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Abstract: Fundamental to optimal location of facility is some measure of point-to-point distances. Distance 

measurements used in facility location are predominantly based on Rectilinear and Euclidean distances. This paper 

presents “great circle distance” which represents the shortest path for distance modeling and optimal facility location 

on spherical surface.  Great circle distances takes into consideration the geometrical reality of the spherical Earth 

and offers an alternative to widely held notion that travel over water can be exactly modelled by Euclidean 

distances. The need for geometrical presentation of the spherical earth becomes very relevant when we take into 

consideration an ever increasing facility location at sea where great circle travel can be practised. Facilities being 

located at sea include oil rigs, mobile drilling units and dynamically positioned units. The use of “Great circle 

distances” opens up another avenue for convergence of Navigation and Spherical Trigonometry into advancement of 

logistics and facility location. In this paper an evaluation of single facility location using great circle distances is 

used to demonstrate the application of the concept. 
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1. Introduction 

It is recognized that the location of a facility 

determines and has great influence on the distribution 

system parameters including time, costs and 

efficiency of the system (Sule, 2001). As such, 

optimal location of the facility is essential for 

attaining improved flow of goods and services to 

customers served by the facility. In choosing the 

location of a facility both qualitative and quantitative 

factors are taken into account including availability 

of land, proximity to raw materials or market, 

availability of utilities and transport facilities as well 

as social, economic and political factors (Zarimbal, 

2009; Melo et al, 2005). Distance or proximity is one 

of the important metric which many decision makers 

seeks to optimize through minimization of the mean 

(or total) distance as in the median concept or 

minimization of the maximum distance as in the 

centre concept (Schilling et al, 1993).  

Though distance is a well known parameter, its 

determination in certain settings could be challenging 

like finding out distance between positions defined 

by latitudes and longitudes on Earth. Considering, the 

spherical nature of the Earth it is evident that distance 

modeling in facility location that takes into account 

this fact will be an improvement on the current 

practice dominated by Euclidean and Rectilinear 

models which are best suited to planar surfaces. This 

paper seeks to present an alternative distance 

measurement based on “great circle distance” which 

represents the shortest path on spherical surface.  The 

need for geometrical modeling of distance of the 

spherical earth becomes very relevant when we take 

into consideration an ever increasing facility location 

at sea for harnessing natural resources including oil 

rigs, mobile drilling units and dynamically positioned 

units. Unlike travel on land where physical barriers 

have to be avoided, it is practical to travel along the 

great circle path during open sea navigation.  

Logistics has borrowed theories from many 

other disciplines of study like marketing, 

mathematics and psychology (Stock, 1997; Sachan 

and Datta, 2005; Gammelgaard, 2004).  The use of 

“Great circle distances” opens up another avenue for 

borrowing from navigation and spherical 

trigonometry into advancement of logistics and 

facility location. In this paper single facility location 

based on great circle distances is evaluated in the 

process of demonstrating and applying the concept. 

 

2. Distance Functions in Location Problem 

Zarimbal (2009) clearly affirm that the distance 

functions play an important role in facility location 

problems. He identifies different distance functions 

used in location problem with each having its own 

domain, advantages, and disadvantages. He defines 

distance as a numerical description of how far apart 

objects are at any given moment in time and may 

refer to a physical length or a period of time. While 

making location decisions, network design and 

optimization; the distribution of travel distances 
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among the service recipients (clients) remains an 

important issue.  

Based on the work Zarinbal (2009)  we note that 

Euclidean and Rectilinear distance accounts for more 

than 63 percent of distance functions used in location 

problems.  Euclidean distance assumes that one can 

travel almost directly from one station to another 

following a straight line as shown in figure 1 

(Montreuil, 2008; Melachrinoudis and Xanthopulos, 

2003).  

