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1. Introduction 

In a recent paper, Dore and Venni (G. Dore and 
A. Venni, 1987) have used imaginary powers of 
operators in connection with the problem of the 
closedness of the sum of two operators. Roughly 
speaking, if �  and �  are two commuting  closed 
operators in a UMD-space, then their sum is closed 
provided that the following conditions holds: 
����� ≤ � ��� |�| and  ����� ≤ � ��� |�|,� ∈ ℝ (1.1) 

with �� + �� < �. 
The UMD–spaces are precisely the Banach 

spaces X  for which the vector valued. Hilbert 
transform is bounded in ��(ℝ; �)  (J. Bourgain, 
1983). In particular, the Hilbert spaces and �� –
spaces, 1< � < ∞, are UMD-spaces. 

The growth condition (1.1) implies that the 
spectrum of � (����.  �) lies in a sector of "angle" 
��(����.��). 

In (G. Dore and A. Venni, 1987), the question 
was raised whether the converse is true. The Example 
A  below shows that this is not the case, even in a 
Hilbert space. 

However, in a Hilbert space, the conditions for 
the closedness of the sum can be weakened, as shown 
again by Dore and Venni (G. Dore and A. Venni, 
1987). Based on a characterization of the domain of 
fractional powers together with an earlier result of Da 
Prato and Grisvard (G. DA PRATO and P. 
GRISVARD, 1975), they proved the following result. 
If ��� is a c�˗group of bounded operators (without 
any assumption on ��� ), then � + �  is closed 
provided that the sum of the “angles” ��  and ��  is 
less than π. 

In Example B, we give two operators � and � in 
a Hilbert space which satisfy the "angle condition" 
such that  � + �  is not closed. This shows again that 
��� and ��� are not  ��˗groups of bounded operators. 
Moreover this implies that some extra condition is 
needed for the closedness of the sum . 

In Section 2, we state the main results. 
In Section 3, we interoduce the main tools for 

examples, in particular the notion of spectral family 
(E. Berkson and T. A. Gillespie, 1987). 

In Section 4, we construct the example A 
inspired by Example 5.10, p. 168, of Berkson and 
Gillespie (E. Berkson and T. A. Gillespie, 1987). 

Finally, in section 5, we give Example B, and 
corresponding operators in �� they resolvent 
commuting and closable. We are convinced that the  
method used in Sections 4 and 5 can lead to more 
examples. 
 
2. Preliminaries and main results 

Let (X,‖.‖) be a complex Banach space, and let 
A:D(A)⊂ X → X  be a closed and densely defined 
operator with domain �(�) and range �(�). As 
usual, we denote the resolvent set of A by �(�) and 
its spectrum by  �(�). 

The operator A is called positive  (G. Dore and 
A. Venni, 1987) if 

(i) (−∞ ,0)⊂ �(�), 
(ii) there exists � ≥ 1such that ‖(� + ��)��‖ ≤

�  , for every � > 0. 
In particular, if � = 1 , then �  is called 

�˗accretive. 
For � ∈ [0,�) ,�  we define the sector  Σθ as 

�� ≔ {� ∈ ℂ \ {0};|��� �|≤ �}. 
The operator  A  is said to be closable if it has 

an extension that  is closed. 
The operator A is said to be of type (�,� ) (H. 

TANABE, 1979), if there exist 0 < � < �  and 
M ≥  1 such that; 

(i) �(�)⊂ �� ∪ {0} ; 
(ii) for every θ ∈ [0,π − ω) , there exists 

� (�)≥ 1  with  � (0)= � , such that ‖(1 +
��)��‖ ≤ � (�) for any � ∈ �� . 
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We recall that if the operator A is positive, then 
there exist � ∈ (0,�)  and �  ≥  1 such that � is of 
type (θ,M) (H. TRIEBEL, 1978). 

We also recall that if A is M–accretive,  then  � 
is of type (� 2,1⁄ ) (H. TANABE, 1979). Moreover if 
A is of type (� ,� )  for some � ∈ (0,� 2⁄ )  and  
�  ≥  1, then −� generates an analytic semigroup on 
the space � . 

If �  is abounded positive operator with 0 ∈
�(�), then the fractional powers of  � denoted by  ��  
with  � ∈ ℂ   are usually defined by the Dunford 
integral 

�� =
1

2��
∫
�
��(� − �)���� , 

Where the contour  �  does not meet (−∞ ,0] 
and contains the spectrum of  �. Then for  � ∈ ℂ, ��  
is a bounded operator satisfying the group property 

������ = ������ ,  ��,�� ∈ � , 
with �� = � and �� = �. 

