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Abstract: In the knee joint, the menisci are crucial functional units, which serve as lubricating and shock-absorbent 
structures during different movements, as well as providing stability and load distribution which is very important 
inside the knee. The most common knee injury is meniscal tears which is ailments and continue to rise due to ageing 
and several sport activities. The most of these injuries are usually subjected to conservative management; however 
quite a few of these cases are non-reparable lesions and generally require a partial or even total meniscectomy. 
However, most of the patients gain from post-meniscectomy relief of pain and functional improvement, some still to 
suffer from severe symptoms, meniscal substitution procedures or replacement options are mandatory. These options 
ranged from the use of autologous and allografting to the implantation of an artificial synthetic meniscal substitutes 
in recent years, which is only recommended for the very severely damaged menisci. In terms of potential polymeric 
biomaterial combinations, there have been recent developments in meniscal tissue engineering and regenerative 
medicine., resulting in innovative strategies. The goal of this review is to give comprehensive information on the 
indications, types, and outcomes of meniscal substitutes, with a special emphasis on tissue engineering leveraging 
new technological breakthroughs in scaffolds for meniscus reconstruction and regeneration. Outcomes: Over the last 
few decades, increasing clinical data and great scientific efforts have raised awareness which is the significant of the 
menisci into the knee joint. However, leading to the development of the replacing the knee meniscus therapy 
alternatives for irreversible meniscal lesions. The part of materials which resembles the physical and mechanical 
properties of native menisci, as well as the preservation of the meniscal microenvironment, has resulted from 
advances in tissue engineering. Nonetheless, all research on the development and testing of meniscus replacements 
provides a wealth of knowledge that may be applied to constructing the ideal meniscal substitute with the purpose of 
improving post-meniscectomy syndrome patients' outcomes. 
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Introduction 

Meniscal lesions are the most prevalent intra-
articular knee injuries in humans, and they are also the 
most common reason for knee surgery [1]. Based on 
reliable data, advanced age, male gender at work 
kneeling, squatting, and stair climbing have all been 
identified as risk factors for degenerative tears. 
Traumatic meniscal injuries are more common in the 
younger population (for example, sports), while 
degenerative tears have also been reported in the older 
population. Osteoarthritis of the knee has known of risk 
factors [2-7]. 

To treat meniscal injuries, a variety of therapeutic 
techniques have been developed over the last few 
decades. Several aspects related to the patients (general 
health status, activity, level, age, lifestyle) and those 
associated to the lesions should be considered when 
deciding whether to use non-surgical or operative 
treatments to treat meniscal lesions (type, location, 
etiology, associated lesions, and tissue quality). In 

general, meniscus repair is performed to fix problems 
when the tears aren't too complicated, and the meniscal 
tissues haven't degraded too much [8,9]. Partial or 
complete meniscectomy is the best or only therapeutic 
option when meniscal injury is persistent [10,11]. 

Although meniscal excision may result in a fast 
alleviation of clinical manifestations, a small patients’ 
percentage experience lingering discomfort after time of 
condition is known as "post-meniscectomy syndrome." 
In addition, due to higher peak loads and misalignments 
on the articular cartilage, multiple studies have shown 
an increased rate of knee osteoarthritis (OA) and worse 
clinical and functional results after meniscectomy [12-
14]. 

As a result, various efforts have been made to 
produce meniscal substitutes, which could help restore 
knee biomechanics, improve clinical results, and 
prevent the beginning of knee OA [15, 16]. Despite 
substantial progress in this area, the fundamental 
challenge remains the development of a bio-functional 
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and patient-specific substitute that can restore knee 
mechanics and function like a native meniscus. The 
construction of such a substitute is difficult due to the 
meniscus's distinct and complex structure. Synthetic 
and natural materials for meniscal replacement have 
been described with varying results in the search for the 
ultimate meniscal substitute [17,18]. 

The many attempts to replace the missing tissue 
can be divided into three types. The first is the use of 
natural tissues, such as autogenous tissues [19] or 
transplants [20, 21]. The second strategy is to replace 
the lost meniscal tissue with tissue-engineering 
scaffolds, which could include cells and particular 
cytokines [22]. Finally, prosthetic implants would have 
a place [23-25]. 

