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Abstract: The idea of difference sequence spaces was introduced by Kizmaz [4]. Recently, Subramanian [12] 

studied the difference sequence space )(M defined on Orlicz function M. In this paper we introduce new 

sequence spaces that we call Musielak-Orlicz difference sequence space and denote it by )(M , the difference 

paranormed Musielak-Orlicz sequence space ),( pM  , where )( kMM  is a sequence of Orlicz functions, and 

study some inclusion relations and completeness of this spaces. [New York Science Journal 2010; 3(8):54-59]. 

(ISSN: 1554-0200). 
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 Introduction 

Orlicz [9] used the idea of Orlicz function to 

construct the space )( ML . Lindentrauss and Tzafriri 

[5] investigated Orlicz sequence spaces in more 

detail, and they proved that every Orlicz sequence 

space M contains a subspace isomorphic  

to )1(  pp . 

Subsequently different classes of sequence 

spaces defined by Parashar and Ghoudhary [10], 

Murasaleen et al. [6] Bekates and Altin [1], Tripathy 

et al. [13], Rao and Subramanian [2] and many 

others. Orlicz sequence spaces are the special cases of 

Orlicz spaces studied in Ref [3]. 

Recall ([3], [9]) an Orlicz function is a 

function ),0[),0[: M which is 

continuous, non-decreasing and convex 

 with 0)0( M , 0)( xM for 0x , 

and   xs  )( axM . 

If convexity of Orlicz function M is replaced  

by )()()( yMxMyxM  then this  

function is called modulus function, introduced by 

Nakano and further discussed by Ruckle [11] and 

Maddox [7].An Orlicz function M is said to  

satisfy 2–condition for all values of u, if there exists 

a constant K>0,such that 

 )0)(()2(  uuKMuM . The 2–condition 

 is equivalent to )()( uMKuM   , for all 

 values of u and for  >1. By, we shall denote the 

space of all real or complex sequences. The sets of 

natural numbers and real numbers will denote by = 

{1, 2,3, …}  respectively. 

A linear topological space X over  is said to 

be a paranormed space if there is a sub additive  

function Xg :  such that 0)( g , 

 )()( xgxg   and for any sequence  )( nx   in X  

such that 0)(  n

n xxg , and any sequence 

)( n   in  such that 0||  n

n  , we get 

0)(  n

nn xxg   . 

Lindentrauss and Tzafriri [5] used the idea of 

Orlicz function to construct Orlicz sequence space  
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  becomes a 

Banach space which is called an Orlicz sequence 

space. For
p)M( tt  ,  p1 , the  

space M coincide with the classical sequence 

space p . 

The idea of difference sequence was first  

introduced by Kizmaz [4] write  

1kkk -  xxx , for k=1,2,3,...,  :  

be the difference defined by


 1kk )( xx , and 

),0[),0[: M  be an Orlicz function; or a 

modulus function. 

Let  be the sequence of absolutely convergent 

series. Define a sequence space. 

   xxx k :)()( .The sequence 

space  
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, becomes a Banach space which is called an Orlicz 

difference sequence space ),( MM  , see [12]. 

A sequence )( kMM   of Orlicz functions 

 kM  k is called a Musielak- Orlicz function, 

for a given Musielak-Orlicz function M . The 

function ],0[: MI ; 
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k

kkM xMxI ; 

x   is convex modular. 

The Musielak-Orlicz function space M  

generated by )( kMM   is defined by  
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 is a  

Banach space seeing  [8]. 

We define the following new sequence space 

 

Definition: Musielak-Orlicz difference sequence 

space )(M  is 
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 , where )( kMM  is a sequence of Orlicz 

 functions. With the norm 
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If MMk   k , then )(M  reduces to Orlicz 

difference sequence Space studied by  

Subramanian [12].  

 

Theorem (1): The space )(M , where  



 1)( kkMM is a sequence of Orlicz functions is a 

Banach space with the norm  
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Proof: 

Let 
 ix be any Cauchy sequence in )(M , where 

)(,...),()( )(

2

)(

1

)()(  M

iii

k

i xxxx   i . Let 

0, 0 xr be fixed, then for each 0
0


rx


, 

there exist a positive integer N such 

 that Nii, ||||
0

)()( 
rx

xx ji 
. 

Using the definition of norm we get  
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.Since  kM  is  

non-decreasing k . This implies that 
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Therefore 
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kx  is a Cauchy sequence in , for 

each fixed k . Using the continuity of kM  k , 

we can find  

that 1
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Taking infimum of such  's we get   
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ix   and kM is  

continuous  k  then )( Mx  . This  

completes the proof. 

 

Theorem (2): Let  )( kMM    be a Musielak- 

modulus function which satisfies 2-condition, 

then )()(  M . 

Proof: Let Nxx
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  By 2 -condition, we get )( Mx  . 

Paranormed sequence spaces: 

Let )( kpp  be any sequence of positive real 

numbers, then in the same way we can also define the 

following sequence spaces for a Musielak–Orlicz 

function M as  extended to )( p  
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Theorem (3): ),( pM   is a complete paranormed 

space with 
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)(ix be any Cauchy sequence 

in ),( pM  , where 
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(a) Let 1inf0  kkk pp  k . 

 Then )(),(  MM p    

(b) Let  kkk pp sup1  k . Then. 

Proof: 

(a) For ),( px M  , then 
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therefore 10  k  k .Take0< < k  
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By using equation (1), we  

get 
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then ),(),( pq MM   . 

Theorem (7): Let  kkk pp sup1  k . 

Then ),( pM   where )( kMM    be a Musielak- 

modulus function is a linear set over the set of  

complex numbers. 

Proof: is easy so omitted. 
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