Rectilinear distances are applicable when travel 

is allowed only on two perpendicular directions such 

as North–South and East–West arteries as shown by 

the dotted line in figure 2. This distance is also 

popular among researchers because the analysis is 

usually simpler than employing other metrics 

(Drezner and Wesolowsky, 2001). The rectilinear 

distance is also called Manhattan or Taxicab Norm 

distances; because it is the distance a car would drive 

in a city lay-out in square blocks. Apart from these 

two dominant distance functions, other distance used 

in location problem includes aisle distance, distance 

matrix, minimum lengths path, Hilbert Curve, 

Mahalanobis distance, Hamming Distance and 

Chebyshev Distances (Klamroth, 2002; ReVelle and 

Eiselt, 2005).  Klamroth (2002) groups these 

distances into multi-parameter round norms, block 

norms and polyhedral distances. 

 

 
 

Thus Euclidian distance between two points A and B 

with coordinates A ),( yx and B ),( ii yx  is expressed 

mathematically as;
  

 2
1

22 )()()( ii yyxxsd 
……… (1) 

And a Rectilinear distance )(sd between 

A ),( yx and B ),( ii yx co-ordinates is expressed as: 

yyxxsd ii )( ………………... (2) 

2.1. Deficiency of Current Distance Modeling in 

Location Problem 

In a realistic environment the choice of a 

suitable distance function plays a crucial role for a 

good estimation of travel distances (Klamroth, 2002 

and Sminchi-Levi, 1997). In reality we are located on 

spherical Earth with our addresses defined by the 

intersections of latitudes and longitudes. Precise 

geographic locations can be achieved by using a 

geographic information system (GIS) and other 

satellite based systems like the Global Positioning 

Systems (GPS) and Glonass as well as navigation 

charts (Manley, 2008). Grid systems can also be used 

to model location and travel distance but suffer from 

having limited use as most of them are established 

based on national grid reference system hence 

inappropriate to evaluate facility location and 

networks that spans across the borders of countries 

with different grid reference system. 

Bramel and Sminchi-Levi (1997), Klamroth 

(2002), Drezner and Wesolowsky (2001), and 

Zarinbal (2009) assert that air travel and travel over 

water can be exactly modeled by Euclidean distance.  

However, this suggestion disregard the fact that air 

travel and sailing at sea is made over a spherical 

surface whereas Euclidean modeling simply 

measures the distance that would be obtained if the 

distance between two points were measured with a 

ruler (Zarinbal, 2009). Using the Pythagorean 

Theorem (as in Euclidian Distance) and Spherical 

Trigonometry principles reveals disagreement 

between the measurements and the calculations of the 

sides and angles. In fact, the sum of the angles in 

spherical triangle is greater than the 180 degrees 

which is always measured in planar triangles (Ross, 

2002). The discrepancy between the distances 

measured based on Euclidean and those based on 

spherical trigonometry becomes greater, the further 

apart the locations are from each other (Ross, 2002). 

Modeling distance of air travel or ocean navigation 

using Euclidean distances is in principle asserting 

that such travel is made through the interior of the 

sphere which is not the case. This anomaly can be 

corrected by use of spherical trigonometry as 

proposed in this paper. 

 

2.2. Great Circles in Distance Modeling 

Based on the work of Ross (2002), Frost (1988) 

and Earl et al (1999) we note that Trigonometry and 

),( 21 yxB  

),( yxA  ),( yxA  
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Figure 1: Euclidean Distance Figure 2: Rectilinear Distance 
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spherical trigonometry were primarily developed for 

and used in astronomy, geography, and navigation. 

Spherical trigonometry was developed to describe 

and understand applications involving triangles on 

spheres and spherical surfaces. Spherical 

trigonometry offers a realistic representation of the 

Earth surface which is spherical in nature and is 

widely used in other discipline of studies but its 

potential particularly the use of great circle distances 

remains untapped in logistics. The potential areas for 

application of spherical trigonometry concepts 

include but not limited to hub-and-spoke network 

design and facility location at sea like oil and gas 

rigs.  

Measurement of distances in spherical 

trigonometry is based on solving spherical triangles 

whose sides form arcs of great circles (Das et al, 

2001). As in figure 1, great-circle arcs form the sides 

of a spherical triangle, and where two arcs intersect, a 

spherical angle is formed. In other words, the arc 

lengths are a measure of the angle they subtend at the 

center of the sphere, and the spherical angles between 

the arcs are a measure of the angle at which the 

planes that form the arcs intersect. On the Earth, the 

equator and circles of longitude are natural great 

circles. Likewise, any circular path around the Earth 

that cuts it into two equal hemispheres is a great 

circle. Spherical trigonometry involves relationships 

between the arc lengths (sides) and the spherical 

angles between the arcs. 

