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Abstract: The problem of sinusoidal frequency estimation in chaotic noise is considered in this paper. 
Since sinusoidal signal and a class of chaotic signals have different forth-order- cumulant character. 
Construct a high-order- cumulant data series of mixed signal, the cumulant data series has a new 
sinusoidal signal whose frequency is in proportion to the sinusoidal signal to be detected. Using 
empirical mode decomposition (EMD) method ,the cumulant data series can be decomposition to a 
series of intrinsic mode functions (IMFs),among which one IMF is the recovered sinusoidal signal .One 
merit of the algorithm is that it suit for the hybrid noises which is the mixture of chaotic signal and 
strong Gaussian colored noise, another merit is that it need not to know the mathematical model of the 
chaotic noise. The Simulation results show that the proposed algorithm is easy to implement , robust, 
and less complicated in calculation. [New York Science Journal. 2008;1(3):12-19]. (ISSN: 1554-0200).   
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1. Introduction 

Signal generated by chaotic systems represent a potentially rich class of signals processing 
problems because of its highly complexity and randomicity .Recent years , a number of scholars have 
investigated the chaotic signal processing because a wide range of signal processes including sea 
clutter[1], electrocardiograph signals [2] , indoor multipath [3] and speech [4] have been demonstrate 
to be chaotic rather than purely random .A variety of problems involving frequency estimation in 
chaotic noise therefore arises in potential application context .In some cases, this problem occurs when 
a chaotic signal is used purposely such as narrowband interference cancellation in a chaotic direct 
sequence code division multiple access communication systems and communication channel 
identification .in other scenarios such as radar surveillance in a ocean environment[1] and angle of 
arrival estimation in multi- path .Obviously, the sinusoidal frequency estimation from a chaotic noise is 
very important in theory and application. In this research field, the phase space volume method is 
introduced to estimate the coefficients of an autoregressive spectrum [5], the detection of a small target 
in sea clutter is investigated by means of neural network method [6]. The use of nonlinear dynamic 
(NLD) forecasting is considered to extract messages from chaotic communication systems [7].Base on 
the geometry of chaotic interference, a method for signal extraction from received data contaminated 
with strong chaotic interference is proposed [8]. A new nonlinear technique, referred to as empirical 
mode decomposition (EMD), has recently been pioneered by Huang et al. [9], it was proved to be 
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remarkably more effective than other signal processing methods for nonlinear signals [10][11]. 
It’s easy to estimation sinusoidal frequency when it is contaminated by most common noises. 

However ,when sinusoidal signal is submerged in the mixture of chaotic signal and strong Gaussian 
colored noise, most of conventional signal process methods failed, especially when sinusoidal signal 
frequency is in the middle of the frequency band of chaotic noise.  

In this paper we focus our attention on the high-order-cumulant of the mixed signals .Since chaotic 
noise and sinusoidal signal have different character on forth-order-cumulant. By choosing proper time 
lags a new forth-order- cumulant data series is available, then using empirical mode decomposition 
approach, the sinusoidal frequency can be estimated. The following part give detail of the approach , 
then examples are given on the sinusoidal signals extraction from hybrid noise ( chaotic noise and 
Gaussian colored noise). The simulation results show that the method is effective and satisfied. 

 
2. Basic theories 
 

Chaotic signal is a kind of special signal which is irregular but deterministic motion , and most of 
the signal processing methods of random signals failed to chaotic noise. For a kind of chaotic signals 
( Duffing , Lorenz ,Rossler,chen  etc ) ,which have no significant power beyond certain frequency  
on power spectrum ,as shown in fig1 ,if sinusoidal frequency is in the center of frequency band of the 
strong chaotic signal ,it will be difficult to estimation sinusoidal frequency. However, 
forth-order-cumulant provide a bridge to the problem . For a sinusoidal signal  
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where n(t) is chaotic signal ,w(t) is Gaussian colored noise, and supposing the chaotic signal is 
non-correlation with sinusoidal signal ,if time lags are chosen km 0 ××τ （ N,,2,1k Λ= ）where,m 
is a positive constant, 0τ is the sampling interval , a new forth-order-cumulant data sequences  of  
the mixed signal are:  
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Because the forth-order-cumulant of Gaussian colored noise is zero, The upper data sequences are 
equal to the sum of  the harmonic signal whose frequency is 0mω  and the forth-order-cumulant of 
the chaotic signal ,the sampling interval of new data sequence is 0τ . Since the chaotic sequences are 
non-periodic , and its forth-order-cumulant sequences are non-periodic too. More importantly, the 
power spectrum of the forth-order-cumulant data sequences of the chaotic signal has low frequency 
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character ,as shown in fig2. Though the harmonic frequency to be estimated is in the center of the 
bandwidth of chaotic signal , the increase of the harmonic frequencies in the new sequence make it 
beyond the central bandwidth of the other components. Thus it reduces the difficulty of the detection of 
the harmonic frequency. Since the harmonic frequency of the new sequence is proportional to the 
original harmonic frequency, it is possible for the detection of the harmonic frequency. 

