On k-Nearly Uniformly Convex Property in Generalized Cesáro Sequence Space Defined by Weighted Means

N. Faried and A.A. Bakery

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

awad bakery@yahoo.com

Abstract: The main purpose of this paper is to show that the sequence space $ces[(a_n), (p_n), (q_n)]$ defined by Altay and Başar (2007) is k-nearly uniformly convex (k-NUC) for $k \ge 2$ when $\underset{n\to\infty}{Liminf} p_n > 1$. Therefore it is fully k-rotund (kR), NUC and has a drop property. [New York Science Journal 2010; 3(8):48-53]. (ISSN: 1554-0200).

Keywords: Generalized Cesáro sequence space, H-property, R-property, fully k-rotund (kR), Convex modular, k-nearly uniformly convex, Luxemburg norm.

Introduction

Let $(X, \|.\|)$ be Banach space over the real numbers \mathbb{R} and let B(X) (respec. S(X)) be the closed unit ball (resp. unit sphere) of X.

A point $x \in S(X)$ is an extreme point of B(X), if

for any $y, z \in S(X)$, the equality $x = \frac{y+z}{2}$ implies y = z.

A Banach space X is said to be Rotund (R) if for every point of S(X) is an extreme point of B(X).Clarkson [1]who introduced the concept of uniform convexity.

A Banach space X is called uniformly convex (UC) if $\forall \varepsilon > 0 \exists \delta > 0$ such that for $x, y \in S(X)$, the

inequality
$$||x - y|| < \varepsilon$$
 implies that $\left| \frac{x + y}{2} \right| < \delta$

(1.1) for any $x \notin B(X)$, the drop determined by x is the set

$$D(x, B(X)) = conv(\{x\} \cup B(X)).$$
 (1.2)

Rolewicz [12], basing on Daneš drop theorem [4], introduced the notation of drop property for Banach spaces.

A Banach space X has the drop property (D) if

For every closed set C disjoint with $B(X) \exists X \in C$ such that $D(x, B(X)) \cap C = \{x\}$. (1.3) X is said to have the property (H), if for any sequence on the unit sphere of X, weak convergence coincides norm convergence. In [13], Rolewicz proved that if the Banach space X has the drop property (D), then X is reflexive. Montesinos [11] extended this result by showing that X has the drop property if and only if X is reflexive and has the property (H). A sequence

 $\{x_n\} \subset X$ is said to be ε -separated sequence for

some
$$\varepsilon > 0$$
 if
 $sep(x_n) = \inf \{ \|x_n - x_m\| : n \neq m \} > \varepsilon$ (1.4)

A Banach space X is called nearly uniformly convex (NUC) if $\forall \varepsilon > 0 \exists \delta \in (0,1)$ such that for every sequence $(x_n) \subseteq B(X)$ with $sep(x_n) \ge \varepsilon$, we have $conv(x_n) \cap (1-\delta)B(X) \neq \phi$. (1.5)

Huff [6] proved that every NUC Banach spaces X is reflexive and it has property (H). Kutzarova [7] has defined k-nearly uniformly convex Banach spaces. Let $k \ge 2$ be an integer, a Banach space X is called

k-nearly uniformly convex (k-NUC) if

 $\forall \mathcal{E} > 0 \exists \delta > 0$ such that for any sequence

$$(x_n) \subset B(X)$$
 with $sep(x_n) \ge \varepsilon$ there are

 $n_1, n_2.n_3,..., n_k \in \mathbb{N}$, where $\mathbb{N} = \{1, 2, 3,...\}$.

Such that
$$\left\| \frac{x_{n_1} + x_{n_2} + x_{n_3} + \dots + x_{n_k}}{k} \right\| < \delta$$
.

(1.6) Clearly, k-NUC Banach spaces are NUC, however the opposite implication does not hold in general [7].

Fan and Gliksberg [5] have introduced

k-Rotund (kR) Banach spaces. A Banach space X is called fully k-rotund (kR) if for any sequence

$$(x_n) \subset B(X)$$

$$\left\| \frac{x_{n_1} + x_{n_2} + x_{n_3} + \dots + x_{n_k}}{k} \right\| \to 1 \text{ as}$$

$$\min\{n_i : 1 \le i \le k\} \to \infty \text{ implies that } (x_n) \text{ is}$$

convergent. It is well known that UC implies kR and kR implies (k+1)R, and kR spaces are reflexive and rotund. By ω , we denote the space of all real or complex sequences .

