The Difference Sequence Space Defined on Musielak-Orlicz Function

N. Faried and A.A. Bakery

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

awad_bakery@yahoo.com

Abstract: The idea of difference sequence spaces was introduced by Kizmaz [4]. Recently, Subramanian [12] studied the difference sequence space $\ell_M(\Delta)$ defined on Orlicz function M. In this paper we introduce new sequence spaces that we call Musielak-Orlicz difference sequence space and denote it by $\ell_M(\Delta)$, the difference paranormed Musielak-Orlicz sequence space $\ell_M(\Delta, p)$, where $M = (M_k)$ is a sequence of Orlicz functions, and study some inclusion relations and completeness of this spaces. [New York Science Journal 2010; 3(8):54-59]. (ISSN: 1554-0200).

Key words: Musielak-Orlicz function, paranorm, difference sequence.

Introduction

Orlicz [9] used the idea of Orlicz function to construct the space (L^M) . Lindentrauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic

to
$$\ell_p (1 \le p < \infty)$$
.

Subsequently different classes of sequence spaces defined by Parashar and Ghoudhary [10], Murasaleen et al. [6] Bekates and Altin [1], Tripathy et al. [13], Rao and Subramanian [2] and many others. Orlicz sequence spaces are the special cases of Orlicz spaces studied in Ref [3].

Recall ([3], [9]) an Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$ which is

continuous, non-decreasing and convex

with
$$M(0) = 0$$
, $M(x) > 0$ for $x > 0$,
and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

If convexity of Orlicz function M is replaced

by
$$M(x+y) \le M(x) + M(y)$$
 then this

function is called modulus function, introduced by Nakano and further discussed by Ruckle [11] and Maddox [7].An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists a constant K>0, such that

 $M(2u) \leq KM(u)(u \geq 0)$. The Δ_2 -condition

is equivalent to $M(\ell u) \leq K \ell M(u)$, for all

values of u and for $\ell > 1$. By ω , we shall denote the space of all real or complex sequences. The sets of natural numbers and real numbers will denote by $\mathbb{N} = \{1, 2, 3, ...\}$, \mathbb{R} respectively.

A linear topological space X over \mathbb{R} is said to be a paranormed space if there is a sub additive

function $g: X \to \mathbb{R}$ such that $g(\theta) = 0$,

g(-x) = g(x) and for any sequence (x_n) in X such that $g(x_n - x) \xrightarrow{n-\infty} 0$, and any sequence (α_n) in \mathbb{R} such that $|\alpha_n - \alpha| \xrightarrow{n-\infty} 0$, we get $g(\alpha_n x_n - \alpha x) \xrightarrow{n-\infty} 0$.

Lindentrauss and Tzafriri [5] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

. The space ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\} \text{ becomes a}$$

Banach space which is called an Orlicz sequence space. For $M(t) = t^p$, $1 \le p < \infty$, the

space ℓ_M coincide with the classical sequence space ℓ_p .

The idea of difference sequence was first

introduced by Kizmaz [4] write

 $\Delta x_k = x_k - x_{k+1}$, for k=1,2,3,..., $\Delta : \omega \to \omega$ be the difference defined by $\Delta x = (\Delta x_k)_{k=1}^{\infty}$, and $M:[0,\infty) \to [0,\infty)$ be an Orlicz function; or a modulus function.

Let ℓ be the sequence of absolutely convergent series. Define a sequence space.

$$\ell(\Delta) = \{x = (x_k) : \Delta x \in \ell\}.$$
 The sequence space

$$\ell_{M}(\Delta) = \left\{ x \in \omega \sum_{k=1}^{\infty} M\left(\frac{|\Delta x_{k}|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$
with the norm

, with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\Delta x_k|}{\rho}\right) \le 1\right\}$$

, becomes a Banach space which is called an Orlicz difference sequence space $\ell_M(\Delta, M)$, see [12].

A sequence $M = (M_k)$ of Orlicz functions

 $M_k \forall k \in \mathbb{N}$ is called a Musielak- Orlicz function, for a given Musielak-Orlicz function M. The function $I_M : \omega \to [0, \infty]; I_M(x) = \sum_{k=1}^{\infty} M_k(x_k);$ $\forall x \in \omega$ is convex modular.