Empirical mode decomposition is a powerful tool for nonlinear signal processing. It is based on the 
local characteristic time scale of the data, it is able to decompose complex signals to a collection of 
intrinsic mode functions (IMFs). Most important of all, it is adaptive.  

At any given time, the data may involve more than one oscillatory mode, each mode, for linear or 
nonlinear, has same numbers of extrema and zero crossings, and only one extremum between the 
successive zero crossings. These modes should all be orthogonal to each other for a linear 
decomposition. Thus, an arbitrary signal can be decomposed to a collection of IMFs. 

An intrinsic mode function (IMF) is a function that satisfies two conditions: 
(1) In the whole data set, the number of extrema and the number of zero crossings must either equal 

or differ at most by one; and 
(2) at any point, the mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero. 
Comparing with simple monotone function, an IMF is a simple vibrating mode. Given a signal x(t), 

the algorithm of EMD can be summarized as follows: 
(1) Identify all extrema of x(t), connect all the local maxima a cubic spline line as the upper 

envelope; 
(2) connect all the local minima a cubic spline line as the upper envelope, the upper and lower 

envelopes should cover all the data between them; 
(3) the mean of upper and lower envelopes is designated as m1, and the difference between the data 

and m1 is the first component, h1, i.e. 
h1 (t)=x(t)-m(t)                      (4) 
If h1 is an IMF, h1 is the first component of x(t). 
(4) if h1 is not an IMF, h1 is treated as the original data, continue the step (1), (2) and (3), get the 

mean of upper and lower envelopes, which is designated as m11, if h11=h1-m11 is still not an IMF, 
continue the steps (1)–(3), until the first component h1k is an IMF, and designated as c1 = h1k. c1 is the 
first IMF component of x(t); 

(5) separate c1 from the rest of the data by 
r1(t)=x(t)-m(t)                       (5) 

Since the residue, r1, still contains information of longer period components, it is treated as the new 
data and subjected to the same sifting process as described above, get the second IMF component of 
x(t) designated as c2, the above procedure can be repeated to get nth IMF component until the residue, 
rn becomes a monotonic function from which no more IMF can be extracted. Thus, we achieved a 
decomposition of the data x(t) into n-empirical modes, and a residue rn, where ci, (i = 1,…,n), contain 
different component of the signal from high to low frequency bands respectively. Frequency 
components in each band are different to other bands. The residue rn is the mean trend of signal x(t). 
 
3. Simulations 
 

The chaotic signal which is created by Lorenz equation are adopted as the background signals. The 
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equation can be written as follows: 

33212

231122

1211

xpxxx

xxxxpx

)xx(px

−=

−−=

−=

•

•

•

            (6) 
where: , . .In the paper, the classical fourth order Runge-Kutta algorithm is 
used to gain the time series of the equation (6). The initiatory 10000 data points are abandoned in the 
experiments to ensure the  chaotic signal x(k) isn’t affected by the initial conditions. To validate the 
effectivity of the method, the harmonic signal is submerged in the background signal which is the 
mixed of chaotic  signal and Gaussian colored noise . When Gaussian white noise pass though a low 
pass filter, the Gaussian colored noise is available , here the bandwidth of low pass filter is 20hz.   In 
the following , harmonic signals are estimated by using the proposed method  in different conditions. 