Studies have shown that the shortest distance 

between any two positions on the earth’s surface lies 

along the arc of the great circle joining these two 

positions. Thus on a spherical surface, a great circle 

path, often called a geodesic, is always the shortest 

path between two points (Ross, 2002). As such, 

between any two points on a sphere which are 

not directly opposite to each other there is a unique 

great circle. 

In recognition of the fundamental difference 

between spherical geometry and Euclidean Geometry 

it is apparent that the equations for distance take 

different forms in these two domains of knowledge. 

Fundamentally, the distance between two points 

in Euclidean space is the length of a straight line 

from one point to the other while in spherical 

geometry straight lines are replaced with geodesics or 

great circle paths.  

While positions of the geographical places can 

relatively be easily determined based on existing 

maps or global positioning systems like GPS and 

Glonass the calculation of the great circle distance 

and thus the shortest distance between places needs a 

formula. By using a system of co-ordinates of 

longitude and latitudes the distance along the great 

circle can be determined by solving the quantities of 

the resultant spherical triangle formed by the 

intersection of three great circles (Frost, 1988) 

namely: 

a) The great circle arc joining the two positions 

(arc c in figure 1) 

b) The meridian (longitude) through position 1 

(meridian joining C and A in figure 1) 

c) The Meridian (longitude) through position 2 

(meridian joining C and B in figure 1) 

 

 
 

Such spherical triangles and shortest distance 

between geographical points are solved by using the 

haversine formula (Bell et al, 2010) as shown in 

equation (3), (4) and (5). Thus in spherical triangle 

ABC in figure 1 above, given CA or b, CB or a and 

angle C, the haversine formula to solve arc length AB 

or c is expressed as: 

)()cos()(cos)()( dlathavlatBAlatdlonghavdisthav  ………………………….……… ….. (3)  

Or 

)()sin()sin()( bahavbaChavhavAB  ……………………………………………….……. (4) 

 

 

 

A 

B b

 

a

 

c

 

C 

Figure 1: Spherical Triangle 
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Where:  

   disthav. Haversine of distance between position 

A and B 

dlonghav. Haversine of the difference between 

the longitudes through position A and B respectively 

Alat.cos Cosine of the latitude through position 

A 

Blat.cos Cosine of the latitude through position 

B 

dlathav. Haversine of the difference between 

latitudes through position A and B respectively 

Alternatively, great circle distance can be 

calculated by finding the interior spherical angle 

between the two points and then multiplying that 

angle by the radius of the earth. Thus the length of 

the side of the spherical triangle (distance S) in 

figure 2 is given by: 

rS  …………………………………………. (5) 

Where: 

S  Arc length (great circle distance on the sphere) 
r Radius, in this case the radius of the earth which 

is 6,371.009 km or 3,958.761 miles or 3,440.069 

nautical miles and  

 Central angle measure  

 

Based on the haversine formula the central 

angle in radians is expressed as 

)6.(
2

sincoscos
2

sinarcsin2 2

21

2













 











Where: 

  Interior Spherical angle 

 21  Difference in Latitude ( dlat ) 

1 Latitude at position 1 

2 Latitude at position 2 

 Difference in Longitude ( )dlong  

In general the different forms of the haversine 

formula can be deduced from the law of cosine for 

spherical triangle. For spherical triangle ABC in 

figure 1 the cosine rule is stated as: 

)cos()sin()sin()cos()cos()cos( Cbabac   

)cos()sin()sin()cos()cos()cos( Acbcba   

)cos()sin()sin()cos()cos()cos( Bcacab   

In order to deduce the distance from the 

haversine formula the haversine tables are used. 

