSON query to retrieve data
from it. When you want alternate a relational
database with full text indexing, MongoDB is a good
choice. An important benefit of document-based
databases is schema-less. This makes then much
more flexible than RDBMS because of lack of setup
and reduced friction with object oriented
programming. For example, Python’s dynamism
already reduce much of the object-relational
impedance mismatch. So MongoDB is a very good
match for Python. When you want to save an object,
you serialize it to JSON and send it to MongoDB.
There is no property mapping or type mapping.
Another area where MongoDB is useful, is in
logging. There are two aspects of MongoDB which
make writes quite fast. First, you have an option to
send a write command and have it return immediately
without waiting for the write to be acknowledged.
Secondly, you can control the write behavior with
respect to data durability. These setting, in addition to
specifying now many servers should get your data
before being considered successful, are configurable
pre-write, giving you a great level of control over
write performance and data durability. In addition to
these performance factors, log data is one of those
datasets which can often take advantage of schema-
less collections. MongoDB has something called a
capped collection. Notice that all of the implicitly
created collections are called normal collections. We
can create a capped collection by using ‘db. create
collection’ command and flagged it as capped. When
you use a capped collection, you can update a
document but it can’t change its size. You can tail a
capped collection the way you tail a file in Unix.
Finally, you can run MongoDB in a multi-server
setup[19].

4. An Object Oriented Programming
Language: Python

Python is a general-purpose, interpreted,
interactive, object oriented and high level
programming language. It is open source. Python is
easy to learn, read, maintain and has a broad standard

 New York Science Journal 2015;8(7) http://www.sciencepub.net/newyork

44

library. It is portable and has cross-platform
compatible on Unix, Windows, and Macintosh. It
supports interactive mode and extendable. Python
provides interfaces to all major commercial databases
[20]. It supports GUI applications that can be created
and ported to many system calls, libraries and
windows systems. Python provides a better structure
and support for large programs than shell scripting. It
can be used as a scripting language or can be
compiled to byte-code for building large applications.
It has very high level dynamic data types and
supports dynamic type checking and automatic
garbage collection. It can easily integrate with C,
C++, Java and etc. Python interpreter is written with
C programming language. It offers much more error
checking than C. Python has high level data types
built in, such as flexible arrays and dictionaries. It
allows you to split your program into modules that
can be reused in other Python programs. It comes
with a large collection of standard modules that you
can use as the basis of your program or as examples
to start to program in Python. Some of these modules
provide things like file I/O, system calls, sockets, and
even interfaces to graphical user interface toolkits
like TK. Programs in Python are typically much
shorter than equivalent C, C++ or Java programs
because the high level data types allow you to
execute complex operations in a single statement;
Statement grouping is done by indentation instead of
beginning and ending brackets and no variable or
argument declarations are necessary [21]. Python is
very suitable for using as an API programming
language for NoSql because of some reasons. First, in
Python each object has a unique id that generated by
interpreter can be mapped on key in the key-value or
in document-based store NoSql databases. With
calling function id (object), you can retrieve the id of
each object in Python. Second, Python has a data
structure called dictionary. Python’s dictionary are
kind of hash table type. They would like associated
arrays or hashes found in Perl and consist of key-
value pairs. A dictionary key can be almost any
Python type but are usually numbers of strings.
Values, on the other hand, can be arbitrary Python
objects. Dictionaries are enclosed by curly brackets
({}) and values can be assigned and accessed using
square braces ([]). Python’s dictionaries like
documents in MongoDB and accept JSON format
very well. So we can use Python for generate an API
to manipulate data in MongoDB and Redis. For this,
we can use some libraries known as connector.
PyMongo is a connector for connect Python
interpreter to MongoDB server. A library is called
redis-py connect Python interpreter to Redis server.
With these connectors, we can process the data stored
in MongoDB or Redis with Python programs.[22]

