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Abstract: DSMC is a type of sliding-mode control method for controlling the Single-Input/Multi-Output (SIMO) 
systems. In general, boundary layer thickness is established to decrease the chattering of input control in sliding 
mode controllers. Also, the control gain is a significant factor influence the control performance of variable structure 
systems. For this purpose, the behavior of the sliding surfaces and the influence of base surface boundary layer in 
DSMC method are demonstrated. However, Fuzzy Logic Controller (FLC) is utilized in order to obtain gain and 
boundary layers. In order to design the time-varying boundary layer thickness on each surface, the distance of 
dynamic trajectory and the angle between the vectors are the inputs of FLCs. Also, in order to accomplish the 
optimum results, the non-dominated sorting genetic algorithm-II (NSGA-II) is employed. This leads to achieving a 
set of best results called Pareto set, which not only optimizes the DSMC parameters, but also designs the details of 
the FLCs structures. 
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1. Introduction 

Sliding mode control, first named as 
Variable Structure Control (VSC), was initially 
introduced by Emelyanov and quite a few researchers 
in former USSR the early 1950’s [1, 2]. The phase 
plane method and the strategy of differential equation 
with a nonanalytic Right-hand side were inaugurated 
and documented in [3]. A systematic mathematical 
theory for differential equation by discontinuities are 
Established by Fillipov [4, 5]. Direct switching 
Function Approach for the reaching condition is well 
documented. The Lyapanov Function [6], the 
Reaching Low, the Fixed-Order switching scheme 
[7], Free-Order switching scheme, Decenteralized 
switching scheme, multi-input/multi-output systems, 
discrete-time models, large-scale and infinite-
dimensional systems are other successful 
achievements in this field. Phase-Locked loop 
control, Process control [8-10], Power converters, 
Digital implementation [11], Remote vehicle [12], 
Load frequency control of power system [13-16], 
Guidance [17], Pulse-width modulation control [18] 
and Servomechanisms [19-21], are all effective 
achievements. In order to reduce and decline the 
chattering, satisfying the reaching condition Direct 
approach, Lyapanov Function approach, Reaching 
Low Approach and the continuation Approach are 
pointed out in [22, 23].  

All the Sliding-mode controllers contain 
two principal and cardinal sections. The first section 
is the reaching mode or reaching condition, which is 
also called nonsliding mode. The second section is 

the sliding condition in which the trajectory 
essentially tends to the origin of the phase plane. In 
addition, Moving Switching Surface (MSS) is moved 
with a certain motion to the phase plane step by step, 
Rotating via Shifting [37], or by a constant 
acceleration or constant velocity [38] to overcome the 
reduction of disturbances influence through the 
reaching phase. The results have demonstrated 
control scheme with the MSS guarantees faster error 
convergence than fixed sliding line controllers. In 
fact, the robustness of sliding mode controllers is 
guaranteed nearly by eliminating the reaching phase. 

The second principal section in each 
sliding mode controllers is sliding condition. In 
sliding mode controllers, it is assumed that the 
controller is able to switch from one structure to 
another extremely fast. Although, it is practically 
impossible to achieve high-speed switching control 
because of the switching delay and physical 
limitation of actuators. As a result of this 
unconstitutional control switching between structures 
during sliding condition, the chatter appears instead 
of sliding condition. In addition, chatter appears 
during sliding trajectory along the switching surface 
as a main trouble in the second part of sliding 
controllers. In order to overcome and decline this 
chattering, a boundary layer is introduced near the 
sliding surface due to sliding condition. On the other 
hand, chattering can be declined due to a boundary 
layer; tracking performance and robustness are 
compromised. 
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The Decouple Sliding-Mode Control 
(DSMC) has provided the simple and actual way to 
accomplish symptomatic stability for a class of forth-
order nonlinear Single Input/Multi Output (SIMO) 
systems such as (Ball Beam) - (Inverted Pendulum) – 
(TORA) etc [42]. For this purpose, the whole system 
has decoupled into two second order subsystems. 
Each subsystem has a separate control objective 
expressed in terms of a sliding surface. The detail of 
MSS motion directly depends on dynamic trajectory 
system on constant base surface. The time varying 
boundary layer concept of the constant base surface 
during the trajectory on this surface is quality and 
quantity of MSS motion in the phase plane. This 

means the guidance of forced MSS motion in the 
phase plain is capable. Therefore, it is leading to the 
best convergence control to the equilibrium point by 
designing appropriate time varying boundary layer 
thickness. 