Value in (5) and (6) can be computed directly using 

calculators or some software and programs which 

have been developed that solves the distances directly 

utilizing the excel capabilities.  
Using the haversine formula we assume that the 

Earth is a perfect sphere, even though it really isn't 

but somewhat ellipsoidal at the poles. To correct this 

anomaly a more complicated formula known as 

Vincenty’s formula (equation 7) was developed 

(Jenness, 2008). Except for the antipodal point 

(points on the sphere directly opposite to each other), 

the haversine formula gives accurate distance. For 

demonstration in this paper the haversine formula has 

been used. 

 

)7.....(..............................
coscoscossinsin

)coscossinsin(cos)sin(cos
arctan

2121

2

2121

2

2

























 
 

3.0. Application of Spherical Trigonometry in 

Location Problem 

The starting point in determining the optimum 

location is to find the centroid/centre of gravity of the 

spherical polygon under consideration (Jennes, 2008) 

as the initial coordinate of the new facility. 

Calculating a centroid for spherical surface is 

complex and still being studied, however, it is similar 

in concept as calculating of planner surface. The 

main difference is that longitudes and latitudes are 

not so much of coordinate but rather directions from 

the centre of the sphere. Since longitude and latitudes 

cannot be simply added and divided as the Cartesian 

coordinates can (Jennes, 2008), we first convert them 

into radians for calculating the centre of gravity. In 

order to facilitate calculations by excel, the positions 

given in degree, minutes and seconds are converted 

into decimal places and radians (Pearson, 2009). 

Likewise, in order to take in to account the 

hemisphere in which the position lies we introduce 

s

s 
  

r  

r  

Figure 2: Arc length (S) and Central angle 
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negative values for South Latitudes and West 

longitudes.  

 

3.1. The Algorithm for Applying Great Circle 

Distances in Facility Location  

i. Express latitudes and longitudes given in 

degrees, minutes and seconds as decimal 

values 

ii. Express West Longitudes and South 

Latitudes as negative values otherwise 

positive 

iii. Express location coordinates as radians by 

first converting degrees, minutes and second 

into decimal then apply 

)8.....(....................*
180

deg
Radians  

iv. Determine the initial co-ordinate of the new 

facility ),( ** yx defined by centre of gravity 

formula  

 iii wxwx*
 and  

)9.......(*  iii wywy
 

v. Calculate the total distance (cost) from 

),( ii yx to the optimal location using the 

haversine formula 

vi. Make an iterative search of minimal total 

distance/cost based on initial position until 

no improvement is found 

3.2 Application of the Concept and Results 

ABC Company Ltd has 8 offshore rigs located at sea 

with coordinates as shown in table 1 (locations for 

demonstration purpose only). On reviewing its policy 

on distribution of supplies to the rigs, ABC plans to 

send supplies once in month to a central warehouse 

by using a ship. From the central warehouse the 

supplies are distributed to other rigs by smaller boats 

making 2 trips to rig no.1 and 6 and only one trip to 

all other rigs per week. The task is to determine the 

location of the central warehouse that minimizes the 

travel distance and therefore the distribution costs. 

 

Table 1: Location of Oil and Gas Rigs 

RIG LOCATION (DEGREE)  LOCATION (DECIMAL) 

 LATITUDE LONGITUDE LATITUDE LONGITUDE 

1 01º 36' 15" N 07º 37' 17" E 1.6041667 7.6213889 

2 02º 00' 27" S 06º 25' 50" E -2.0075 6.4305556 

3 00º 40' 38" N 09º 05' 26" E 0.6772222 9.0905556 

4 01º 04' 23" S 05º 19' 45" E -1.0730556 5.3291667 

5 00º 03' 06" S 08º 07' 26" E -0.0516667 8.1238889 

6 02º 53' 52" N 08º 59' 18" E 2.8977778 8.9883333 

7 00º 28' 46" N 06º 57' 30" E 0.4794444 6.9583333 

8 01º 05' 36" S 08º 27' 14" E -1.0933333 8.4538889 

 

Solution: 

We have noted that Great circle distance provides the 

shortest distance between two positions on the 

surface of the earth; hence great circle distances are 

used in solving this problem using the algorithm 

stated above.  