5. Algorithm and Implementation:

We decide to design an algorithm and
implementation a Python code to access to NoSql
data stores and then compare the results. We want to
compare performance and time consuming of similar
operations on key-value and document-based stores.
Redis is our choice from key-value stores and
MongoDB from document-based stores. We
implement a Python API to access each of them we
want to investigate time consuming of our API in
first: insert rows, second: retrieve rows and third:
insert and retrieve rows simultaneously. We do it for
10 to 100000 rows and then compare the time
duration of each execution. We use JetBrains
PyCharm for coding and append these libraries with
import command:

Import redis, pymongo, string, time
We import redis and pymongo for using redis-

py and pymongo connectors that mentioned pervious
section. Furthermore we import string to generate
simple data for Redis and MongoDB and import time
library for calculate time duration of each execution.
For interaction with Redis, we write these statements:

r = redis.Redis()
start_time = time.time()
for i in range (10):
r.set(i,i*2)
m=r.get(i)
print("Redis Time = " ,time.time()-start_time)
First, we create an instance of Redis called ‘r’.

Then we determine time of start of accessing data in
Redis instance and assign it to ‘start_time’. Next step,
we implement a ‘for’ loop with count value that is
variable between 10 to 100000 and in the ‘for’ block,
we write ‘set’ and ‘get’ command that can be
converted to comment with #. When we want to
execute set and get together, we don’t write # but
when we only want to store, write # before get and
when only want to retrieve, write # before set.
Finally, we print time duration of executions that is
current time minus start time. For interaction with
MongoDB, we write these statements:

conn = pymongo.MongoClient()
start_time = time.time()
db = conn.test1
coll = db.collection1
for i in range (10):
coll.insert({str(i):i*2})
cc = coll.find_one({str(i):i*2})
print("Mongo Time = " , time.time()-start_time)
First, we create an instance of MongoDB client

called ‘conn’ and determine ‘start_time’ with calling
time() method, from time library. Then we create a
database in MongoDB called ‘db’ and create a
collection in it called ‘coll’. Next step, we implement

 New York Science Journal 2015;8(7) http://www.sciencepub.net/newyork

45

a ‘for’ loop like that was implemented for Redis. The
storing and retrieving statements in pymongo and
redis-py is different. In pymongo, ‘insert’ is for
storing and ‘find’ is for retrieving. Strings must be in
JSON format.

6. Results:
In this section, we peruse result of running the

algorithm mentioned in pervious section. First, we
study the results of only storing data for several
numbers of rows. See table 1 and figure 1:

Table 1: Set and Insert

Number of Rows 10 100 1000 10000 50000 100000

Redis Time (Seconds) 1.005 1.029 1.121 1.981 6.209 10.917

MongoDB Time (Seconds) 0.006 0.023 0.191 1.776 9.138 17.762

Figure 1: Set and Insert Diagram

Figure 2: Get and Find Diagram

MongoDB is faster than Redis in storing few

number of rows (less than 20000 rows). But when
number of rows is increasing, Redis stores data faster.

So for huge volume of data, Redis has higher speed
than MongoDB when using same Python API. Also
the runtime difference isn’t very significant.

 New York Science Journal 2015;8(7) http://www.sciencepub.net/newyork

46

Second, we check the result of only retrieving
data for several numbers of rows. See table 2 and

figure 2:

Table 2: Get and Find

Number of Rows 10 100 1000 10000 50000 100000

Redis Time (Seconds) 1.002 1.029 1.122 1.936 5.584 10.022

MongoDB Time (Seconds) 0.006 0.035 0.439 24.344 635.444 2195.227

If you have less than 1000 rows, MongoDB

retrieve data faster but it isn’t Big Data! For more
than 1000 rows, Redis retrieves faster and for more
than 50000 rows, Redis works very very faster! For
huge amount of data, if you want to retrieve data with
Python API, Redis have higher speed than MongoDB
and the speed difference is surprisingly high. Redis
more than 200 time faster than MongoDB for 100000

rows. Time consuming grows exponentially for
MongoDB in huge number of data and it means
Redis works with Python API very faster and is a
better choice to implement a retrieval system than
MongoDB.