Fuzzy Logic was first introduced by Zadeh 
in a theme of fuzzy sets [43]. GA’s are powerful 
search techniques introduced by Holland [41]. 
Assemblage of a fuzzy controller is accomplished by 
the perseverance of some parameters which include 
the numbers and center values of the input and output 
membership functions, and linguistic control rules. 
Fig.1 illustrates the component of Fuzzy logic control 
system. 

  
 

 
Fig.1. Mamdani's Fuzzy Logic Control system portray 

  
The inspiration of Pareto front or set of 

optimal solutions is that the solutions are non-
dominated to each other but are preferable to the rest 
of solutions in the search space. After all, this paper 
will focus on these sections. 2. Boundary layer 
thickness for second-order sliding-mode control, 
which introduces definitions of boundary layer in 
sliding mode controllers. 3. Decouple Sliding-Mode 
Control (DSMC), the definitions. 4. The GAs strategy 
and their applications in optimization are pointed. 5. 
Multi-objective optimization and the basic definitions 
are notified. Sections 6, is the modeling system and 
computer simulation and discussions. For this 
purpose Inverted pendulum system is modeled. At 
last, sec.7 includes the conclusion. 
   
2. Boundary layer thickness for second-order 
sliding-mode control 

A variable structure control, called sliding 
mode is a nonlinear controller which is changed to 
achieve robust control characteristic between 
switching surface [26, 27]. Before the emergence of 
early stages of sliding-mode structure its foundation 
had been laid-Elements of the basis consist of the 
qualitative theory of differential equations and the 
theory of oscillation [25]. In order to achieve this 
purpose, designing the appropriate surface in the 
phase plane is the most principal section of SMC. In 

fact, faster convergence and the system robustness 
during sliding condition are impressible 
characteristics of designing Surface in the phase 
plane. Broadly, from mathematical point of view, the 
sliding mode is a converter, which converts the 

equation of the system in the state space of
nR  to 

sliding condition degree of 
mR space [40]. For this 

purpose the definitions of the simple second-order 
sliding mode system is demonstrated. Here is the 
second-order nonlinear system: 

 )()(),(),()(: tdtutxbtxftxplant     (1)  

 )(),(ˆ),(ˆ)(: tutxbtxftxModel       (2) 

Where x  is generally the state vector, )(tu is the 

control input which is applying to the system, )(td is 

the disturbance via external disturbances and the 

dynamic ),( txf  (presumably nonlinear function or 

time-varying) is not precisely known, but estimated 

as ),(ˆ txf . The estimation error on ),( txf  is 

bounded by a known function ),( txF . Similarly, the 

disturbance )(td  is bounded by a known function 

),( txD [39]. 

),(),(ˆ),( txFtxftxf      (3) 

       ),()( txDtd                 (4) 
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Substituting dxxx ~  as the tracking error in the 

variable, the (5) is achieved. 

      Td xxxxx ~,~~             (5) 

In fact, (5) demonstrates the tracking error 

vector. Likewise, a time-varying surface )(ts is 

defined in the  state-space.  

     xCxxCdtdtxs ~~~),(       (6) 

Where (6) is structured on scalar 

equation 0),( txs  and C  is a strictly positive 

constant. As we know, the main problem in the 
sliding condition is a decline the chattering during 
trajectory of dynamics. Establishing a boundary layer 
thickness in the vicinity of sliding surface is a 
powerful strategy in this field, which is well 
documented in [40]. By applying this method, 
chattering will completely decline. Decreasing the 
tracking error's quantity is the drawback of this 
strategy. In order to overcome this disease, the time-
varying boundary layer is substituted to a fixed layer. 
By applying time-varying boundary layer thickness, 
the reaching condition equation is changed to (7).  