For a real vector space X, a function $\sigma: X \rightarrow [0,\infty]$ is called modular, if it satisfies the following conditions:

(i)
$$\sigma(x) = 0 \Leftrightarrow x = 0 \ \forall x \in X$$
,
(ii) $\sigma(\lambda x) = \sigma(x) \ \forall \ \lambda \in \mathbb{R}$ with $|\lambda| = 1$,
(iii) $\sigma(\lambda x + \beta y) \le \sigma(x) + \sigma(y) \ \forall x, y \in X$
 $\forall \lambda, \beta \ge 0; \ \lambda + \beta = 1$.

Further, the modular σ is called convex if

(iv) $\sigma(\lambda x + \beta y) \le \lambda \sigma(x) + \beta \sigma(y) \quad \forall x, y \in X$ $\forall \lambda, \beta \ge 0; \ \lambda + \beta = 1.$ If σ is a modular on X, we define $X_{\sigma} = \left\{ x \in X : \lim_{\lambda \to 0^{-}} \sigma(\lambda x) = 0 \right\},$ (1.7)

$$X_{\sigma}^* = \{x \in X : \sigma(\lambda x) < \infty, \exists \lambda > 0\}.$$

It is clear that $X_{\sigma} \subseteq X_{\sigma}^*$. If σ is a convex

modular $\forall x \in X_{\sigma}$, we define

$$\|x\| = \inf\left\{\lambda > 0: \sigma\left(\frac{x}{\lambda}\right) \le 1\right\}.$$
 (1.8)

Orlicz [10] proved that if σ is a convex modular on X, then $X_{\sigma} = X_{\sigma}^*$ and $\|\cdot\|$ is a norm on X_{σ} for which X_{σ} is a Banach space. The norm $\|\cdot\|$, defined as in (1.8), is called the Luxemburg norm.

A modular σ is said to satisfy the δ_2 condition ($\sigma \in \delta_2$) if $\forall \varepsilon > 0$ \exists constants $K \ge 2$ and a > 0 such that $\sigma(2u) \le K\sigma(u) + \varepsilon$, (1.9)

 $\forall u \in X_{\sigma}$ With $\sigma(u) \leq a$. If σ satisfies the δ_2 -condition $\forall a > 0$ with $K \geq 2$ depending on a, we say that σ satisfies the strong δ_2 -condition

 $(\sigma \in \delta_2^s)$.

The following known results are very important for our consideration.

Theorem1.1. [2]

If $\sigma \in \delta_2^s$, then $\forall L > 0$ and $\forall \varepsilon > 0 \exists \delta > 0$ such

that
$$|\sigma(u+v) - \sigma(u)| < \varepsilon$$
, (1.10)

$$u, v \in X_{\sigma}$$
 With $\sigma(u) \le L$ and $\sigma(v) \le \delta$

Proof. See [2, Lemma 2.1].

Theorem1.2. [2]

(1) If $\sigma \in \delta_2^s$, then $\forall x \in X_{\sigma}$, ||x|| = 1 if and only if $\sigma(x) = 1$.

(2) If $\sigma \in \delta_2^s$, then for any sequence (x_n) in X_{σ} , $||x_n|| \rightarrow 0$ if and only if $\sigma(x_n) \rightarrow 0$.

Proof. See [2, Corollary 2.2 and Lemma 2.3].

Theorem 1.3.

If $\sigma \in \delta_2^s$, then $\forall \varepsilon \in (0,1) \exists \delta \in (0,1)$ such that $\sigma(x) \leq 1 - \varepsilon$ implies $||x|| \leq 1 - \delta$.

Proof. Suppose that the theorem does not hold, then $\exists \varepsilon > 0$ and (x_n) in X_{σ} such that $\sigma(x_n) \le 1 - \varepsilon$

, and
$$\frac{1}{2} \leq \|x_n\| \xrightarrow{n \to \infty} 1$$
. Let $a_n = \frac{1}{\|x_n\|} - 1$.