The Musielak-Orlicz function space ℓ_M generated by $M = (M_k)$ is defined by

$$\ell_{M} = \left\{ x \in \omega : \sum_{k=1}^{\infty} M_{k} \left(\frac{\mid x_{k} \mid}{\rho} \right) < \infty, \exists \rho > 0 \right\} ,$$

and ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) \le 1\right\} \text{ is a}$$

Banach space seeing [8].

We define the following new sequence space

Definition: Musielak-Orlicz difference sequence space $\ell_M(\Delta)$ is

$$\ell_{M}(\Delta) = \left\{ x \in \omega : \sum_{k=1}^{\infty} M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) < \infty, \exists \rho > 0 \right\}$$

, where $M = (M_k)$ is a sequence of Orlicz

functions. With the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M_k\left(\frac{|\Delta x_k|}{\rho}\right) \le 1\right\}$$

If $M_k = M \ \forall \ k \in \mathbb{N}$, then $\ell_M(\Delta)$ reduces to Orlicz difference sequence Space studied by Subramanian [12].

Theorem (1): The space $\ell_M(\Delta)$, where

 $M = (M_k)_{k=1}^{\infty}$ is a sequence of Orlicz functions is a Banach space with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M_k\left(\frac{|\Delta x_k|}{\rho}\right) \le 1\right\}.$$

Proof:

Let $x^{(i)}$ be any Cauchy sequence in $\ell_M(\Delta)$, where $x^{(i)} = (x_k^{(i)}) = (x_1^{(i)}, x_2^{(i)}, ...) \in \ell_M(\Delta) \ \forall \ i \in \mathbb{N}.$ Let $r, x_0 > 0$ be fixed, then for each $\frac{\mathcal{E}}{rx_0} > 0$,

there exist a positive integer N such

that
$$||x^{(i)} - x^{(j)}|| < \frac{\varepsilon}{rx_0} \forall i, i \ge N$$
.

Using the definition of norm we get

$$\begin{split} &\sum_{k=1}^{\infty} M_k \left(\frac{\Delta x_k^{(i)} - \Delta x_k^{(j)}}{\parallel x^{(i)} - x^{(j)} \parallel_{\Delta}} \right) \leq 1 \ \forall i, j \geq N \\ & \Longrightarrow M_k \left(\frac{\mid \Delta x_k^{(i)} - \Delta x_k^{(j)} \mid}{\parallel x^{(i)} - x^{(i)} \parallel_{\Delta}} \right) \leq 1 \ \forall k \in \mathbb{N} \end{split}$$

, and $\forall i, j \ge N$. Hence we can find r > 0 with (rr)

$$M_{k}\left(\frac{rx_{0}}{k}\right) > 1 \ \forall k \in \mathbb{N}, \text{ such that}$$
$$M_{k}\left(\frac{|\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}|}{\|x^{(i)} - x^{(j)}\|_{\Delta}}\right) \le M_{k}\left(\frac{rx_{0}}{k}\right). \text{ Since } M_{k} \text{ is}$$

non-decreasing $\forall k \in \mathbb{N}$. This implies that

$$\begin{aligned} & \frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{\|x^{(i)} - x^{(j)}\|_{\Delta}} \leq \frac{rx_0}{k} \Longrightarrow \\ & |\Delta x_k^{(i)} - \Delta x_k^{(j)}| \leq \frac{rx_0}{k} \|x^{(i)} - x^{(j)}\|_{\Delta} < \frac{rx_0}{k} \frac{\varepsilon}{rx_0} = \frac{\varepsilon}{k} \end{aligned}$$

.Therefore $\forall \ \mathcal{E}(0 < \mathcal{E} < 1)$ then \exists a positive integer N such that

$$|(\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)}) + \dots + (\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)})| \le |\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)}| + \dots + |\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}| \le k \frac{\varepsilon}{k}$$

$$\Rightarrow |(\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)})| + \dots + |(\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)})| \le \varepsilon$$

Since

$$\begin{split} |\Delta x_k^{(i)} - \Delta x_k^{(j)}| &\leq \left\{ \Delta x_1^{(i)} - \Delta x_1^{(j)} | + \dots + | x_k^{(i)} - \Delta x_k^{(j)} | \right\} \\ \text{, we get} |\Delta x_k^{(i)} - \Delta x_k^{(j)}| &\leq \varepsilon \ \forall \mathbf{i}, \mathbf{j} \geq N \,. \end{split}$$

Therefore $(\Delta x_k^{(j)})_{j=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} , for each fixed k. Using the continuity of $M_k \forall k \in \mathbb{N}$, we can find

that
$$\sum_{k=1}^{N} M_k \left(\frac{|\Delta x_k^{(i)} - Lim_{j \to \infty} \Delta x_k^{(j)}|}{\rho} \right) \le 1$$
. Thus
 $\sum_{k=1}^{N} M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x_k|}{\rho} \right) \le 1 \quad \forall i \ge N$.