The function  � ↦ ��    is also holomorphic.  
Moreover,  one has the other  representations of ��(J. 
PRÜB and H. SOHR, 1990), 

��� =
�����

�
{���� − (1 + �)�������

+ � ����(� + �)��������

�

�

 

�+ � ����(� + �)������

∞

�

�        (2.1) 

∀ |�� �|< 1 ,� ≠ 0, 
��� = � 

or equivalently 

��� =
�����

�
{���� − (1 + �)������ + � 

+(1 − �)���� + � ��(1 + ����)������ ��

�

�

 

�− � ���(1 + ������)������

�

�

�                  (2.2) 

∀  |�� �|< 1, z ≠ 0 , 
��� = �. 

If the positive operator  �   satisfies only 
�(�) = {0}  and �(�)dense in � , then for every 
� ∈ �(�)∩ �(�) , which is dense in � , the function 
� ↦ ���, defined by (2.1) or (2.2)  is holomorphic 
and satisfies the group property ������� =
�������   ���  �����   � ∈ �(��)∩ �(��)     and   
[|�� ��|,|�� ��|,
|��(�� + ��)|< 1  (J.PRÜB and H.SOHR,1990).� 

For  � ∈ ℝ \ {0}  we say that ���  is bounded if 
the operator ��� defined by (2.1) or (2.2) is bounded 
on �(�)∩ �(�). Then it can be uniquely extended to 
� , as a bounded operator. 

Following PrüB   and Sohr (J. PRÜB and H. 
SOHR, 1990),  the operator  �  is said to belong to 
the class BIP(�,�) for some � ∈ [0,�)   if : 

(i) � is positive; 
(ii) �(�)= {0} and �(�) dense in � ; 
(iii) ���∈ �(�)  ∀ � ∈  ℝ and there 

exists � > 0 such that ����� ≤ � ��|�| ,�∈ ℝ. 
In the case where �  is positive, �(�)= {0}  

implies the density of �(�) in �  if �  is a reflexive 
Banch space (a Hilbert space, for example). 

It is proven in (J. PRÜB and H. SOHR, 1990), 
that if  � ∈ ���(�,�) then A  is of type (�,� )  for 
some �  ≥ 1. In Example �, we show in particular 
that the converse is not true even if the space �   is a 
Hilbert space. 
Example A. There exists an operator A in a Hilbert 
space which is of type  (� ,� )  for some � > 1 and 
for all � ∈ (0,�) and such that the imaginary powers 
���are not bounded for all  �∈ ℝ \ {0} . 
Remark. It is known (J. PRÜB and H. SOHR, 1990) 
that if an operator A in Hilbert space is of type (� , 1) 
for some � ∈ (0,�) (it is m-accretive), then � ∈
BIP(�,� 2⁄ ) . 

Let A and B be two positive operators in a 
Banach  space (�,‖.‖). The operators A and B are 
called resolvent commutig if (� + ��)�� and  
(� + ��)��  commute for some � and �> 0 
(equivalently for all � and  �> 0) . 

Building upon results of Dore and Venni (G. 
Dore and A. Venni, 1987), and Sohr (J. PRÜB and H. 
SOHR, 1990) have proven that if 
�� ∈ BIP(�,��),� = 1,2  with �� ≠ �� ,�� + �� < � , 
are resolvent commuting and if �  is a  UMD-space, 
then �� + �� ∈ BIP(�,�) where � = max (��,��). 

Da Prato and Grisvard ( G. DA PRATO and P. 
GRISVARD, 1975)  have proved that if  ��  are of 
type (��,� �),� = 1,2,�� + �� < � , resolvent 
commuting ( hence �� + ��   closable ) then the 
closure of �� + ��  is of type (�,� )with �  = 
max(��,��) for some �  ≥ 1. 

Therefore a natural question is to know whether 
the sum of two operators �  and �  satisfying the 
assumptions of Da Prato and Grisvard in a UMD-
space is closed. In the Hilbert space, Da Prato and 
Grisvard ( G. DA PRATO and P. GRISVARD, 1975) 
gave a sufficient condition for this to be the case, 
namely if the interpolation spaces ��(�,2)  and  
��∗(�,2) are equal for some � ∈ (0,1) .Since � + � 
is closed if and only if � + � + � is closed, we may 
assume without loss of generality that  0 ∈ �(�) and 
0 ∈ �(�) . Under these assumptions Dore and Venni 
(G. Dore and A. Venni, 1987. p. 194), have shown 
that if the imaginary powers � is are uniformly 
bounded for � ∈ [−1,1] , then � + � is closed . 
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Example  B.   There exists two resolvent commuting 
operators � and � in aHilbert space which are of type 
(�,� )for some � > 1  and for every  � ∈ (0,�)  
such that � + � is not closed. 
Remarks.  (i)  It follows from Da Prato and Grisvard 
(G. DA PRATO and P. GRISVARD, 1975) that 
��(�,2)≠ ��∗(�,2)  and ��(�,2)≠ ��∗(�,2)  for 
every � ∈ (0,1). 