   StxS
dt

d
)(),(

2

1 2          (7) 

Where,   is positive constant strictly 

and )(t  is the boundary layer thickness. The term 

of S  in (7) contemplates the fact that the boundary 

layer attraction condition is more stringent during 
boundary layer expansion  0  and vice versa. 

When all trajectories commencing inside )0(0 t  

stay inside )(t  for all 0t . In this case, )(tu  is 

interpolated inside )(t  as demonstrated in Fig.3. 

The most applicant approximation )(ˆ tu  of a 

condition law achieves as 0),( txs  [7], [40].  

Definition 1. "A domain Q  on the 

manifold 0s  is a sliding-mode domain if for each 

0  , there is a 0  , such that any motion 

starting within an n -dimensional  -vicinity of Q  

may leave the n -dimensional  -vicinity of Q  only 

through the n -dimensional  -vicinity of the 

boundary of Q ", Fig.3 [28]. 

Definition 1 describes the sliding region in 
n space. By the way, while the system trajectory 

wobbles on the sliding surface, it produces chattering 

in a bounded region Q  (sliding mode region). In 

addition, since a minimum value of  is greater than 

the maximum of chattering, chattering will decline or 

will be deleted due to the system trajectory. Hence, 

the S -trajectory stays in the range of 

  ),( txS , where   is maximum value of 

Q . In this condition, while S is inside boundary 

layer ,   is changed to domain )(t   

in which )0)(( t . Hence, the upper bound value 

of   can be characterized by a fixed boundary layer 

C
K max   . Consequently, a bounded region of   can 

be substituted into
C

K  max  . Chattering does 

not take place in the system trajectory since the upper 
bound value of   is greater than the maximum value 

of chattering. [40] 
 

 
Fig.2. Boundary layer thickness and control input 

 
Fig.3.Two-dimensional demonstration of region of 

sliding mode 
 
3. Decouple Sliding-Mode Control (DSMC) 
3.1. Decouple Sliding-Mode Control method (DSMC) 

The Decouple Sliding-Mode Control 
(DSMC) was initially introduced and created in order 
to control and stabilize the Single-Input/Multi-Output 
(SIMO) systems [29]. In general, according the 
definition of these systems, two or more links must 
be controlled and stabilized. One of the most famous 
strategies has been described for this achievement 
[30]. This method is mathematically extremely 
convoluted and intricate. However, the DSMC was 
established in order to overcome this decline. 
Consider a nonlinear forth-order system in the state 
space of (8). 
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)().,(),(

)().,(),(

2222222

1111111

tdutxbtxfx

tdutxbtxfx







      (8)  

Where x is state vector, )(),( 21 xfxf and 

)(),( 21 xbxb  are nonlinear functions and 21,uu are 

input controls for each subsystem. )(),( 21 tdtd are 

external disturbances which are bounded 

as )()(),()( 2211 tDtdtDtd  . In order to control 

the system, the appropriate sliding surfaces are 
defined for each subsystem. The drawback of this 
method is that by applying the input control to each 
surface, one link is controlled. This means the control 
action controls each link separately. Hence, the 
intermediate value is employed to connect and couple 
whole subsystems. This intermediate value is named 
as Z . 

1111
~)~( xZxCS                  (9) 

2222
~~. xxCS                      (10) 









2

2. 
SsatZZ u

                 (11) 

Where 1S is the principle surface or 

controllable surface. 2S is the subsidiary surface 

which only transfers the dynamics variations. 

   dd xxxxxx 222111
~,~   are the tracking 

errors. Z is an intermediate value in order to transfer 
signals of the dynamic variations on the subsidiary 

surface to principle surface. 
uZ is scalar and limited 

to the proper range of 1
~x  [29]. 

 
3.2. Decouple Sliding mode from geometric point of 
view  

As already discussed, the moving 
switching surface essentially operates to pass the 
initial conditions, and is subsequently moved towards 
a predetermined switching surface. During the MSS 
control process, the input of these systems is 
restructured uninterruptedly, as an interesting feature 
of this type of surface. 

As illustrated in Fig.5, the input control 

applies continuously on the surface like 0S  is 0u . 