Taking infimum of such ρ 's we get

$$\inf\left\{\rho > 0: \sum_{n=1}^{N} M_k\left(\frac{|\Delta x_k^{(i)} - \Delta x|}{\rho}\right) \le 1\right\} < \varepsilon$$

 $orall \, i \geq N$, since $\Delta x^{(i)} \in \ell_{_M}(\Delta)$ and $M_{_k}$ is

continuous $\forall k \in \mathbb{N}$ then $\Delta x \in \ell_M(\Delta)$. This completes the proof.

Theorem (2): Let $M = (M_k)$ be a Musielakmodulus function which satisfies Δ_2 -condition, then $\ell(\Delta) \subset \ell_M(\Delta)$.

Proof: Let $x \in \ell(\Delta) \Longrightarrow \sum_{k=1}^{\infty} |\Delta x_k| \le N$, since M_k is non-decreasing $\forall k \in \mathbb{N}$

$$\Rightarrow \left(M_k \left(\sum_{k=1}^{\infty} \frac{|\Delta x_k|}{\rho} \right) \right) \le \left(M_k \left(\frac{N}{\rho} \right) \right) \le K \ell M_k(N).$$

By Δ_2 -condition, we get $x \in \ell_M(\Delta)$.

Paranormed sequence spaces:

Let $p = (p_k)$ be any sequence of positive real numbers, then in the same way we can also define the following sequence spaces for a Musielak–Orlicz function M as ℓ extended to $\ell(p)$

$$\ell_{M}(\Delta, p) = \left\{ x \in \omega : \sum_{k=1}^{\infty} \left(M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) \right)^{p_{k}} < \infty, \exists \rho > 0 \right\}$$

Note: If $p_k = p \forall k \in \mathbb{N}$, then

 $\ell_M(\Delta, p) = \ell_M(\Delta).$

Theorem (3): $\ell_M(\Delta, p)$ is a complete paranormed space with

$$g^{*}(x) = \inf \left\{ \rho^{\frac{P_{k}}{H}} : \left[\sum_{k=1}^{\infty} \left(M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) \right)^{P_{k}} \right]^{\frac{1}{H}} \le 1 \right\}$$

. For $1 \le p_{k} < \infty \ \forall \ k \in \mathbb{N}$,
$$H = \max \left\{ 1, \sup_{n} P_{n} \right\}.$$

Proof: Let $x^{(i)}$ be any Cauchy sequence in $\ell_M(\Delta, p)$, where

$$x^{(i)} = (x_1^{(i)}, x_2^{(i)}, x_3^{(i)}..) \in \ell_M(\Delta, p) \ \forall i \in \mathbb{N}.$$
 Let

 $r, x_0 > 0$ is fixed. Then $\forall \frac{\varepsilon}{rx_o} > 0 \exists a \text{ positive}$

integer N such that

$$g^*(x^{(i)} - x^{(j)}) < \frac{\varepsilon}{rx_o} \quad \forall i, j \ge N$$
 . Using the

definition of paranorm we get

$$\left[\sum_{k=1}^{\infty} \left(M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^*(x^{(i)} - x^{(j)})} \right) \right)^{p_k} \right]^{\frac{1}{H}} \le 1$$

Since $1 \le p_k \le \infty$, $\forall k \in \mathbb{N}$. It follows that

$$M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^* (x^{(i)} - x^{(j)})} \right) \leq 1, \forall k \geq 1 \text{ and } \forall i, j \geq N.$$

Hence we can find r>0 $\forall k \in \mathbb{N}$ with $M_k \left(\frac{rx_0}{k}\right) > 1$

such that $M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^*(x^{(i)} - x^{(j)})} \right) \le M_k \left(\frac{rx_0}{k} \right).$

Since M_k is non-decreasing $\forall k \in \mathbb{N}$ We get

$$\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^*(x^{(i)} - x^{(j)})} \le \frac{rx_0}{k}$$
$$\Rightarrow |\Delta x_k^{(i)} - \Delta x_k^{(j)}| \le \frac{rx_0}{k} g^*(x^{(i)} - x^{(j)}) \le \frac{rx_0}{k} \frac{\varepsilon}{rx_0} = \frac{\varepsilon}{k}$$