(ii)  It follows from Dore and Venni (G. Dore 
and A. Venni, 1987) that both ��� and ��� are not 
uniformly bounded on [− 1,1]. 
 
3. Tools 

We recall the notion of spectral family of 
projections in a Hilbert space � (E. Berkson and T. 
A. Gillespie, 1987). 

Definition.  Aspectral family of projections in � 
is a uniformaly bounded projection–valued function 
�:ℝ → �(�)  ( the algebra of bounded linear 
operators in � ) such that: 

(i) �  is right–continuous ℝ  in the strong 
operator topology, 

(ii) � has a strong left–hand limit at each s∈ ℝ  , 
(iii) �(�) �(�)= �(�) �(�)=

�(�) for �≤ �, 
(iv) �(�)→ 0  (resp.  �(�)→  � ) in the strong 

operator topology as  � → −∞ (resp.as  �→ +∞). 
If there is a compact interval [�,�]  such that  

�(�) = 0   for   s< �  and F(s)=  I  for �≥ �,  then 
we say that � is concentrated on [�,�]. Following (E. 
Berkson and T. A. Gillespie, 1987), (H. R. 
DOWSON, 1987), if � is a spectral family 
concentrated on [�,�, each complex–valued function 
� ∈ �[�,�] ∩ ��[�,�]  defines abounded operator � 
in � (�� stands for bounded variation) : 

�� = ∫
[�,�]

�(�) ��(�)�,      � ∈ � , (3.1) 

by means of convergence of Riemann-Stieltjes 
sums. Moreover the norm of  �  can be estimated by 

‖�‖ ≤ |�(�)|+ �|�(�)|

+ �����;[�,�]��.⫼�⫼,            (3.2) 
Where 
⫼�⫼ ≔ ����∈ℝ ‖�(�)‖.                                    (3.3) 
If �  is concentrated on [0,�∞ )�  and � ∈

�[0,∞)∩ ��[0,∞) , then �− ���
�→ ∞

∫
[�,�]

�(�)��(�) 

exists. This limit defines abounded operator � in � 
satisfying. 

‖�‖ ≤ |�(∞)|+ (|�(0)|
+ ���[�;[0,∞)�]).⫼�⫼ ,          (3.4) 

Where ⫼�⫼  is defined by (3.3) and  �(∞)=
����→ ∞ �(�) which exists since  � ∈ ��[0,∞). 

If  �,� ∈ �[0,∞)∩ ��[0,∞)  and 

�� = ∫
[�,∞)

�(�)��(�)�, 

�� = ∫
[�,∞)

�(�)��(�)�,    � ∈ � 

then (� + �)� = ∫
[�,∞)

(�(�)+ �(�)) ��(�)�, 

If moreover  � ∈ ��[0,∞), then 

��� = ��� = ∫
[�,∞)

�(�)�(�)��(�)�. 

If  �(�)≠ 0, for every � ≥ 0 and � ↦ �(�)��  
belongs to ��[0�,∞), then 0 ∈ �(�) and 

���� = ∫
[�,∞)

�(�)����(�)�. 

For the construction of a spectral family in  

ℓ�(ℕ)  which is not spectral measure, we shall use, as 
in (E. Berkson and T. A. Gillespie, 1987), a 
conditional basis which can be found in Singer ( I. 
SINGER, 1970). For the sake of completeness, we 
give it here explicitly. 

����������� ����� �� ℓ�(ℕ).  The sequences  
{��}���  and   {ℎ�}���   in ℓ�(ℕ) defined by 

  ����� = ����� + ���������� ,   

∞

���

 

��� = ��� ,     (� = 1,2,…)                (3.5) 
ℎ���� = �����, 

ℎ�� = − ������������ + ��� ,   (� = 1,2,…) (3.6)

�

���

 

Where  {��}���  is the canonical basis of ℓ�(ℕ)  
and , �� ≥ 1,� = 1,2,… ,∑ ���

� <∞
���

∞ ,   ∑ �� = +∞ ,∞
���   (e.g., one can take �� =

1 � ⁄ ��� (� + 1))   are biorthogonal conditional 

bases of  ℓ�(ℕ). Defining  �� ∈ �(ℓ�(ℕ) ) by 
��� = (�,ℎ�)��,          � ∈ ℓ�(ℕ)  ,� = 1,2,…, 

Where  (.,.)  is the scalar product, then each �� 
aprojection with  �� �� = 0  for  � ≠ � satisfying 

���
�→ ∞

���

�

���

� = � ,� ∈ ℓ�(ℕ),      (3.7)  

Moreover 

��������

�

���

� = ∞ .      (3.8)  

 
4. Example  A 

we construct an example of appositive operator  
�  in a Hilbert space H such that imaginary powers  
���   are not bounded for   � ∈ ℝ \ {0},  although  �  
is of type  (�,� ) for some  �  > 1 and for every  
� ∈ (0,�). 