Then $a_n \xrightarrow{n \to \infty} 0$. Let $L = \sup_n \sigma(2x_n)$. Since $\sigma \in \delta_2^s \exists K \ge 2$ such that $\sigma(2u) \le K\sigma(u) + 1$ $(1.11) \forall u \in X_{\sigma}$ with $\sigma(u) < 1$. By(1.11), we

have $\sigma(2x_n) \le K\sigma(x_n) + 1 < K + 1 \forall n \in \mathbb{N}$. Hence $0 \le L < \infty$, by theorem 1.2(1), we have

$$1 = \sigma(\frac{x_n}{\|x_n\|}) = \sigma(2a_nx_n + (1 - a_n)x_n) \quad (1.12)$$

$$\leq a_n\sigma(2x_n) + (1 - a_n)\sigma(x_n) \leq$$

$$a_nL + (1 - \varepsilon) \xrightarrow{n \to \infty} 1 - \varepsilon$$

, which is a contradiction.

Altay and Başar (2007) defined the sequence space $ces[(a_n), (p_n), (q_n)]$ as

$$ces[(a_n), (p_n), (q_n)] = \left\{ x \in \omega : \sum_{n=1}^{\infty} (a_n \sum_{k=1}^{n} q_k |x_k|)^{p_n} < \infty \right\}$$
(1.13),

where $(a_n), (p_n)$ and (q_n) are sequences of

positive real numbers, $1\!\leq p_n\!<\!\infty \ \forall n\!\in\!\mathbb{N}.$ with the norm

$$\| x \| = \left[\sum_{n=1}^{\infty} \left(a_n \sum_{k=1}^{n} q_k | x_k | \right)^{p_n} \right]^{\frac{1}{H}}$$
(1.14),
$$H = \sup_{n} p_n .$$

They also showed that the space

 $ces[(a_n), (p_n), (q_n)]$ is a complete linear metric space paranormed

by
$$g(x) = \left[\sum_{n=1}^{\infty} \left(a_n \sum_{k=1}^{n} q_k \mid x_k \mid\right)^{p_n}\right]^{\frac{1}{H}}$$
 also

V.Karakaya and N.Şimşek [16] proved that this space is a Banach space and posses Kadec-Klee (H).

Remarks:

(1)Taking
$$a_n = \frac{1}{\sum_{k=1}^n q_k}$$
, then

 $Ces((a_n), (p_n), (q_n)) = Ces((p_n), (q_n))$ the N[°]orlund sequence spaces studied by [18].

(2) Taking $a_n = \frac{1}{n}$; $q_n = 1$, $\forall n \in \mathbb{N}$, then $Ces((a_n), (p_n), (q_n)) = Ces(p_n)$ studied by W. Sanhan and S. Suantai [15].

(5) Taking
$$a_n = -$$
, $q_n = 1$, $p_n = p$, $\forall n \in \mathbb{N}$,
then $Ces((a_n), (p_n), (q_n)) = Ces_p$ studied by

Many authors see [8,9and14].

Throughout this paper, the sequence (p_n) is a bounded sequence of positive real numbers with Liminf $p_n > 1$, and also

1)
$$H = \sup_{n} p_n$$
.

Let (p_k) be a bounded sequence of positive real numbers, we

have
$$|a_k + b_k|^{p_k} \le 2^{H-1} (|a_k|^{p_k} + |b_k|^{p_k}) \forall k \in \mathbb{N}.$$

2. Main results

Proposition2.1.

The functional σ is convex modular

on $ces[(a_n), (p_n), (q_n)]$ and for

any $x \in ces[(a_n), (p_n), (q_n)]$ the functional

 σ on *ces*[$(a_n), (p_n), (q_n)$] satisfies the following properties:

(i) If 0 < r < 1, then

(ii)
$$r^H \sigma\left(\frac{x}{r}\right) \le \sigma(x)$$
 and $\sigma(rx) \le r\sigma(x)$

(ii) If r>1, then
$$\sigma(x) \le r^H \sigma\left(\frac{x}{r}\right)$$
.
(iii) If r>1, then $\sigma(x) \le r\sigma(x) \le \sigma(rx)$.

Proof. All assertions are clearly obtained by the definition and convexity of σ see [17].

http://www.sciencepub.net/newyork

newyorksci@gmail.com

Proposition2.2.

