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Introduction 

Let (X, ||.||) be Banach space over the real 

numbers  and let B(X) (respec. S(X)) be the closed 

unit ball (resp. unit sphere) of X. 

A point )(XSx  is an extreme point of B(X), if 

for any )(, XSzy  , the equality

2

zy
x


  

implies zy  . 

A Banach space X is said to be Rotund (R) if for 

every point of S(X) is an extreme point of 

B(X).Clarkson [1]who introduced the concept of 

uniform convexity. 

A Banach space X is called uniformly convex (UC) if 

    0  0 such that for )(, XSyx  , the 

inequality yx      implies that
2

yx 
 .  

     (1.1) for any )(XBx , the drop determined by 

x  is the set 

  ))(())(,( XBxconvXBxD  .       (1.2) 

Rolewicz [12], basing on Daneš drop theorem [4], 

introduced the notation of drop property for Banach 

spaces.  

A Banach space X has the drop property (D) if  

For every closed set C disjoint with B(X)  x C 

such that D(x, B(X))  C = {x}.  

(1.3) 

X is said to have the property (H), if for any sequence 

on the unit sphere of X, weak convergence coincides 

norm convergence. In [13], Rolewicz proved that if 

the Banach space X has the drop property (D), then X 

is reflexive. Montesinos [11] extended this result by 

showing that X has the drop property if and only if X 

is  reflexive and has the property (H).A sequence  

  Xxn  is said to be   -separated sequence for  

some  0  if 

 mnxxxsep mnn  :inf)(     .      (1.4) 

A  Banach space X is called nearly uniformly convex 

(NUC) if  0   )1,0( such that for every 

sequence )()( XBnx  with )( nxsep ≥    , we 

have   )()1()( XBconv nx .        (1.5) 

Huff [6] proved that every NUC Banach spaces X is 

reflexive and it has property (H). Kutzarova [7] has 

defined k-nearly uniformly convex Banach spaces. 

Let 2k  be an integer, a Banach space X is called  

k-nearly uniformly convex (k-NUC) if 

   0   0 such that for any sequence  

)()( XBnx   with )( nxsep ≥    there are  

n1, n2.n3,…, nk , where = {1, 2, 3,…}. 
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Such that 
k

xxxx
knnnn  ..................

321  . 

(1.6) Clearly, k-NUC Banach spaces are NUC, 

however the opposite implication does not hold in 

general [7]. 

Fan and Gliksberg [5] have introduced  

k-Rotund (kR) Banach spaces. A Banach space X is 

called fully k-rotund (kR) if for any sequence  

)()( XBnx 

1
..................

321 


k

xxxx
knnnn

as 

 ]1:min{ kini implies that )( nx  is  

convergent. It is well known that UC implies kR and 

kR implies (k+1)R, and kR spaces are reflexive and 

rotund. By, we denote the space of all real or 

complex sequences . 

For a real vector space X, a function 

],0[: X is called modular, if it satisfies the 

following conditions:  

(i) 00)(  xx Xx , 

(ii) )()( xx     with 1 , 

(iii) )()()( yxyx   Xyx  ,

;0,   1  . 

Further, the modular   is called convex if 

(iv) )()()( yxyx   Xyx  ,

;0,   1  . If     is a modular on X, 

we define  0)(lim:
0




xXxX 


 ,     (1.7) 

         0,)(:*   xXxX . 

It is clear that  X   
*

X . If is a convex  

modular x  X , we define 

  

















 1:0inf||||




x
x .    (1.8) 

Orlicz [10] proved that if  is a convex modular on 

X, then X =
*

X  and ||  || is a norm on X for which 

X is a Banach space. The norm ||  ||, defined as in 

(1.8), is called the Luxemburg norm. 

A modular   is said to satisfy the 2 -

condition )( 2  if 0 constants 2K and

0a such that   )()2( uKu ,
                     

(1.9) 

 Xu With au )( .If  satisfies the 

2 -condition  0a with 2K depending on a, 

 we say that satisfies the strong 2 -condition 

)( 2

s  .  

The following known results are very 

important for our consideration. 