In order to do that, we construct the operator  �  
on a Hilbert product. 

Let  {��,‖.‖�}�∈ℤ   be a family of complex  
Hilbert spaces. Let (�,‖.‖) be the Hilbert product. 

� = ����

�∈ℤ

�

�

= �� = (��),�� ∈ ��, ‖�‖
�

=�‖��‖�
�

�∈ℤ

< ∞ �. 
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The family  {��}�∈ℤ  of bounded operators on  
�� , defines the following closed densely defined 
operator  �  on �: 

�(�)≔ �� = (��),�� ∈ ��,�‖����‖�
�

�∈ℤ

< ∞� 

(��)� ≔ ����,� ∈ ℤ ��� � = (��)∈ �(�).     (4.1) 
Moreover � is bounded if and only if  

����∈ℤ‖��‖� < ∞  and if this is the case 
‖A‖ = sup�∈ℤ‖A�‖ . 
We say that family of positive operators 

{��}�∈ℤ  satisfies Property (P)if: 
(i) �(��)⊂ [0,∞) ; 
(ii) for every � ∈ [0,�) , there is � (�) 

independent of �,  such that ‖(� + ���)
��‖� ≤ � (�)  

for every  � ∈ �  and every   � ∈ ��. 
We have 

Lemma 4.1.   Let  {��}�∈ℤ   be a family of bounded 
positive operators on  ��,� ∈ ℤ  satisfying Property  
(P)   then there exists  � ≥ 1  such that the operator  
A  defined by (4.1), is of type   (� ,� )   for every  
� ∈ (0,�). 

Moreover if  �(�)= {0} , then for every   
� = (��)∈ �(�)∩ �(�),  and  � ∈ ℝ \{0},   we have  
�� ∈ �(��)∩ �(��)  and  (����)� = (��)

����,� ∈
ℤ. 
Proof .  (i)  Let � ∈ ℂ\(−∞ ,0]  and let � =
��� � .Let  y = (y�) ∈ H. Since � satisfies Property 
(P),  − z�� ∉ σ(A�)  and there exists  �� ∈ ��,� ∈ ℤ   

such that 
(1 + ���)�� = �� ,         � ∈ ℤ. 

Since ‖��‖ ≤ � (�)‖��‖�  we have � = (��)∈
�(�) ���  ‖�‖ ≤ � (�)‖�‖ .  Moreover since 
(� + ���)= {0} ,  we have �(� + ��)= {0} ,
− z�� ∈ ρ(A),   and ‖(1 + ��)��‖ ≤ � (�).  This 
implies that � is of type  (� ,� )  with  � = � (0), 
for every  � = (0,�). 

(ii) Assume  �(�)= {0}, then  �(��)= {0}   
for every � ∈ ℤ .  Let � = (��)∈ �(�)∩ �(�).  
Then clearly, �� ∈ �(��)= ��.  Since  � = �� for 
some � ∈ �(�), we have �� = ���� , hence �� ∈
�(��). Therefore ����  and    (��)

����   are well–
defined by (2.1), for   s∈ ℝ\{0} . Since ((� +
��)���)� = (� + ���)

����,� > 0 , � = (��)∈ �,  
we obtain (���� )� = (��)

���� ,� ∈ ℤ .  This 
completes the proof of Lemma 4.1. 

Next we construct a family of bounded positive 

operators  {��}�∈ℤ   in  ℓ�(ℕ), such that 0 ∈ �(��)  
and satisfying Properly (P) . Notice that the 

imaginary powers  ��
�� ,�∈ ℝ , are then bounded. We 

give a necessary condition for  ����∈ℤ���
���  to be 

finite for some   � ∈ ℝ \ {0} . 
Lemma 4.2.  Let  {��}���  be a (Schauder) basis on  
ℓ�(ℕ)  with corresponding projections {��}���. 

Let  �:ℝ → �( ℓ�(ℕ))  be the spectral family 
concentrated on  [0,1]  defined by 

�(�)= 0          ���        � < 1 2⁄  

�(�)= ���

�

���

   ��� 
�

� + 1
≤ � <

� + 1

� + 2
 

���  � = 1,2,… 
�(�)= 1                  ���             � ≥ 1. 

Then for every  � ∈ ℤ   and every  � ∈ ℓ�(ℕ) 

��� = ∫
[�,�]

�����(�)� is well–defined 

and 
(i) The family of operators   {��}�∈ℤ  satisfies 

Property (P) and  0 ∈ �(��) ,� ∈ ℤ . 

(ii) For every � ∈ ℝ , the imaginary power ��
�� is 

bounded and ��
��� = ∫

[�,�]
�������(�)� ,� ∈ ℓ�(ℕ), 

  � ∈ ℤ.  Moreover ��
��� = ��

���. 
(iii) If for some 

 � ∈ ℝ\{0},   ����∈ℤ���
��� < ∞   then the basis  

{��}���is unconditional. 
(iv) If the basis  {��}��� is unconditional then for 

all ,� ∈ ℝ  ,����∈ℤ���
��� < ∞. 