On the other hand, the input control which is 

accomplished on CZS  is demonstrated 

by Auuu  0 . In which 0u , as the control input, 

applies and exploits upon 0S , and Au  is the 

control input which is added to 0u  to gesture on the 

Moving Switching Surface CZS   [38]. However, 

as demonstrated in sec.3 according to the MSS 
definition, in DSMCs from the geometric point of 
view, the surface which is controlled is MSS. 
Equation (12) evidences this fact.  

    ZCxxCS 11111 )~~(               (12) 

 
(a) 

 
 (b) 

Fig.4. (a) Input 0u  exploits on constant surface 0S  

(b) Input Auu 0  exploits on the (MSS) CZS   

 

 
Fig.5. Position of MSS ZCS 11   

 
As a consequence, the term 

of )~~( 111 xxC  in (9) describes a constant surface 

category in the phase plane of ),( 21 xx . ZC1  is 

adding to the surface 1S  in order to act as the MSS 

treatment literally, as can be seen in Fig.5. Moreover, 
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according to variation of intermediate value, the 1S  

shifts simultaneously during the phase plane. This 

means that by restructuring the position of 1S  which 

depends on the variation of intermediate value Z  in 

the phase plane, the input on the surface 1S is 

restructured consequently (See Fig.7 (a) and (b)). 
While the system trajectory varies upon the 

surface 2S  , the motion of the MSS continues. Time 

duration of motion of MSS depends on the 
convergence of dynamic trajectory upon the constant 

surface 2S . Therefore, for transferring signals from 

constant surface, the intermediate value is responsible 
for moving MSS toward the phase plane.  
By this fact, the intermediate value is used to couple 
the whole subsystems in order to achieve stability. 
Hence, the boundary layer thickness which is 
established and structured in intermediate value, 
leading to transfer variations smoothly from the 
constant surface, to main MSS surface. 
Consequently, the smooth motion in the phase plane 
is capable for the MSS. 

 

3.3. Moving Switching Surface (MSS) 1S  

As demonstrated in Fig.6, and (9), the 1S  

in the DSMC technique is a Moving Switching 
Surface (MSS) demeanor. Therefore, the trajectory of 
the dynamics slides toward the moving switching 
surface as a stable region and boundary layer domain. 
According to definition 1, to alleviate the chattering 
and tracking error, the appropriation time varying 
boundary layer is conceived, Fig.6.  

 
Fig.6. Two-dimensional demonstration of MSS 

region, CZS   
 

3.4. BASE constant surface 2S  

Basically, the boundary layer concerning the 
sliding surface is used to relieve the chattering [40] 

and 2S  is a base surface only in DSMC strategy. 

Consequently, the MSS wriggles in the phase plane 
while the trajectory wobbles all through the boundary 
layer of the base surface. Fig.7 (a), (b).  

 
(a) 

 
(b) 

Fig.7. (a) Trajectory on the base surface, 2S  (b) 

Motion of MSS, 1S during sliding trajectory on the 

base surface 
     

Exploiting the time varying boundary layer 
on the base surface causes restructuring of the MSS 
in contrast to the constant boundary layer thickness. 
Fig.8. For instance, Fig.8 (a), (b) and (13), (14) 
indicate the structure of deteriorate time varying 
boundary layer conscious declines of the trajectory 
towards the base surface; therefore, leads to 
precipitation of motion of the MSS to the center. 
Additionally, type of MSS motion in the phase plane 
is impressible of constant surface boundary layer 
variation. Also, the quality of MSS is effective 
robustness and leading to faster convergence of the 
system.  

            
uZ

S
satZ .