For any $x \in ces[(a_n), (p_n), (q_n)]$, the following

assertions are satisfied:

- (i) If ||x|| < 1, then $\sigma(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\sigma(x) \ge ||x||$,
- (iii) ||x||=1 if and only if $\sigma(x)=1$.

Proof: It can be proved with standard techniques in a similar way as in [17].

<u>Proposition 2.3.</u> $\forall L > 0$ and $\forall \varepsilon > 0 \exists \delta > 0$ such

that $|\sigma(u+v) - \sigma(u)| < \varepsilon$ whenever $u, v \in ces[(a_n), (p_n), (q_n)]$ with $\sigma(u) \le L$ and $\sigma(v) \le \delta$

Proof: Since (p_n) is bounded, it is easy to see that $\sigma \in \delta_2^s$. Hence the proposition is obtained directly from theorem (1.1).

Proposition2.4. For any

sequence $(x_n) \in ces[(a_n), (p_n), (q_n)], ||x_n|| \rightarrow 0$ if and only if $\sigma(x_n) \rightarrow 0$.

Proof: It follows directly from Theorem (1.2-2) since $\sigma \in \delta_2^s$.

<u>Theorem2.5.</u> $\forall x \in ces[(a_n), (p_n), (q_n)]$ and $\forall \varepsilon \in (0,1), \exists \delta \in (0,1)$ such that

$$\sigma(x) \leq 1 - \varepsilon$$
 implies $||x|| \leq 1 - \delta$.

<u>Proof</u>: Since $\sigma \in \delta_2^s$, the theorem is obtained directly from theorem (1.3).

Theorem2.6. The space $ces[(a_n), (p_n), (q_n)]$ is k-NUC \forall integer k ≥ 2 .

Proof:

Let $\varepsilon > 0$ and $(x_n) \in B(ces[(a_n), (p_n), (q_n)])$ with $sep(x_n) \ge \varepsilon$.For each $m \in \mathbb{N}$, let

 $x_n^m = (0,0,\ldots,0, x_n(m), x_n(m+1),\ldots)$.Since for each $i \in \mathbb{N}$, $(x_n(i))_{n=1}^{\infty}$ is bounded, we have that

 $\forall i \in \mathbb{N}, (x_n(i))_{n=1}^{\infty}$ is bounded, by using the diagonal method, we can find a subsequence

 $(x_{n_j}(i))_{\text{of}} (x_n)$ such that $(x_{n_j}(i))$ converges for each $i \in \mathbb{N}$, $1 \le i \le m$. Therefore, there exists an increasing sequence of positive integer (t_m) such that $sep((x_{n_j}^m)_{j>t_m}) \ge \varepsilon$. Hence, there is a sequence of positive integers $(r_m)_{m=1}^{\infty}$ with $r_1 < r_2 < r_3 < \dots$ such that $\|x_{r_m}^m\| \ge \frac{\varepsilon}{2} \forall m \in \mathbb{N}$. Then by proposition (2.4), we may assume that there exists $\eta > 0$ such

$$\operatorname{that} \sigma(x_{r_m}^m) \ge \eta \,\forall \, m \in \mathbb{N}.$$

$$(2.1)$$

Let $\alpha > 0$ be such that $1 < \alpha < \underset{n \to \infty}{\text{Liminf }} p_n$. For

fixed integer $k \ge 2$, let $\varepsilon_1 = \left(\frac{k^{\alpha-1}-1}{(k-1)k^{\alpha}}\right)\left(\frac{\eta}{2}\right)$, then by proposition (2.3) $\exists \delta > 0$ Such that $\left|\sigma(u+v) - \sigma(u)\right| < \varepsilon_1$. (2.2) Whenever $\sigma(u) \le 1$ and $\sigma(v) \le \delta$. Since by Proposition (2.2-1) $\sigma(x_n) \le 1 \forall n \in \mathbb{N} \exists$ positive integers $m_i (i = 1, 2, 3, \dots, k-1)$ with $m_1 < m_2 < m_3 < \dots < m_{k-1}$ such that $\sigma(x_i^{m_i}) \le \delta$ and $\alpha \le p_j \forall j \ge m_{k-1}$. Define $m_k = m_{k-1} + 1$. By (2.1), we have $\sigma(x_{r_{m_k}}^{m_k}) \ge \eta$. Let $s_i = i$ for $1 \le i \le k - 1$, and $s_k = r_{m_k}$. Then in virtue of (2.1), (2.2), and Convexity of function $f_i(u) = |u|^{p_i} (i \in \mathbb{N})$, we have