Proof .     (i)  For every  � ∈ ℤ   the function   
� ↦ ��� {��}  is continuous, bounded, increasing, 
hence of bounded variation on [0,1]. Therefore �� is 

well-defined and bounded on ℓ�(ℕ) as well as  ��
���. 

Moreover  �� = ��
�. 

Let � ∈ ℂ\(∞,0]  and  � = ��� � . Then the 
function � → �(�;�,�)≔ (1 + � ���(��))��  is 
continuous, bounded, and of bounded variation on 

[0,1]. Indeed �1 + �����
��

= �1 + |�|�������
��
,  then  

|�(�;�,�)|≤ ��(�)  where 

��(�)≤ �

1           �ℎ�� 0 ≤ |�|≤
�

2
1

���|�|
      �ℎ�� |�|>

�

2
  .         

� 

Moreover 

����∈[�,�][�(�;�,�)] = ∫
[�,�]

�
�

��
(�(�;�,�)� ��          

= ∫
[�,�]

|��|���

|�(�;�,�)|�
�� 

= �
|�|�(�����)�

|�((���� �)�,1,�)|�
��

|�|

�

 

≤ �
|�|�(�����)�

|(1 + |�|����(�����)�|�

∞

�

 

≤ ∫
��

�(�������
� = ��(�)

∞

�
       with 

 ��(�)= �
1          ��       � = 0  
�

����
       ��  0 < |�|< �.

� 

Let � (�)= ���(�)+ ��(�)�.⫼�⫼ . We 

observe that � (−�)= � (�) and � (�) increases on 
0 ≤ � ≤ �. 
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Therefore – ��� ∈ �(��)  and  ‖(1 +
���)

��‖ ≤ � (�), which implies that the family 
{��}�∈ℤ  satisfies Property (P). 

(ii)     Let � = (�;�,�)≔ ���(����)��� � ∈
[0,1],� ∈ ℤ ,���  � ∈ ℝ  then |�(�;�,�)|≤ 1  and 

����∈[�,∞]�(�;�,�)= ��
��

��
(�;�,�)�

�

�

�� = |��|. 

Hence ∫
[�,�]

����� ��(�)  defines a bounded 

operator ��,� in ℓ
�(ℕ) for every �∈ ℝ  and � ∈ ℤ. For 

� = (��)∈ ���  (finite sequences in ℓ�(ℕ)), we have 
��,�� = ∑ ��� (���Ɩ)���

�
Ɩ���   for some � ∈ ℕ 

depending on �. 
By using the Dunford integral for the imaginary 

power ��
���,  we obtain 

��
��� =

1

2��
∫
�
 ���(� − ��)

����� 

=
1

2��
∫
�
 ���� (� − ��� (�Ɩ))�������

�

Ɩ���

 

= �
1

2��
∫
�
  ���(� − ��� (�Ɩ))�������

�

Ɩ���

 

= ��,��. 

Since both  ��
��  and ��,� are bounded on ℓ�(ℕ))  

and ���  is dense in ℓ�(ℕ)) , we have ��,� = ��
��. We 

also have  ��
��= ��

���. 

(iii) If  ����∈ℤ���
��� < ∞  for some 

� ∈ ℝ\{0}  then ����∈ℤ���
���� < ∞  and without loss 

of generality, we may assume �> 0. We also have  

��
���= ���

���
�

. By using a result of Nagy (B. SZ-
NAGY, 1947) , there exists an equivalent Hilbertian 
norm ⫼ ∙ ⫼ on  H  such that  ⫼��

���⫼ = 1   for every 

� ∈ ℤ . (Take, e.g.,  ⫼�⫼ = ����→ ∞���
�����

�
)� �⁄   

where Lim is a Banach limit in ℕ.) Then ��
�� is 

unitary in (�,⫼ ∙ ⫼)  and {��}���  are eigenvectors 
corresponding to the eigenvalues 

�� = ��� �/(���) ,        � = 1,2,…  . 
Then for  �,� >  �/2�,� ≠ � , we have 

�� ≠ �� .  Therefore {��}���/��  is an orthogonal 

system in (�,⫼ ∙ ⫼) , hence {��}���   is an 
unconditional basis in (�,⫼ ∙ ⫼)  and also in (�,‖∙‖). 