To incorporate these changing therapies into 
clinical practice and avoid the severe consequences of 
losing meniscal tissue, a thorough understanding of the 
various techniques to meniscal replacement is essential 
[18]. Therefore, the goal of this review is to give wide-
ranged information on the indications, types, and 
outcomes of meniscal substitutes, with a special 
emphasis on tissue engineering leveraging new 
technological breakthroughs in scaffolds for meniscus 
reconstruction and regeneration. 
Autologous Substitutes (Autografts) and Allogenic 
Substitutes (Allografts) 
Autologous Substitutes 

Allograft tissue comes from a donor, whereas 
autograft tissue comes from the patient. Fat pad, 
cartilage, periosteum, and perichondrium are all 
autologous tissues used in meniscal repair [26,27]. The 
autograft's biomechanical properties were far inferior to 
the original meniscus, despite its histological, 
morphological, and histological similarities to the 
native meniscus. As a result, no regular therapeutic use 
has been established [28]. 
Allogenic Substitutes 

A human donor meniscus is used in meniscal 
allograft transplantation (MAT), which also serves as a 
scaffold and best mimics the morphological and 
biomechanical characteristics of the missing meniscal 
tissue. For symptomatic, meniscus-deficient patients, 
MAT may be a viable option. Who have undergone 
subtotal or total meniscectomy with the main goal to 
relief pain, restore meniscal function and prevent OA 
and a subsequent improved quality of life [29-31]. 

However, it was reported that not most of patients 
with deficient menisci are candidates for MAT [32,33]. 
Patients under the age of 50 who have a primary 
complaint of pain that is restricting their activities are 
great candidates, as multiple studies have shown 
satisfactory outcomes with MAT in young patients [34, 
35], athletes [36] and advanced cartilage injury [37]. 

Although MAT is a common, safe, and reliable 
procedure for total meniscus replacement, it has 

drawbacks, including the close to giver supply, which is 
the requirement to proper graft size and attachment, the 
surgery's complexity, the prohibition of transmitted 
disease, the chance of an immune impairing recovery, 
and so on, as well as the occurrence of articular 
degeneration after transplantation, all of which limit the 
number of meniscal transplants [38-40]. 
Artificial Substitutes 

Emerging technologies, such as biomaterials, 
cellular engineering, and 3D printing, have increased 
the number of options for replacing a damaged 
meniscus in recent decades [41]. The biological and 
biomechanical features of an ideal meniscus 
replacement should be identical to those of the native 
meniscus. Importantly The structure, function, and 
anisotropic qualities of the meniscus should all be 
restored with a long-term functional meniscus 
replacement [42]. 
Meniscal Scaffolds-Based Substitutes 

To preserve joints and slow the course of 
osteoarthritis, artificial scaffold-based meniscal 
replacements should be used in conjunction with 
articular cartilage. Furthermore, optimal meniscus 
alteration must be resorbing or decay delayed 
sufficiently to permit the vascular of tissue's, cellular, 
extracellular matrix, structural to develop and 
regenerate. The meniscal scaffold must be safe for the 
joint as it deteriorates while offering maximum 
mechanical performance (destruction and strength) and 
macromolecule and nutrient permeability. Finally, the 
ideal scaffold must be easily available for clinical usage 
at the point of care, minimally invasive, and technically 
simple to implant [43-45]. 

Synthetic and natural materials are all examples of 
scaffolds for meniscal replacement [46]. Natural 
scaffolds have a significant advantage in scaffold 
fabrication because they are easily modifiable and may 
be adjusted biomechanically and biologically during the 
manufacturing process, which is permit the engineered 
construct to imitate tissues for a given application. 
Thus, a biocompatible and biodegradable natural 
polymeric scaffold can be created to allow for the flow 
of metabolites and nutrients, offer mechanical support, 
have adequate porosity, and provide an aqueous 
environment for cellular encapsulation, tissue creation 
and proliferation [47-49]. 
Collagens 

Collagen is a naturally occurring matrix polymer 
with three polypeptide chains that is the most common 
extracellular matrix protein. The meniscus is mostly 
made up of type I collagen, which contributes greatly to 
the normal matrix biomechanical capabilities and 
composition of the meniscus. Because they convert 
vertical compressive pressures into circular hoop stress, 
longitudinal collagen fibers are essential for optimal 
meniscal function and chondroprotection [50]. 