 10p1 = , 3/8p2 = 28p3 =

 
3.1.Simulation 1 
 

Here the interference signals are chaotic signal and colored noise. The initial values of the Lorenz 
system are（1，5，9），the harmonic signal is 0ω =2.5HZ , A=0.7, the Gaussian colored noise is the noise 
which Gaussian white  noise pass though a low pass filter , the variance of Gaussian white  noise is 
15 and the signal sampling frequency is 100HZ. The figure 3 shows the sinusoidal signal is submerged 
by hybrid signals completely. 
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Fig 1. The power spectrum of x1 belonging to Lorenz system 
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Fig 2.  The power spectrum of forth-order -cumulant of x1 belonging to Lorenz system 
 
 
 



New York Science Journal, http://www.sciencepub.org, ISSN 1554-0200 
 

 16

 
 

0 1 2 3 4 5 6 7
x 104

-50

0

50

( a )      time

x 
1(

 t 
)

0 10 20 30 40 50-20

0

20

40

( b )      f ( h z )

d 
b

 

Fig 3. (a) the time series of the hybrid signals (b) the power spectrum of the hybrid signals 
 

In order to make the sinusoidal frequency of the new data sequences does not exist in the central 
frequency bandwidth of the other  components , the value of m should choose a bigger value. Figure 
4a shows the part of first mode component c1 which is created by EMD decomposition of the new data 
sequence, since the modes of the EMD decomposition still contain a few adjacent mode components, 
the cross power spectrum is used to detect the sinusoidal frequency of the mode components. Figure 4b 
shows that the sinusoidal frequency to be detected is 25/10=2.5HZ. To validate the reliability of the 
method, figure 5 shows the cross power spectrum of c1 ,where m=12, the sinusoidal frequency to be 
detected is also  30/12=2.5HZ. 
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Figure4. (a) part of the first mode component ( c1) of new data sequence   (b) m=10, the cross 
power spectrum of c1  
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Fig 5. m=12, the cross power spectrum of c1  
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.2. Simulation 2 
of the Lorenz system are（10，5，9），the sinusoidal frequency is 3HZ and the 

am

 
3

The initial values 
plitude is 0.6 , the variance of the Gaussian white noise is 15 , the signal sampling frequency is 

100HZ. Figure 6 shows the mixed signal time series and its power spectrum. Figure 7 shows the cross 
power spectrum of c1 which is the first mode of new data sequence, where m=10. The sinusoidal 
frequency to be estimation is f=36/12=3HZ. 
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Fig 6. (a) the time series of the mixed signals (b) the power spectrum f the mixed signals o
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Fig 7. m=12, the cross power spectrum of c1  
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Fig 8. m=8, the cross power spectrum of c1  
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3.3. Simulation 3 

Here the interference signals are chaotic signal and Gaussian colored noise. The initial values of the 
Lo

4. Conclusions 

Chaotic signal process is a hot topic in recent years.  Because of the high complexity of the chaotic 
sig
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renz system are（1，5，9），the sinusoidal  frequency is 3.5HZ, the amplitude is 0.7, the variance of 
the Gaussian white noise is 15. Figure 8 shows the cross power spectrum of c1 ,where m=8. It’s clear 
that the sinusoidal frequency is f=28/8=3.5HZ.   

 

 

nal, the general methods to detect the signals in the chaotic background are limited. In the paper, a 
new method is proposed. It uses the forth-order-cumulant character of the chaotic signal and sinusoidal 
signal . By adopting some specific principles ,a new forth-order- cumulant data sequences is available. 
In the new data sequences, the increase of the sinusoidal frequency makes it not exist in the central 
bandwidth of other components .this can reduce the difficulty of detecting sinusoidal signal. Based on 
empirical mode decomposition theory, the sinusoidal signal frequency is detected from the new 
reconstructed data sequence . Since the Gaussian colored noise has inherent forth-order- cumulant 
character  , the method can be used to detect harmonic signal frequency which exists in the complex 
interference background such as the strong chaotic signal and Gaussian colored noise. In the simulating 
experiments, sinusodial signals are submerged in the strong hybrid noise, which can’t be detected either 
in the time domain or in the frequency domain , however ,the proposed approach  can estimation the 
sinusoidal frequency accurately in  different conditions. The method is simple and feasible, it needn’t 
to know the general parameter and initials of chaotic system and the calculations of the algorithms are 
small, it has important meaning in the practical application of chaotic signals . 
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