Theorem1.1. [2]  

If
s

2  , then 0L and  0  0 such  

that   )()( uvu ,
 
   (1.10)

 

Xvu , With Lu )( and  )(v .
 

   Proof.  See [2, Lemma 2.1].   

   

Theorem1.2. [2] 

(1) If
s

2  , then x  X , 1|||| x if and only 

if 1)( x . 

(2) If
s

2  , then for any sequence )( nx in X , 

0|||| nx

 

if and only if 0)( nx .
 

 

Proof. See [2, Corollary 2.2 and Lemma 2.3]. 

   

Theorem 1.3.  

If
s

2  , then )1,0(  )1,0( such that 

 1)(x implies 1x .
 

 

 
Proof. Suppose that the theorem does not hold, then 

 0 and )( nx in X such that  1)( nx
 

, and 1||||
2

1
 
n

nx . Let 1
1


n

n
x

a . 
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Then 0  n

na .Let )2(sup nn xL  .Since

s

2   2K
 

such that
 

1)()2(  uKu 
                           

(1.11) Xu with 1)( u .By(1.11), we 

 have 11)()2(  KxKx nn   n . 

Hence  L0 , by theorem 1.2(1), we have 

 ))1(2()(1 nnnn

n

n xaxa
x

x
   (1.12)    

 





 



 1)1(

)1()2(

n

n

nnnn

La

xaxa
                                                                          

, which is a contradiction. 

  Altay and Başar (2007) defined the sequence space 

)](),(),[( nnn qpaces as 

)](),(),[( nnn qpaces =









 






n

k

p

kk

n

n
nxqax

11

)(:  (1.13),                                         

where )()(,)( nnn qandpa are sequences of  

positive real numbers,
 np1 < n . with the 

norm 

  

H

n

p

k

n

k

kn

n

xqax

1

1 1

||||||





















  



 
 

(1.14),

 

n
n

pH sup  .  

They also showed that the space  

)](),(),[( nnn qpaces is a complete linear metric 

space paranormed  

by

H

n

p

k

n

k

kn

n

xqaxg

1

1 1

||)(





















  



 

also 

V.Karakaya and N.Şimşek [16] proved that this space 

is a Banach space and posses Kadec-Klee (H). 

 

 Remarks: 

 (1)Taking





n

k

k

n

q

a

1

1
, then 

 ))(),(),(( nnn qpaCes = ))(),(( nn qpCes  the 

N¨orlund sequence spaces studied by [18]. 

(2)Taking  nq
n

a nn , 1 ; 
1

,

then ))(),(),(( nnn qpaCes = )( npCes studied by 

 W. Sanhan and S. Suantai [15]. 

 (3)Taking  nppq
n

a nnn ,   , 1  , 
1

, 

then ))(),(),(( nnn qpaCes = pCes  studied by  

Many authors see [8,9and14]. 

Throughout this paper, the sequence  ) ( np is a 

bounded sequence of positive real numbers 

with 1inf 


n
n

pLim , and also 

1) n
n

pH sup . 

2)  Let )( kp be a bounded sequence of positive real 

numbers, we  

have )|||(|2|| 1 kkk p

k

p

k

Hp

kk baba  


k .  

 

2. Main results 

Proposition2.1. 

The functional  is convex modular  

on )](),(),[( nnn qpaces and for  

any )](),(),[( nnn qpacesx the functional  

)](),(),[(on  nnn qpaces  satisfies the following 

properties: 

(i) If 0<r<1, then  

(ii) )(x
r

x
r H  








and )()( xrrx    .  

(ii) If r>1, then 









r

x
rx H )( .  

(iii) If r≥1, then )()()( rxxrx   . 

Proof. All assertions are clearly obtained by the 

definition and convexity of  see [17] . 
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Proposition2.2. 

For any )](),(),[( nnn qpacesx , the following  

assertions are satisfied: 

(i)  If 1|||| x , then ||||)( xx  , 

(ii) if 1|||| x , then ||||)( xx  , 

(iii) 1|||| x  if and only if 1)( x . 