NSJhttp://www.sciencepub.net/nature                                               )           2(20;2Nature and Science 202  

 47

Hydrogels 
It is feasible to vary mechanical features and tissue 

in-growth rates by changing the hydrogel of the linking 
the part of chemical of the density and crosslinking 
chemistry of the scaffolds [51]. Hydrogels can offer 
cells with a physiologically acceptable environment that 
promotes extracellular matrix synthesis and the cell 
proliferation, migration, and because they have 
structural and the functional identical to natural 
extracellular matrix [52,53]. Under a range of 
environmental variables, such as temperature, pH, 
electric field, and ultrasound, hydrogels contain 
chemical diversity and salt [45]. 
Synthetic Scaffolds for Meniscus Replacement 

Tissue engineering has employed synthetic 
polymer scaffolds in several ways. Synthetic polymers 
have the benefit of allowing the creation of custom-
designed biomedical implants and devices with precise 
structure, and the properties of biomechanical. They can 
be adjusted to a certain cellular structural, and cellular 
environment. For example. The low cell-adhesive 
qualities of synthetic polymers, as well as the 
possibility of a foreign body reaction following 
implantation or material breakdown, are potential 
drawbacks [54]. 
Meniscal Scaffolds in Clinical Use 

The natural Collagen Meniscus Implant (CMI) and 
the synthetic porous polyurethane-based scaffold are a 
couple of artificial, scaffold based, and meniscal 
biocompatible alternatives that are commercially 
available in clinical practice for meniscal replacement 
[55]. The collagen type 1 fiber is extracted from bovine 
Achilles' tendons make up the collagen meniscus 
implant (CMI) [42]. Actifit is the second artificial 
meniscal alternative, and it was just recently created. 
Polycaprolactone (80%) and polyurethane (the 
remaining 20%) make up the material (the other 20 
percent). 20% of the total [56,57].  

The indications and surgical techniques for these 
two implants are similar. These procedures can be 
performed arthroscopically, as previously stated [22]. 
Polyurethane-based scaffolds and CMI have recently 
been discovered to provide good mid-term and long-
term clinical results in terms of therapeutic 
effectiveness [58,59]. Clinical failure is known as 
scaffold which is concerned infections, mechanical 
defect, persistent synovitis, or the need for reoperation 
in as many as 8% and 32% of CMI and Actifit patients. 
[44,60]. 
Scaffolds and Cell Seeding 

Scaffolds seeded with a certain cell type based on 
the need can be utilized to regenerate artificial tissue in 
the same way as natural cells can. There are several 
types of cells that can be used to regenerate the 
meniscus. Autologous cells, allogeneic cells, and stem 
cells, or a mix of the three [45]. A synthetic polymeric 

scaffold [48], tissue derived materials, or hybrid / 
composites of all the above can be used to replace the 
meniscus tissue [61]. The menisci cells are made up of 
fibroblasts and chondrocytes. Synthetic scaffolds might 
have downsides including high refuced, unexpected 
deterioration, or increase the swelling, and each 
scaffold transplant must undergo comprehensive testing 
before being selected for implantation [62]. 
Scaffold Made of Textiles or Fibers 

It is having an increasing surface area: volume 
ratio, a highly interconnected porous structure, the 
ability to create a three-dimensional structure, and ease 
of fabrication over other scaffold structures. However, 
one of the disadvantages of textile-based scaffolds is 
structural stability, which can be solved by fiber-
reinforced composites [63]. 