(iv) Suppose the basis {��}���  is unconditional. 
By using a characterization of unconditional bases, 
there exists a constant � > 0 such that ‖∑ ����

�
��� ‖ ≤

�‖∑ |��|��
�
��� ‖ for every � ∈ ℕ and every finite scalar 

sequence {��}. 
For � ∈ �� (the linear dense subspace spanned 

by  {��}���,� ∈ ℤ,� ∈ ℝ  , we have 

���
����� =�|���(���  � (� + 1)⁄ )|���

���

 

the sum is finite. Hence 

���
����� ≤

�‖∑ |���(���  � (� + 1)⁄ )|������ ‖ = �‖�‖ . Then 
���

����� ≤ �. 
After these preparations, we can easily construct 

the operator �. 
Construction of �. Let �� = ℓ�(ℕ),� ∈ ℤ , and 

let {��}���  be a conditional basis of ℓ�(ℕ)), for 
example, the basis defined in (3.5). Define �� like in 

Lemma 4.2, then for every s∈ ℝ\{0},sup�∈ℤ�A�
��� =

∞. Then define the operator � like in Lemma 4.1. The 
operator  � is of type (�,� ) for some � ≥ 1,  and 
for every  � ∈ (0,�). Moreover for  � ∈ ℝ\{0} , ���  

cannot be bounded, otherwise ����∈ℤ���
���  would 

be finite. There for the operator  �  satisfies all the 
required properties. 

 
5. Example B 

In this section, we construct an example of two 
resolvent commuting, closed  operators � and �,  in a 
Hilbert space H such that A and B are of type (�,� ) 
for some � > 1  and every � ∈ (0,�), with � + � 
not closed.0 

Let � = ℓ�(ℕ), {��}��� , be a (Schauder) basis 

in ℓ�(ℕ), and {��}��� be the associated projections. 
We shall denote by �� the linear dense subspace 

spanned by {��}���. 
Let �:ℝ → �(�)  be the spectral family defined 

by 
�(�) =  0         ��� � <  1 

�(�)= ∑ ��
[�]
��� ,where [�] denotes the greatest 

integer  ≤ λ . 
We define  ⫼�⫼ = ������‖�(�)‖ < ∞. 

Lemma 5.1.  Let �,�� , and �  be as above. Let 
ℎ:[0,∞)→ [1,∞)  be a continuous and increasing 
function. For any  � ∈ �� , let 

��� = �ℎ(�)���, ( �� ������).

∞

���

 (5.1) 

Then, for every  � ∈ (− �,�),  there exists  
� (�)> 0 such that for every  � ∈ ��,� + ���   is a 
bijection in ��  and 

‖(� + ���)
���‖ ≤ � (�)‖�‖    ∀   � ∈ ��.   (5.2) 

Moreover ��  is closable and its closure � is of 
type  (�,� ) for some  � > 1 for every � ∈ (0,�) 
and satisfies  0 ∈ �(�). 

Proof of Lemma 5.1 . (i)  Proof of  (5.2).  For 
every   � ∈ ℂ\(−∞ ,0],  we  define 

��� = ∑ (1 (1 + �ℎ(�)))��� ,� ∈ ��⁄∞
��� . We 

get (� + ���)�� = ��(� + ���)= �│��
.The spectral 

representation of �� is given by 

��� =
 

  ,
1

1

),0[

xdF
zh







        � ∈ ��. 



 New York Science Journal 2014;7(4)           http://www.sciencepub.net/newyork 

 

29 

By using (3.4), we have 

‖���‖ ≤ �
1

|1 + �ℎ(∞)|
+

1

|1 + �ℎ(0)|
 ⫼�⫼

+
���
[0,∞)

�
1

1 + �ℎ(.)
�.⫼�⫼�‖�‖ , 

for every  � ∈ ��,ℎ(∞)= ����→ ∞ ℎ(�)=
������ℎ(�), which may be infinite. 

���
[0,∞)

�
�

����(.)
� ≤ ∫

��

��������
� < ∞

∞

�
   with   

� = |�|���. 
Then we get (5.2). 
(ii) Closure of  ��. It is known, see, e.g., ( G. 

DA PRATO and P. GRISVARD, 1975), that (5.2) 
implies that  ��   closable  and that its closure  �  
satisfies the same inequality. For the sake of 
completeness, we prove that  ��  closable. 

Let �� ∈ �� be such that �� → 0 and ���� → �  
for some  � ∈ � . We have to prove � = 0 .  Let  
� ∈ ��   then for � > 0 , we have ‖�� + ��‖ ≤
� ‖�� + �� + ���(�� + ��)‖ and ‖��‖ ≤
� ‖(�(� + �)+ �����)‖ by taking the limit. Hence 
‖�‖ ≤ � ‖(� + � + ����)‖  and ‖�‖ ≤ � ‖� + �‖  
by letting  � ↓ 0  for every � ∈ ��. Since �� is dense 
in  � ,� = 0. 

(iii) Type of � . From (5.2), we get 
‖�‖ ≤ � (�)‖(� + ��)�‖ for every � ∈ �(�)  and 
� ∈ �� , which implies that � + ��  is injective and 

that �(� + ��) is closed, hence �(� + ��)⊃ �� =
�.  Therefore ��� ∈ �(�)  and ‖(I + zT)��x‖ ≤
M(θ)‖x‖ holds for every � ∈ �. 