. Therefore for each $0 < \varepsilon < 1$ then there exist a positive integer N such that

$$|(\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)}) + \dots + (\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)})| \le |\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)}| + \dots + |\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}| \le k \frac{\varepsilon}{k}$$

Since

$$\begin{split} |(\Delta x_k^{(i)} - \Delta x_k^{(j)})| &\leq \left| \Delta x_1^{(i)} - \Delta x_1^{(j)} \right| + \dots + \left| \Delta x_k^{(i)} - \Delta x_k^{(j)} \right| \\ \text{we get} |\Delta x_k^{(i)} - \Delta x_k^{(j)}| &\leq \varepsilon , \ \forall k \in \mathbb{N}. \end{split}$$

Therefore $(\Delta x_k^{(j)})_{j=1}^{\infty}$ be a Cauchy sequence in \mathbb{R} , for fixed k. Using the continuity of $M_k \ \forall k \in \mathbb{N}$, we can find that

$$\begin{bmatrix} \sum_{k=1}^{N} \left(M_k \left(\frac{|\Delta x_k^{(i)} - \lim_{j \to \infty} \Delta x_k^{(j)}}{\rho} \right) \right)^{P_k} \end{bmatrix}^{\frac{1}{H}} \le 1 \\ \Rightarrow \begin{bmatrix} \sum_{k=1}^{N} \left(M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x|}{\rho} \right) \right)^{P_k} \end{bmatrix}^{\frac{1}{H}} \le 1. \end{bmatrix}$$

Taking infimum of such ρ 's we get

$$\inf \left\{ \rho^{\frac{P_k}{H}} : \left[\sum_{k=1}^{N} \left[M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x|}{\rho} \right) \right]^{P_k} \right]^{\frac{1}{H}} \le 1 \right\} < \varepsilon$$

$$\forall i \ge N \text{, and } j \to \infty.$$

Since $(x^{(i)}) \in \ell_M(\Delta, p)$ and M_k is continuous $\forall k \in \mathbb{N}$ it follows that $x \in \ell_M(\Delta, p)$.

Theorem (4): Let $0 < p_k < q_k < \infty \ \forall \ k \in \mathbb{N}$, then

$$\ell_M(\Delta, p) \subseteq \ell_M(\Delta, q).$$

Proof: Let $x \in \ell_M(\Delta, p)$

$$\Rightarrow \sum_{k=1}^{\infty} M_k \left[\left(\frac{|\Delta x_k|}{\rho} \right) \right]^{P_k} < \infty \text{, then}$$
$$M_k \left(\frac{|\Delta x_k|}{\rho} \right) \le 1 \quad \forall k \in \mathbb{N}. \text{ For sufficiently large k}$$

since M_k is non-decreasing. Hence we get

$$\begin{split} &\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{P_k} < \infty \\ &\Rightarrow \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} < \infty . \\ &\Rightarrow x \in \ell_M(\Delta, q) . \end{split}$$

Theorem (5):

(a) Let $0 < \inf_k p_k \le p_k \le 1 \forall k \in \mathbb{N}$.

Then $\ell_M(\Delta, p) \subseteq \ell_M(\Delta)$

(b) Let
$$1 \le p_k \le \sup_k p_k < \infty \forall k \in \mathbb{N}$$
. Then.

Proof:

(a) For $x \in \ell_M(\Delta, p)$, then

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{p_k} < \infty \Longrightarrow M_k \left(\frac{|\Delta x_k|}{\rho} \right) \le 1$$

For sufficiently large k, since

$$0 < \inf p_k \le p_k \le 1 \forall k \in \mathbb{N}$$

$$\Rightarrow \sum_{k=1}^{\infty} M_k \left(\frac{|\Delta x_k|}{\rho} \right) \leq \sum_{k=1}^{\infty} \left(M_k \left(\frac{|\Delta x_k|}{\rho} \right)^{P_k} \right)$$
$$\Rightarrow \sum_{k=1}^{\infty} M_k \left(\frac{|\Delta x_k|}{\rho} \right) < \infty \Rightarrow x \in \ell_M(\Delta)$$