 

Proof: It can be proved with standard techniques in a 

similar way as in [17]. 

Proposition2.3.  0L and  0  0
 
such  

that   )()( uvu  

whenever )](),(),[(, nnn qpacesvu  with

Lu )( and  )(v
 

Proof: Since  ) ( np is bounded, it is easy to see 

that
s

2  .Hence the proposition is obtained 

directly from theorem (1.1). 
 

 

Proposition2.4. For any 

 sequence 0||||)],(),(),[()(  nnnnn xqpacesx  

if and only if 0)( nx . 

 

 Proof: It follows directly from Theorem (1.2-2) 

since
s

2  . 

Theorem2.5. )](),(),[( nnn qpacesx and 

 )1,0( ,  )1,0( such that  

 1)(x implies 1x . 

 Proof: Since
s

2  , the theorem is obtained 

 directly from theorem (1.3).  

 

Theorem2.6. The space )](),(),[( nnn qpaces is k-

NUC  integer 2k  . 

 Proof: 

Let 0 and )])(),(),[(()( nnnn qpacesBx  with

)( nxsep ≥    .For each m , let 

 ),...)1(),(,0,......,0,0(  mxmxx nn

m

n
 .Since for 

each i , 

1))(( nn ix is bounded, we have that   

 i , 

1))(( nn ix is bounded, by using the diagonal 

method, we can find a subsequence  

))(( ix
j

n of )( nx such that ))(( ix
j

n  converges for 

each i , mi 1 .Therefore, there exists an 

increasing sequence of positive integer )( mt such 

that ))((
mj tj

m

nxsep  ≥    .Hence, there  is a sequence 

of positive integers


1)( mmr with ...321  rrr such 

that 
2


m

rm
x  m . Then by proposition (2.4), 

we may assume that there exists 0 such 

 that  )( m

rm
x  m . (2.1) 

Let 0 be such that n
n

pLim inf1


 .For 

 fixed integer 2k  , let ),
2

)(
)1(

)1(
(

1

1








kk

k








 

then 

by proposition (2.3)  0
  

 

Such that 1)()(   uvu .
           

(2.2) 

Whenever 1)( u and  )(v .Since by  

Proposition (2.2-1)
 

1)( nx 
 

n  positive 

integers )1,.....,3,2,1(  kimi with

1321 ........  kmmmm such 

that  )( im

ix and jp 
1 kmj .Define

11  kk mm . By (2.1), we have 

 )( k

km

m

rx . Let isi  for 11  ki ,
  

and
kmk rs  .Then in virtue of (2.1),(2.2), and  

Convexity of function  iuuf
ip

i ()( ), we have 
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












 















 















 





 

 

 



 

 



 

n

k

n

k

n

k

k

p

mn

n

i

ssss

in

p
m

n

n

i

ssss

in

p

n

n

i

ssss

in

ssss

k

ixixixix
qa

k

ixixixix
qa

k

ixixixix
qa

k

xxxx
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1

321
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)(...)()()(

)(...)()()(

)(...)()()(

)
....

(

.
2

1
1

1
)1(1

)(
1

)1(1

)1()(
1

)(1
11

1

)1()(
1

)(
11

)1(
)(

)(
1)(.....)()(

)1(
)(
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1

...)(
1

)(
1
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2
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1
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1
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1
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1
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. Therefore, 

 
)](),(),[( nnn qpaces is k-NUC.

 

Since k-NUC implies k R and k R implies R 

and reflexivity holds, and k-NUC implies NUC and 

NUC implies H-property and reflexivity holds, by 

theorem (2.6), the following results are obtained. 

COROLLARY2.7. For 1inf 


n
n

pLim , the 

space
 

)](),(),[( nnn qpaces is k R, NUC, and has a 

drop property. 
 

COROLLARY2.8. For 1inf 


n
n

pLim , the 

space
 

)](),[( nn paces is k-NUC. 
 

COROLLARY2.9. For 1inf 


n
n

pLim , the 

space
 

)][( npces
 
is k-NUC.

 

COROLLARY2.10. For  p1 , the 

space pCes is k-NUC.
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