(iv)  0 ∈ ρ(T) .  Let  
��� = ∑ (1 ℎ(�)⁄ )���

∞
���   ∀� ∈ ��  . L�  is the 

inverse of   ��   by using (3.4),  we get 

‖���‖ ≤ �
1

ℎ(∞)
+ �2 −

1

ℎ(∞)
�⫼�⫼�‖�‖,∀� ∈ H�. 

 
Then  ��  is bounded and densily defined. This  

implies that the closure of  ��  is the inverse of  �. 
Next, we consider  properties of two operators  

A� and  B� of the form  given by Lemma 5.1. 
Lemma 5.2. Let  �  and �  be two continuous, 
increasing functions from  [0,∞)  into [1,∞). Let  A� 
and B� be the corresponding operators in �� defined 
by 

��� = ��(�)���

∞

���

   ��� 

��� = ��(�)���,

∞

���

   ∀  � ∈ �� . 

Let �  and  �  be their closure in �. 
Then, we have 
(i) A�(A� + B�)

�� = (A� + B�)
��A� on H�  ; 

(ii) � and � are resolvent commuting; 

(iii) � + �  is closable and � + � =

�� + �� . 
Proof . (i) We have  
����� = (���(�)��) (���(�)���)=
���(�)�(�)��� = ����� 

for every � ∈ ��. Since �� + ��   is a bijection 
on ��, it follows that A� and (A� + B�)

�� commute. 
(ii)   As is well known it suffices to prove 

(� + �)��(� + �)�� = (� + �)��(� + �)�� . But this 
is a consequence of the commutativity  of (� +
��)

��  and  (� + ��)
��  on   ��   together with their 

boundedness. 
(iii)   First we prove that  � + �  is closable. Let  

�� ∈ �(�)∩ �(�)  be  such that �� → 0   and  
��:(� + �)�� → �  with  � ∈ �. Then 

(� + �)��(� + �)����
= (� + �)��(� + �)�����
+ (� + �)��(� + �)����� 

= (� + �)��[� − (� + �)��]�� + (� + �)��[�
− (� + �)��]�� → 0. 

Hence (� + �)��(� + �)��� = 0,and � = 0 . 
Since the closure of  �� + ��  is contained in the 

closure of � + � , we only have to prove  � + � ⊂

�� + ��  or � + � ⊂ �� + �� . Let � ∈ �(�)∩
�(�)= �(� + �). Then there are tow sequences  
��,�´� → � and ���� → �� and ���´� → ��. 

Set  ℎ� = �´� −  �� . We have 
�� = (�� + ��)

��(���� + ���´�)
− ��(�� + ��)

��ℎ�                 (5.3) 
by using part  (i). Since (�� + ��)

��   is 
bounded by Lemma 5.1, we obtain that the sequence 
��(�� + ��)

��ℎ�  converges to some  � ∈
��. Moreover  (�� + ��)

��ℎ� → 0 , then � =  0 
since �� is closable by Lemma 5.1. Rewriting  (5.3), 
we get 

(�� + ��)(�� + ��(�� + ��)
��ℎ�)

= ���� + ���´�  
which implies by passing to the limit 

� ∈ ���� + ���      and      ��� + ���� = �� + ��. 

Corollary 5.3. Let ����,����  be two increasing 

continuous sequences of functions from [0,∞) into 

[1,∞). Let �A���  and �B���  be the corresponding 

operators in H� defined by 

 







1 1

0
j n

njj xpnfxA

 
and 

���� =����(�)

∞

������

���, ∀� ∈ ��.       (5.4) 

Let  ���� , ���� be their closure in �  then we 
have 

    jjjjjj ABABAA 0

1

00

1

000
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on H�. 
�� and �� are resolvent commuting . 

�� + ��is closable and  �� + ����������� = ��� + ��������������� . 
Proof .  Lemma 5.2 implies that 

xABxBA jjjj 0000 
 

since x is total we have ������ = ������ . It 

follows  that������� + ����
��

= ���� + ����
��
���, 

���� + ������� = ������� + ���� , since ��� + ��� 

is a bijection, then ���
� + ������ = ���

� + ������ ,  

implies that ������ = ������. 

        ,1111
1111 

 jjjj ABBA
 

       11
1111


 jjjj BAAB

 
     jjjj ABBA  1111

 

jjjjjjjj ABBABAAB  11
 

hence  ���� = ����. 