By theorem (2.5) $\exists \gamma > 0$ such that

$$\left\|\frac{x_{s_1} + x_{s_2} + x_{n_3} + \dots + x_{s_k}}{k}\right\| < 1 - \gamma \text{ . Therefore,}$$

 $ces[(a_n), (p_n), (q_n)]$ is k-NUC.

Since k-NUC implies k R and k R implies R and reflexivity holds, and k-NUC implies NUC and NUC implies H-property and reflexivity holds, by theorem (2.6), the following results are obtained.

<u>COROLLARY2.7.</u> For $\underset{n \to \infty}{Liminf} p_n > 1$, the

space $ces[(a_n), (p_n), (q_n)]$ is k R, NUC, and has a drop property.

COROLLARY2.8. For
$$\underset{n \to \infty}{\text{Liminf}} p_n > 1$$
, the space $ces[(a_n), (p_n)]$ is k-NUC.

<u>COROLLARY2.9.</u> For $\underset{n\to\infty}{Liminf} p_n > 1$, the space $ces[(p_n)]$ is k-NUC.

<u>COROLLARY2.10.</u> For $1 , the space <math>Ces_p$ is k-NUC.

Corresponding author

N. Faried Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt n faried@hotmail.com

References:

- 1. J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40(1936), no. 3, 396-414.
- 2. Y. Cui and H. Hudzik, On the uniform opial property in some modular sequence spaces, Funct. Approx.Comment.Math.26(1998),93-102.
- Y. Cui, C. Meng, and R. Pluciennik, Banach-Saks property and (β) property in Cesáro sequence spaces, Southeast Asian Bull.Math.24(2000),no.2,201-210.
- 4. J.Daneš, A geometric theorem useful in nonlinear functional analysis, Boll.Un.Mat.Ital.(4)6(1972),369-375.
- 5. K.Fan and I.Glicksberg, Fully convex normed linear spaces,Proc.Nat.Acad.Sci.U.S.A.41(1955),9 47-953.
- 6. R.Huff, Banach spaces which are nearly uniformly convex , Rocky Mountain J.Math.10(1980),no.4,743-749.

- D.Kutzarova, k-β and k-nearly uniformly convex Banach spaces, J.Math.Anal.Appl.162(1991),no.2,332-338.
- 8. P.Y, Lee, Cesáro sequence spaces, Math.Chronicle13(1984),29-45.
- 9. Y.q. Lui, B.E., and P.Y.Lee, Method of sequence spaces, Guangdong of science and Technology press, 1996(Chinese).
- L. Maligranda, Orlicz spaces and Interpolation, Seminars in Mathematics,vol.5,Polish Academy of science,1989.
- V. Montesinos, Drop property equals reflexivity. Studia Math.87(1987),no.1,93-100.
- 12. S. Rolewicz, On drop property, Studia Math.85(1986),no.1,27-35(1987).
- S. Rolewicz, On Δ-uniform convexity and drop property, Studia Math. 87(1987), no.2, 181-191.
- 14. J.S.Shiue, On the Cesáro sequence spaces, Tamkang J.Math.1 (1970).no.1, 19-25.
- 15. W.Sanhan and S.Suantai, On k-Nearly Uniformly Convex Property In Generalized Cesáro sequence space, Ijmms 2003:57, 3599-3607.

5/5/2010

- 16. N.Şimşek and V.Karakaya, On Some Geometrical Properties of Generalized Modular Spaces of Cesáro Type Defined by Weighted Means, Journal of Inequalities and Applications Volume 2009,Article ID932734,13pages.
- 17. S. Suantai, On the H-property of some Banach sequence spaces, Archivum Mathematicum, Vol. 39 (2003), No. 4, 309– 316.
- C. S.Wang, "On N"orlund sequence spaces," Tamkang Journal of Mathematics, vol. 9, no. 2, pp. 269–274,1978.