2

2
















             (13) 

             ZCxxCS 12111 )(        (14) 
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(a)                                                 (b) 

Fig.8. (a) Increase boundary layer concern surface 2S   (b) Impulse wriggle of MSS 1S  

 
4. Genetic algorithm 

GA's initially were developed by Holland 
[41]. The GA's are optimization techniques and 
exploratory search established on the principles of 
population genetics and natural evolution. Unlike 
many classical optimization strategies, GA's do not 
rely on computing local derivatives to conduct the 
search process. In fact, their only requirement is an 
objective or cost function. GA's are also more 
probable to reach at the global because they work on 
a population of points as inconsistent to conventional 
optimization techniques which exploit a point by 
point search approach. In general, GA comprises 
three essential operators: selection (reproduction), 
crossover and mutation. At first, the concerned 
parameters are encoded into a population of 
chromosomes. In fact, the encoder is a converter 
which converts the real values to the set of binary 
strings. The GA then runs using the three operators 
iteratively in a random technique with respect to the 
fitness of the chromosomes to perform the basic tasks 
of copying and intercommunicating portion of 
chromosomes, and finally discover and decode the 
best chromosomes delegating the solution to the 
problem. Encyclopedic introductions and overviews 
to GA's can be found in [31, 32].  
 
5. Multi-objective optimization base on NSGA 

Multi-objective optimization is called 
vector optimization or multi-criteria optimization. It 
has been defined to search a vector of decision 
variables satisfying constraints to achieve optimal 
values to all objective functions [33]. Generally, 
Pareto front or set are the set of optimal solutions in 
the objective function space. This strategy is 
established for a set of solutions that are in contrast to 
each other whereas preferable to the rest of the 
solutions in the search space. In other words, it is 
unattainable to discover a single solution to be 

preferable to all other solutions according to all 
objectives. Hence, restructuring the vector of design 
variables in such a Pareto front comprising these 
contrast or non-dominated solutions could not lead to 
the progress of all objectives simultaneously. 
Mathematically, the multi-objective can be defined as 
follows.  

Find the vector T
nsssS ],...,,[

**

2

*

1
*   in order to 

optimize  
T

K SfSfSfSF )](),...,(),([)( 21                  (15) 

Subject to m  inconformity constrains 

 0)( Sgi
And mi ,...,1                                (16)  

And p equality constraints 0)( Shj
 and 

pj ,...,1 . Where, nS * is the design variable or 

vector of decision and kXF )( is the vector of 

objective functions. Plus it is assumed that all 
objective functions are to be minimized without loss 
of generality. In order to convert the Pareto 
optimization, the following definitions are required: 
 
5.1. Pareto dominance's definition 

         A vector k
k  ],...,,[ 21  dominates 

vector k
k  ],...,,[ 21  (respected 

by   ) if and only if 

jjii kjki   :},...,2,1{},,...,2,1{

 . This implies that there is at least one j  which is 

smaller than j  whilst the rest of  s are either 

rather spartan than or equal to the corresponding   
s. 
5.2 Definition of Pareto set 

     A point *S   (  is an achievable domain in 
n  satisfying equations (21) and (22)) implying to 
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be Pareto optimal (minimal) considering all S  

if and only if )()( * sFS  . It is able to be readily 

restated as },...,2,1{ ki ,  

)()(},,...,2,1{)(}{ *** SfSfkjfSfSS jjii 

 alternatively. In other words, the solution *S  is said 
to be Pareto optimal (minimal) if no other solution 

can be found to dominate 
*S  corresponding to the 

definition of Pareto dominance. 
 
5.3. Pareto set's definition 

        With regard to MOP, a Pareto set 
*P is a set in 

the decision variable space compromising all the 
Pareto optimal vectors, 

)}()'(:'|{* SFSFSSP  . This 

means, there is no other 'S in   that dominates 

any
*PS . 

5.4. Pareto front's definition  

     In MOP, the Pareto front 
*PF  is a set of vectors 

of objective functions which are acquired using the 

vectors of decision variables in the Pareto set
*P , that 

is, *
21

* :))(),...,(),(()({ PXSfSfSfSFPF k   

. As a consequence, the Pareto front 
*PF  is 

converted as a set of the vectors of cost functions 

from
*P .  