Follows directly from Lemma 5.2. 
Now we give a Lemma which characterizes the 

closedness of  � + �. 
Lemma 5.4. Let the operators � and � be defined as 
in Lemma 5.2. Then  � + � is not closed if and only 
if there exists a sequence �� in �� such that 
‖��‖ ≤ 1 and   ���

���
 ‖��(�� + ��)

����‖ = ∞  (5.5) 

Proof .  (i)  Let  � = �(�)∩�(�).  We define two 
norms on �: 

‖�‖�  ≔ ‖�‖+ ‖��‖+ ‖��‖      ��� 
‖�‖� ≔ ‖�‖ + ‖(� + �)�‖ , � ∈ �. 

Clearly  ‖�‖� ≥ ‖�‖�  for � ∈ �. �  and  � are 
closed, �  is complete with respect to the norm ‖.‖�. 
Moreover �  is complete with respect to ‖.‖�  if and 
only if  � + �  is closed.  By using the open mapping 
theorem (for one implication), one has  � + �   is 
closed if and only if there exists � > 0 such that 

‖�‖� ≤ �‖�‖�        ∀  � ∈ �.          (5.6) 
(ii)   Let �� ∈ ��   be such that ‖��‖ ≤

1  and  �� = (�� + ��)
����  with 

������‖����‖= +∞ . Then (5.6) cannot hold. 
Indeed, we have 

‖��‖� = ‖��‖+ ‖(�� + ��)��‖
= ‖(�� + ��)

����‖+ ‖��‖
≤ ‖(�� + ��)

��‖+ 1 
and 
‖��‖� ≥ ‖����‖       which is unbounded. 
Hence  � + �  is not closed . 
(iii) Assume  �� = ���{‖��(�� + ��)

���‖,
‖�‖ ≤ 1 ,   � ∈ ��} < ∞ . By triangular inequality, 
there is  �� > 0  such that 

‖��(�� + ��)
���‖ ≤ ��‖�‖ ,     ∀ � ∈ ��. 

Then if  � = (�� + ��)�,   we have 
‖�‖� = ‖�‖+ ‖���‖+ ‖���‖ 
= ‖�‖+ ‖��(�� + ��)

���‖+ ‖��(�� + ��)
���‖ 

≤ ‖�‖+ (�� + ��)‖�‖ ≤ (1 + �� + ��)‖�‖�, 

∀ � ∈ ��. 
Then the norms ‖.‖�and ‖.‖� are equivalent on  

��. Observe that  �� = �(�� + ��). which is dense 

in �(�� + ��) with respect to the norm ‖�‖� ≔

‖�‖ + �(�� + ��)��,� ∈ �(�� + ��). Notice that  

� = �(� + �)⊂ �(�� + ��)= �(� + �)����������. 
Hence ��  is dense on � with respect to  ‖.‖�. 

For � ∈ �  there exists �� ∈ ��  such that ‖� −
��‖� → 0  and  ‖�‖� = ����→ ∞‖��‖� =

����→ ∞‖��‖� = ‖�‖� ,  by using the continuity of  
‖.‖� on E. It follows that the norm  ‖.‖�  and  ‖.‖�  
are equivalent on �. 

Construction of the Example B. It is enough to 
choose  � and  � as in Lemma 5.1 and 5.2 such that 
condition (5.5) of Lemma  5.3  is satisfied, i.e., to 
find tow functions  �  and  �  as in Lemma 5.1 such 
that 

��� ���
�(�)

�(�)+ �(�)
���

∞

���

�,� ∈ �� ,‖�‖ ≤ 1�

= ∞.                                     (5.7) 
We show that this is possible . 
First we choose for  {��}���  the conditional 

basis of example (3.5) which satisfies 
���
���

‖∑ ���
�
��� ‖ = +∞. 

If  we impose the following conditions on  f  and  
g, 

�(�)

�(�)+ �(�)
= �

1 4⁄        ���  �  ���

3 4⁄        ���  �  ����
�                 (5.8) 

then 

���(�) ��(�)+ �(�)�⁄ �

��

���

��� 

= (1 4⁄ )���� + (1 2⁄ )�����,

�

���

��

���

 

which satisfies (5.7). 
Finally, we give one possible choice of 

functions  �   and  �   satisfying the hypothesis of 
Lemma 5.1 and condition (5.8). 

Set h(t)= 1 2⁄ + 1 4⁄ cos(πt),t≥ 0. 
We contract  f  and  g  by induction : 
�(0)= 3      and       �(0)= 1. 
Suppose we know the functions between [0,2�] 

, � = 0,1,2,… then we define for � ∈ (2�,2� + 1] 

�(�)= �(2�)      and    �(�) =  �(2�) �
1

ℎ(�)
− 1� 

and for   � ∈ (2� + 1 ,2� + 2] 

�(�)= �(2� + 1)
ℎ(�)

1 − ℎ(�)
  and  �(�)= �(2� + 1). 

Then,  � ,�  are continuous on [0,∞) , 
nondecreasing, not less than one with  

 �(�) ��(�)+ �(�)�⁄ =  ℎ(�). 
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