(b) For $P_k \ge 1 \ \forall k \in \mathbb{N}$ and $\sup p_k < \infty$ and

$$x \in \ell_M(\Delta)$$
 we get $\sum_{k=1}^{\infty} M_k \left(\frac{|\Delta x_k|}{\rho}\right) < \infty \Rightarrow$
 $M_k \left(\frac{|\Delta x_k|}{\rho}\right) \le 1$. For sufficiently large k,

since $1 \leq p_k \leq \sup p_k < \infty \; \forall \; k \in \mathbb{N},$ we get

$$\sum_{k=1}^{\infty} \left(M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right)^{P_k} \leq \sum_{k=1}^{\infty} M_k \left(\frac{|\Delta x_k|}{\rho} \right) < \infty$$
$$\Rightarrow \sum_{k=1}^{\infty} \left(M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right)^{P_k} < \infty. \Rightarrow x \in \ell_M(\Delta, p)$$

Theorem (6): Let $0 \le p_k \le q_k \ \forall k \in \mathbb{N}$

and
$$\left(\frac{q_k}{p_k}\right)$$
 be bounded,

then $\ell_M(\Delta, q) \subset \ell_M(\Delta, p)$. Proof: For $x \in \ell_M(\Delta, q)$ (i.e.)

$$\begin{split} \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} &< \infty \text{ and} \\ t_k &= \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} \text{ and } \lambda_k = \frac{q_k}{p_k} \,. \\ \text{Since } p_k &\leq q_k \forall k \in \mathbb{N} \\ \text{therefore } 0 &\leq \lambda_k \leq 1 \forall k \in \mathbb{N}. \text{Take0} < \lambda < \lambda_k \\ \forall k \in \mathbb{N}. \text{ Define } u_k = t_k (t_k \geq 1) \,; \\ u_k &= 0(t_k < 1) \text{ and } v_k = 0(t_k \geq 1) \,, \\ u_k &= t_k (t_k < 1) \,. t_k = u_k + v_k \,. \\ t_k^{\lambda_k} &= u_k^{\lambda_k} + v_k^{\lambda_k} \,. \text{Now it follows that} \\ u_k^{\lambda_k} &\leq u_k \leq t_k \text{ and } v_k^{\lambda_k} \leq v_k^{\lambda} (1) \,. \\ (\text{i.e.}) &\sum_{k=1}^{\infty} t_k^{\lambda_k} &= \sum_{k=1}^{\infty} (u_k + v_k)^{\lambda_k} \\ \Rightarrow &\sum_{k=1}^{\infty} t_k^{\lambda_k} \leq \sum_{k=1}^{\infty} u_k^{\lambda_k} + \sum_{k=1}^{\infty} v_k^{\lambda_k} \,. \\ \Rightarrow &\sum_{k=1}^{\infty} t_k^{\lambda_k} \leq \sum_{k=1}^{\infty} t_k + \sum_{k=1}^{\infty} v_k^{\lambda_k} \,. \end{split}$$

By using equation (1), we

$$\begin{split} & \operatorname{get} \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k \lambda_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} \\ & \Rightarrow \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k}, \\ & \operatorname{then} \ell_M(\Delta, q) \subset \ell_M(\Delta, p). \end{split}$$

Theorem (7): Let $1 \le p_k \le \sup_k p_k < \infty \forall k \in \mathbb{N}$.

Then $\ell_M(\Delta, p)$ where $M = (M_k)$ be a Musielakmodulus function is a linear set over the set of

complex numbers.

Proof: is easy so omitted.

Corresponding author:

N. Faried Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt <u>n_faried@hotmail.com</u>

References

- 1. C. Bektas and Y. Altin, The sequence space $\ell_M(p,q,s)$ on seminormed spaces, Indian J. Pure Appl. Math., 34(4) (2003), 529-534.
- K. Chandrasekhara Rao and N. Subramanian, The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
- M.A. Krasnoselskii and Y.B. Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
- 4. H. Kizmaz, on certain sequence spaces, Canad Math. Bull., 24(2) (1981), 169-176.
- J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- M. Mursaleen,M.A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math., Vol. XXXII (1999), 145-150.
- I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
- J. Musielak, Orlicz spaces and modular spaces, Lecture notes in Math, 1034 (1987), 1-222.
- 9. W. Orlicz, Über Raume (L^M) Bull, Int. Acad Polon. Sci. A, (1936), 93-107.

5/5/2010

- S.D. Parashar and B. Choudhary, sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4) (1994), 419-428.
- 11. W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
- 12. N. Subramanian, the difference sequence space defined on Orlicz function, Int. Journal of Math. Analysis, Vol. 2, 2008, no. 15, 721-729.
- B.C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3)(2003), 175-192.