 

The objective function: Minimize 

 rwS
n

i

i



1

 -----from (5)  

Where Tripsw   

 

Step 1: Express location co-ordinates in decimal 

format (see Table1) 

Step 2: Express West Longitudes and south latitudes 

as negative values otherwise positive (see Table 1 

and figure 3)  

Step 3: Express Location coordinates as radians (see 

Table 2) 

Step 4: Determine the initial latitude (
*x ) and initial 

longitude (
*y ) as shown in table 2  

Step 5: Calculate the total distance (cost) from 

),( ii yx to the optimal location using the haversine 

formula:  
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Table 2: Calculation for Initial Location 

Rig Trips 

( iw ) 

Lat in 

Radians ix
 

Long in  

Radians iy  
ii xw  ii yw   iii wxwx*

 

1 2 0.027998 0.1330183 0.055996 0.2660367 = 0.0103585 radians 

2 1 -0.0350375 0.1122344 -0.0350375 0.1122344 = 00º 35' 37" 

3 1 0.0118198 0.1586601 0.0118198 0.1586601  

4 1 -0.0187284 0.0930115 -0.0187284 0.0930115  

5 1 -0.0009018 0.1417886 -0.0009018 0.1417886  iii wywy*
 

6 2 0.0505758 0.156876 0.1011515 0.313752 = 0.1354477 Radians 

7 1 0.0083679 0.1214458 0.0083679 0.1214458 = 07º 45' 38" E 

8 1 -0.0190823 0.1475482 -0.0190823 0.1475482  

 10   0.1035853 1.3544773  

Based on the calculation performed in Table 2, the initial optimal location of the central warehouse will be at 00º 35' 

37"N, 07º 45' 38"E. as depicted in figure 3 

 
Figure 3: Location offshore rigs 

 

Table 3: Calculation of Great Circle Distances based on Geographical Coordinates 

RIG LOCATION (DECIMAL) Trip rS i  rw ii (Km) 

  LATITUDE LONGITUDE    

1 1.6041667 7.6213889 2 113.443 226.886 

2 -2.0075 6.4305556 1 324.831 324.831 

3 0.6772222 9.0905556 1 148.138 148.138 

4 -1.0730556 5.3291667 1 327.769 327.769 

5 -0.0516667 8.1238889 1 82.33 82.33 

6 2.8977778 8.9883333 2 290.295 580.59 

7 0.4794444 6.9583333 1 90.101 90.101 

8 -1.0933333 8.4538889 1 202.794 202.794 

 *x 0.5935 *y 7.760583  
rwS

i

i



8

1

  
1983.439 
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3.2. Findings and Discussion  

The total initial distance (cost) between the initial 

optimal location and all other stations is 1983.439 

Kilometers. The initial position provides valuable 

input for subsequent iterations and decision making 

process taking into account both qualitative and 

quantitative analysis. If a new facility is to be 

constructed the centre of gravity ),( ** yx is an ideal 

location. Alternatively one of the existing facilities 

(rig) can be used for central warehouse. By 

inspection we note that rig 5 is closest to the centre of 

gravity, hence the ideal candidate for second 

iteration.  

By locating the warehouse at rig 5 we note that 

the total distribution distance (cost) becomes 

2161.965 Km an increase of 178.526 Km as 

compared to locating a new facility at the centre of 

gravity. The additional annual distribution cost 

related to the extra 178.526 Km per week needs to be 

compared to the annual fixed cost of establishing a 

new facility. This will help in establishing the trade-

offs between establishing a new facility and locating 

a warehouse at the existing facilities. Iterations can 

be made for all the remaining facilities and 

evaluations made accordingly. 

 

4. Conclusion 

Analysis made in this paper shows that distances for 

facility location can be modeled more realistically by 

applying the great circle distances concept that takes 

into account the spherical nature of the Earth we live 

in.  The contribution of this paper has been the 

introduction of an alternative approach to distance 

modeling for travel over water in place of Euclidean 

distance by developing an algorithm for deducing 

distances from geographical address defined by the 

grid of latitudes and longitudes and applying 

spherical trigonometry principles in the logistics of 

facility location. As such, the application of “Great 

circle distances” which is very much used in 

navigation and Spherical Trigonometry will 

contribute to advancement of logistics and facility 

location by broadening the scope of the set of 

knowledge from which the logistics discipline 

borrows.  
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