Evolutionary Algorithms (EAs) have been 
employed in a broad variety for multi-objective 
optimization due to their natural possessions suited 
for these types of problems. Generally, the most 
principal benefits of this strategy is their parallel or 
population-based search achievement. Consequently, 
most troubles and deductions without the classical 
methods in MOPs strategy are eliminated. It is very 
significant in EAs that the genetic variety within the 
population be preserved essentially. This principal 
theme in MOPs which has been explained and 
overviewed can be found in [34]. Consequently, the 
premature convergence of Multi Objective 
Evolutionary Algorithms (MOEAs) can be prevented, 
and the solutions are directed and distributed along 
the true Pareto front if such genetic variegation is 
well provided. Recently, the Pareto-based approach 
of NSGA-II has been used in a broad variety range of 
engineering MOPs [44]. According to the efficient of 
non-dominance ranking procedure in discovering 
different levels of Pareto frontiers, it includes a 
simple content and operation. Nevertheless, the 
crowding achievement in such a state-of-the-art 
MOEA applies powerful for two-objective 
optimization problems as a diversity-preserving 
operator, but this is not the case for problems with 

more than two cost functions. The main reason for 
this drawback is different crowding square side 
convergence or enclosing hyper-boxes during sorting 
procedure for each cost function. Hence, in this 
strategy, the general crowding distance of an 
individual computed may not exactly find the correct 
measure of diversity or crowding property. In order 
to select an exact number of individuals of that 
specific front, a crowded comparison operator is used 
in NSGA-II to discover the superior solutions to fill 
the rest of the new parent population slots. The 
crowded comparison procedure is established on 
density estimation of solution surrounding a 
particular solution in population or front. For this 
purpose, the solution of the Pareto front is initially 
sorted in each objective direction in the increasing 
order of that objective value. It should be noted that 
in a two-objective Pareto optimization process, if the 
solution of a Pareto front is sorted in a decreasing 
organization with respect to one objective, these 
solutions are then spontaneously organized in an 
increasing organization with respect to the second 
objective. Hence, the hyper-boxes environment of an 
individual solution remain unchanged in the 
objective-wise sorting procedure of the crowding 
distance of NSGA-II in the two-objective Pareto 
optimization problem. However, in multi objective 
Pareto optimization problem with more than two 
objectives, this sorting procedure of individuals based 
on each objective in this algorithm will cause 
different enclosing hyper-boxes. Thus, the overall 
crowding distance of an individual computed in this 
way may not exactly reflect the true measure of 
diversity or crowding property for the multi-objective 
Pareto optimization problems with more than two 
objectives. Therefore, the general crowding distance 
of an individual computed in this method does not 
accurately reflect the correct measure of diversity or 
crowding property for the multi-objective Pareto 
optimization problems with more than two 
objectives. Consequently, it is able to be used for any 
number of objective functions (especially for more 
than two objectives) in the MOPs. Trying to 
overcome the limitations of basic MOPs such as 
several runs to find the Pareto set front or 
quantification of the importance of each objective and 
the limitation of crowding distance [44] method , the 

neliminatio have been created and introduced 
with outstanding results in the broad variety of 
searching the set of optimum points[34].  
 
5.5.  -Elimination strategy 

In the  -elimination diversity approach 
that is exploited to substitute the crowding distance 
assignment achievement in NSGA-II, all the clones 
and  -similar individuals are distinguished and 
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simply eliminated from the current population. As a 
consequence, based on a pre-defined value of   as 
the elimination threshold (  =0.1 has been used in 
this paper), all the individuals are eliminated in a 
front within this limit of a particular individual. It is 
important that such  -similarity must exist both in 
the space of objectives and in the space of the 
associated design variables. This will ensure that very 
dissimilar individuals in the space of design variables 
having  -similarity in the space of objectives will 

not be eliminated from the population. Eventually, it 
is more helpful to explore the search space of the 
given MOP [35, 36]. 

 
6. single-inverted pendulum system  

The most famous type of single input-
multi output control system can point to inverted-
pendulum. The dynamic equations and the structure 
of this system are illustrated in (17) and Fig.9 
respectively. 
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Where, 1x , 2x  are the pole 

position and the angle velocity. 3x and 4x are the 

CART position and CART velocity from the 
equilibrium point, respectively, by this fact that 

pct mmm  , mL 5.0 , kgmc 1 , kgmp 05.0 , 

2/8.9 smg  . For the Start points:          

0;0;0;60 ,4,3,2
0

,1  SSSS xxxx , 

1S  and 2S are defined as illustrated in (18). 