Different spacing between fibers was used to 
investigate fiber-matrix interfacial characteristics and 
mechanical performance. The scaffold had inherent 
meniscus-like tensile properties and could create 
meniscus-like shape. More study is needed, according 
to the authors, to better understand the numerous factors 
that influence the formation of functional meniscus 
[64,65]. 
Tissue Engineering  

Tissue engineering is a technique that combines a 
mix of cells, bioactive agent scaffolds, and biophysical 
stimuli to encourage the growth of neo-tissues to 
construct biological replacements that restore, maintain, 
or improve tissue function [66-68]. Tissue engineering 
of the knee meniscus could be a potential therapy 
option for meniscal problems, according to a vast 
number of studies [69]. However, there are certain 
drawbacks to tissue engineering with allografts and 
autografts, such as the risk of infection, rejection, 
availability, cost, and preservation. As a result, the 
focus of tissue engineering research is on scaffolds 
made of synthetic or natural materials. Production 
materials based on  scaffolds are increasingly adaptable 
to outlook tissue engineering approaches due to their 
ease of availability, processability, and ability to 
customize scaffold characteristics and structure [70,71]. 

Control over custom-made shape designs, 
structures made using various manufacturing 
techniques, flexibility in designing scaffold properties, 
easy availability, reproducibility, and repeatability are 
all advantages of scaffold-based tissue engineering for 
knee meniscus reconstruction and regeneration through 
other methods. Despite the tissue's inherent activities, 
many published tissues engineering studies ignore the 
mechanical properties of meniscal constructs or repair 
tissue, which is a critical outcome metric. The absence 
of consistent and objective outcome assessments 
throughout trials to determine the efficacy of different 
meniscal scaffolds, as well as agreement on success 
criteria and benchmarks, are major hurdles [18,72]. 
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MSCs (or fibrochondrocytes/chondrocytes) are 
usually directed to the injured area after being 
implanted in a cell carrier for example scaffold and 
hydrogel. Tear site, the cell carrier can release bioactive 
compounds and/or provide structural support to the 
cells and subsequent neotissue. In two different 
experiments, MSCs encapsulated in a thermosensitive 
matrix [73] or photocrosslinkable MSCs were injected 
[74]. Injecting a hydrogel into a rabbit or goat meniscal 
tear improved healing, especially when pro-
chondrogenic TGF- isoforms were also infused. 
3D Printing  

3-D printed meniscal scaffolds are one of the most 
promising developing medical technologies in the 
twenty-first century for meniscus replacement. These 
three-dimensional scaffolds may be recreated to fit the 
geometries of individual patients and restore the 
meniscus' overall shape. Furthermore, 3D-printed 
scaffolds could be used to produce artificial implants, 
which could be used in clinical practice soon [75,76], 
According to the study, meniscus dECM hydrogel was 
added to a printed polycaprolactone (PCL) scaffold in 
the shape of a meniscus in three dimensions (3D). In 
terms of chondrogenic differentiation, cell proliferation, 
collagen, glycosaminoglycan and production, and 
mechanical properties, the hybrid-scaffolds 
outperformed the PCL scaffold without dECM when 
seeded with MFCs. 
Meniscus Prostheses 

Meniscal replacement can also be done with 
artificial prostheses, which are non-degradable, 
anatomically [77,78] and non-anatomically [64] 
fashioned artificial meniscal substitutes (prostheses). 
However, because of the intricate biomechanical 
properties of the meniscus, designing prosthetic 
meniscus devices is extremely difficult. It's also 
uncertain whether it needs to be attached to the capsule 
and bone. Novel biomaterials are currently undergoing 
extensive research to see if they can be used to create 
typical meniscus surface properties [24,25]. 
Conclusion  

There are various hurdles to overcome in producing 
a human meniscal substitute, but the ambition to create 
an adequately sized meniscal substitute with mechanical 
properties and functions that are like those seen in 
humans is a common goal. Currently, none of the 
available methods can restore the native meniscus' 
identical morphology, biochemical content, or cellular 
phenotypes to match these qualities for each individual 
patient. Clearly, each of these approaches necessitates 
extensive preclinical research and, eventually, human 
clinical trials. To that aim, the amount of time it takes to 
make the device, the materials employed, the 
adaptability of the processes used, and, finally, the cost 
of producing a functional meniscal substitute must all 
be carefully evaluated. 

Finally, a balance of manufacturing complexity, 
biosafety, and product efficacy will be required to 
assess whether the method is appropriate for developing 
a novel patient-specific meniscal device for the 
treatment of damaged menisci. 
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