Third, we study speed of Python API for Redis
and MongoDB for storing and retrieving data
simultaneously. See table 3 and figure 3:

Table 3: Set and Insert - Get and Find

Number of Rows 10 100 1000 10000 50000 100000

Redis Time (Seconds) 1.011 1.053 1.273 3.103 10.639 19.339

MongoDB Time (Seconds) 0.1 0.057 0.739 26.839 635.295 2205.618

Figure 3: Set and Insert - Get and Find Diagram

For less than 5000 rows, MongoDB is a little

faster, but for more than 10000 rows, Redis is very
faster and for more than 50000 rows, Redis has much
higher speed than MongoDB. For 100000 rows,
Redis is more than 100 times faster than MongoDB.

The results obtained from the above steps are:
- When we want to retrieve data from huge

sets of information with Python API, Redis is an
optimize option compared with MongoDB and this is
independent from that we want to store data or not.

- When we only want to store data, Redis is
still better than MongoDB for huge volume of data
but they don’t have much difference. Also for small
data sets, MongoDB works better.

7. Conclusion and Future Works:

Nowadays, NoSql data stores are very important
technologies for storing and retrieving data.
Partitioning the data in several servers, persistence of
data and consistency are three goals that Big Data
and NoSql technologies follow them. NoSql

 New York Science Journal 2015;8(7) http://www.sciencepub.net/newyork

47

technology is used when we have huge sets of data
for processing. There are several categories of NoSql
data models: key-value, document-based, column-
based and graph-based. We investigated key-value
and document-based in this research. From key-value
store, we choose Redis and from document-based
store choose MongoDB. We want to study about their
behavior when a same API used for them because
most or researches are about their data models. Our
API is implemented with Python programming
language. When our algorithm is implemented and
executed, we see some arresting results. In data
retrieval, Redis is more than 200 times faster than
MongoDB in interaction with API. In data storing,
Redis is better when we want to store huge volume of
data but the difference isn’t significant. Future, we
will study about speeds of other data stores in
addition to key-value and document-based and their
memory consuming.

References:
1. Yan Carri_ere-Swallow and Felipe Labb_e.

Nowcasting with Google Trends in an emerging
market. Journal of Forecasting, 2011. doi:
10.1002/for.1252. URL
http://ideas.repec.org/p/chb/bcchwp/588.html.
Working Papers Central Bank of Chile 588.

2. Sharad Goel, Jake M. Hofman, Sbastien Lahaie,
David M. Pennock, and Duncan J. Watts.
Predicting consumer behavior with web search.
Pro-ceedings of the National Academy of
Sciences, 2010. URL
http://www.pnas.org/content/107/41/17486.full.

3. Rebecca Hellerstein and Menno Middeldorp.
Forecasting with internet search data. Liberty
Street Economics Blog of the Federal Reserve
Bank of New York, January 2012. URL
http://libertystreeteconomics.newyorkfed.org/20
12/01/forecasting-with-internet-search-
data.html.

4. Brewer, E. A. 2000. Towards robust distributed
systems (abstract). In Proceedings of the
Nineteenth Annual ACM Symposium on
Principles of Distributed Computing (Portland,
Oregon, United States, July 16 - 19, 2000).
PODC ’00. ACM, New York, NY, 7. DOI=

http://doi.acm.org/10.1145/343477.343502.
5. Gilbert, S. and Lynch, N. 2002. Brewer’s

conjecture and the feasibility of consistent,
available, partition-tolerant web services.
SIGACT News 33, 2 (Jun. 2002), 51-59.
DOI=http://doi.acm.org/10.1145/564585.56460
1.

6. Pritchett, D. 2008. BASE: An Acid Alternative.
Queue 6, 3 (May. 2008), 48- DOI=http
55.://doi.acm.org/10.1145/1394127.1394128

7. A. Lakshman, P. Malik, and K. Ranganathan.
Cassandra: A Structured Storage System on a
P2P Network, product presentation at SIGMOD
2008.

8. DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall,P., and Vogels,
W. 2007. Dynamo: amazon’s highly available
key-value store. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating
Systems Principles (Stevenson, Washington,
USA, October 14 - 17, 2007). SOSP ’07. ACM,
New York, NY, 205-220.
DOI=http://doi.acm.org/10.1145/1294261.1294
281.

9. Morris, R. 1968. Scatter storage
techniques.Commun. ACM 11, 1 (Jan. 1968),
38-44. DOI=

http://doi.acm.org/10.1145/362851.362882.
10. Agrawal, P., Silberstein, A., Cooper, B. F.,

Srivastava, U.,and Ramakrishnan, R. 2009.
Asynchronous view maintenance for VLSD
databases. In Proceedings of the 35th SIGMOD
international Conference on Management of
Data (Providence, Rhode Island, USA, June 29 -
July 02, 2009). C. Binnig and B.Dageville, Eds.
SIGMOD ’09. ACM, New York, NY, 179-
192.DOI=

http://doi.acm.org/10.1145/1559845.1559866.
11. Message in Redis mailing list

http://groups.google.com/group/redisdb/msg/ca3

98a90ea78bfc5.
12. Armbrust, M., Lanham, N., Tu, S., Fox, A.,

Franklin, M., and Patterson, D. A. Piql: A
performance insightful query language for
interactive applications. First Annual ACM
Symposium on Cloud Computing (SOCC).

13. Acharya, S., Carlin, P., Galindo-Legaria, C.,
Kozielczyk, K., Terlecki, P., and Zabback, P.
2008. Relational support for flexible schema
scenarios. Proc. VLDB Endow. 1, 2 (Aug.
2008), 1289-1300. DOI=

http://doi.acm.org/10.1145/1454159.1454169.
14. Avrilia Floratou, Nikhil Teletia, David J.

DeWitt, Jignesh M. Patel, Donghui Zhang, Can
the elephants handle the NoSQL onslaught?,
Proceedings of the VLDB Endowment, VLDB
Endowment Hompage archive, Volume 5 Issue
12, August 2012, Pages 1712-1723.

15. Bogdan Tudorica, Bucur Cristian – A
comparison between several NoSQL databases
with comments and notes,The proceedings of
”2011 – Networking in Education and
Research” IEEE International Conference, June

 New York Science Journal 2015;8(7) http://www.sciencepub.net/newyork

48

23, 2011– June 25, 2011, Alexandru Ioan Cuza
University from Iasi.

16. Bogdan Tudorica - Challenges for the NoSQL
systems: Directions for Further Research and
Development, The International Journal of
Sustainable Economies Management (IJSEM),
Volume 2: Issue 1 (2013),
DOI:10.4018/IJSEM.2013010106, ISSN:2160-
9659, EISSN: 2160-9667.

17. MongoDB. http://www.mongodb.org. Accessed
2013.

18. Banker, Kyle ; Chodorow, Kristina ; Merriman,
Dwight et al.: mongoDB Manual – Admin Zone
– Replication – Replica Sets – Replica Set
Tutorial. August 2010. – Wiki article, version
22 of 2010-08-11.
http://www.mongodb.org/display/DOCS/Replic
a+Set+Tutorial.

19. Banker, Kyle; Merriman, Dwight ; Horowitz,
Eliot: mongoDB Manual – Admin Zone
Replication – Halted Replication. August 2010.
– Wiki article, version 18 of 2010-08-04.
http://www.mongodb.org/display/DOCS/Halted

+Replication.
20. Copeland, Rick: How Python, TurboGears, and

MongoDB are Transforming Source- Forge.net.
Feburary 2010. – Presentation at PyCon in
Atlanta on 2010-02-20.
http://us.pycon.org/2010/conference/schedule/ev

ent/110/.
21. Python Software Foundation, 2012. Python/C

API Reference Manual. Python Software
Foundation.

22. Vanovschi, V., 2013. Parallel python software.
http://www.parallelpython.com. Accessed:
10/02/2013.

7/17/2015