  2111 xZxCS    22. SsatZz u  

10  uZ , 

 
4322 xxCS                           (18) 

As illustrated in Fig.10, the Pareto Set has 
achieved for multi-objective optimization process by 
employing two couple cost functions (53).   

     
tt

dxdxF
0

2
0

11 .05.0.95.0   

     
tt

dxdxF
0

4
0

32 1.09.0          (19) 

Equations (19) reflect the fact that the 

effect of time in 1F  is much more important. This 

causes the time trapoze to converge the system to 
equilibrium point faster. In order to minimize CART 
displacement with respect to POLE settling time, the 

cost function has been chosen for 2F . Moreover, the 

coefficients which are selected in (19) illustrate the 
importance of position and velocity. Figs.11, 12 and 
Table 1 illustrate that the POLE position in point C 
converges faster than point B and A with regarded to 

cost function 1F . On the other hand, the CART 

position in point A converges faster than point B and 
C.  

 
Fig.9. Portray of Inverted-Pendulum system 
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Fig.10.Inverted Pendulum Pareto Set. 

 
Fig.11. POLE position comparison of settling time, 

point A, B and C 

 
Fig.12. CART position comparison of settling time, 

point A, B and C 
 
6.1. Single inverted-pendulum time varying boundary 
and constant boundary layer 

As shown in Fig.10, the points of Pareto 
set are achieved from multi-objective optimization 

process. Each of them can be selected as the optimum 
point. We choose point B as the optimum result 
because of its less settling time both in CART 
position and POLE position compared to another 
choice. Fig.16, 17 and Table 2 evidence this fact. The 
inverted-pendulum with time varying boundary layer 
thickness is much more effective from settling time 
and stability point of view.  

 
Fig.13. Fuzzy boundary layer 1  

 
Fig.14. Fuzzy boundary layer 2  

 
Fig.15. Fuzzy GAIN 
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Fig.16. POLE position time varying and constant 

boundary layer thickness 

 
Fig.17. CART position, time varying and constant 

boundary layer thickness 
 

 
 

Where, in constant boundary layer thickness, the parameters are illustrated as below. 

9136.0,2658.0,8288.2 21  uZCC , 564.6
max1  , 09.14

max2  ,  1max .31.24 CK   .  

Where,   21

minmax /bb , 05.0st . 

 
Table 1. Cost functions and comparison points of Pareto set for Inverted Pendulum system 
POINT POLE Position Settling time (s) CART Position settling time(S) Cost Function F1 Cost Function F2 

A 7.545 9.955 7.084 68.5118 
B 6.649 13.25 4.1109 74.4963 
C 2.365 19.45 3.8298 92.0592 

 
Table 2. Comparison of settling time, constant and time varying boundary layer for Inverted Pendulum system 

Inverted Pendulum system POLE position Settling Time(s) CART Position Settling Time(s) 
Time Varying Boundary Layer (Point B) 6.649 13.25 

Constant Boundary Layer 10.51 19.49 

 
7. Conclusion 

Decouple Sliding-Mode Control (DSMC) 
is a simple efficient method in sliding mode control 
for systems like Single Input-Multi output (SIMO). 
The effort in this paper is concentrated on the nature 
of behavior of its illustrated details. Therefore, taking 
a mandatory move on Moving Switching Surface 
(MSS) which was via Shifting Switching Surface 
(SSS), convergence and stability were achieved. This 
important process was conducted through alteration 
of boundary layer during trajectory of dynamics on 
base surface. The results were taken into TORA and 
Inverted Pendulum systems and were compared with 
the constant boundary layer that proved this issue. In 
order to reduce tracking–error, the time varying 
boundary layers were designed on MSS. Fuzzy Logic 
Control was employed to design time varying 
boundary layers and sliding mode control Gain. The 
powerful Multi objective optimization and NSGA-II 
were also to design the details of FLCs and 

parameters DSMC as collective replies Optimum Sets 
that contrast each other.  
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