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Abstract: Winter wheat is a vital crop in Egypt. Moreover water status is an essential for irrigation planning 
especially at different plant cover pattern which affected by different parameters such as leaf area index (LAI) and 
plant height. Further; A few crop water indicators, such as leaf equivalent water thickness (EWT) and canopy water 
content (CWC) plus Land surface temperature (LST) have been estimated using remote sensing techniques for 
different stage of winter wheat growth. This study focus on relation between the (LST) and previous parameters 
particularly with total water applied (TWA), (CWC), (LAI) and vapour pressure deficit (VPD) at Ismailia 
governorate for wheat crop. Thus; study used Landsat 8 Operational Land Imager (OLI), Band 4, 5, 6, 7 and 10 with 
30m spatial resolution covering the study area and taken on different dates 10/11/2020, 26/11/2020, 28/12/2020 and 
29/01/2021, were obtained from the USGS (2020 and 2021).The result revealed that there are a positive reaction and 
relation between both (CWC – EWT) and (TWA)  where by increasing water applied the (CWC) and the (EWT) 
increased. For instance; (CWC) and (EWT) obtained a highest value (459.4 g.m-2 and 0.43 g.cm-2) respectively after 
irrigated by a high amount of water (12.25 m3.day-1.fed-1). Data represented that land surface temperature (LST) 
changed during measuring date from highest value (27.9C°) to lowest value (17.3C°) which effected by wheat stage 
and increasing on plant height. Further; the highest values for (LAI) has recorded (1.07m2.m-2) with plant height 
(63cm) comparing with (43cm) which obtained (0.8 m2.m-2) for (LAI).Notably; when plant height increased from 
(20cm to 43 cm) the value of deferent between air temperature (Tair) and (LST) was recorded (3.4 C and 3.9 C°) 
respectively. Moreover; there is a significant linear relation between (LST) and (VPD); where by increasing (LST) 
the (VPD) increase which reflect that plant suffering and has a water stress. Thus; (VPD) can estimated by knowing 
(LST) value by using this model (��� = 0.119 (���) − 1.2102) with R2= 0.9203. Finally; the flowing regression 
model was developed by utilized some parameters (CWC), (VPD) and (LST) to determine amount of water for 
different wheat stages in the Ismailia governorate in sandy soil with R2= 0.831. ��� = 0.0187(���) −
0.93(���) − 0.4826 (���) + 11.72. 
[Mahmoud, A. K., A. M. El-Gindy and T. M. H. Yossif. Assessment the Effect of Irrigation and Plant Cover 
Pattern on Land Surface Temperature Using Remote Sensing Nat Sci 2022; 20(1):35-46].ISSN 1545-0740 
(print); ISSN 2375-7167 (online). http://www.sciencepub.net/nature. 4.doi:10.7537/marsnsj200122.04. 
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1. Introduction  

Land Surface Temperature (LST) is often a 
direct control on herbaceous plants but has been 
underappreciated on the alpine grassland phonology 
in response to climate change. Although the way in 
which vegetation phonology mediates the feedback of 
vegetation to climate systems is now well understood, 
the magnitude of these changes is still unknown. A 
thorough understanding of how the recent shift in 
phonology may impact on. In addition, the air 
temperature has a major influence on plant growth 
(Gill et al., 2015). During the past few decades, 
sprawling investigations have revealed a deep 
mechanistic understanding of vegetation phonology 

variations in response to temperature based on plant 
physiological processes (Lin et al., 2018). 

Notable, that land cover composition had a 
relatively stable correlation with LST at different 
scales, and that most area-related landscape 
configuration metrics could be replaced by land cover 
composition (Lin et al., 2018). In another study, 
where the two were compared, land cover 
composition was seen to be more important in 
determining LST than land cover configuration, 
although configuration had a significant effect when 
composition was kept constant (Zhou et al., 2011). 
Among the land cover variables, percent cover and 
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density of plant especially Leaf Area Index (LAI) had 
the most influence. 

Leaf area index (LAI), which is defined as 
“one half of the total green leaf area per unit 
horizontal ground surface area” (Chen and Black, 
1992), is used for the study of vegetation dynamics 
and as an input to many climate models (Yan et al., 
2012). LAI can be estimated from the field or by 
using remote sensing data. Even though direct and 
indirect estimations of LAI (Gower et al., 1999) are 
the most accurate, field measurements can be 
extremely time-consuming and labour intensive 
(Jonckheere et al., 2004). Remote sensing provides 
interesting opportunities for the estimation of LAI 
over large spatial and temporal scales. Although the 
remote sensing models require field-estimated LAI 
for calibration and validation (Asner et al., 2003), the 
estimates from remote sensing make LAI quite 
significant for the assessments of vegetation 
dynamics (Turner et al., 1999) and climate change. 
Moreover, Remote sensing has made it possible to 
study temperature variations across large areas and 
the factors influencing them (Voogt and Oke, 2003). 
Land surface temperature (LST), which has a large 
influence on air temperature, can be estimated using 
thermal imagery. Further, Remote sensing techniques 
can be used to effectively monitor and diagnose 
vegetation water conditions, accurately reflect 
physiological status of vegetation under water stress, 
rapidly recognize drought, and immediately adopt 
irrigation measures (Wang et al., 2013 and Zhang et 
al., 2012).  

Memorable; the commonly used 
physiological indicators to assess plant water 
conditions mainly include stomata conductance, leaf 
water potential (Zhou et al., 2013), canopy water 
content (CWC) (Clevers et al., 2010) and leaf 
equivalent water thickness (EWT) (Jacquemoud et 
al., 1996). (EWT), defined as quantity of water per 
unit leaf area, is more relevant to the water absorption 
of incoming radiation. Additionally, EWT plays a 
crucial role in biogeochemical processes such as 
photosynthesis, evaporation, and primary 
productivity (Running and Gower, 1991). Its rapid 
decreases or shortage is an important early stress 
indicator. CWC, expressed as the quantity of water 
per unit area of ground surface, is widely utilized to 
monitor vegetation water conditions (Clevers et al., 
2008) and is determined not only by vegetation water 
status but also by crop growth and development 
stages (Zhang and  Zhou, 2015). Moreover, an 
atmospheric vapour pressure deficiency (VPD) has 
much influence on water used by plants (Braunworth 

and Mack, 1989). Where, Vapour Pressure Deficit 
dictates how efficiently a plant might balance its 
internal energy with that of the wider environment. 
(Gardner and Shock, 1989) suggested that AVPD in 
the range of 1-6 kPa is necessary to define a baseline 
that could be used in many locations. 

On the other hand, Wheat is the vital 
strategic crop not only for all countries but also for 
Egypt. Wheat is considerable an essential staple food 
of about 36% of the world population. Hence, 
expanding wheat productivity, from each unit of 
water and soil, has becomes an exigency. However, 
by sacristy of water, studies should focus on 
irrigation water management for Wheat to acquire a 
highest production with low amount of irrigation 
water without creating any stresses whatever on soil 
or crop.    

Finally, agricultural drought mainly reflects 
soil water status as well as crop growth and 
morphology, which can be used to reflect the degree 
of soil water deficit to crop water demand. Thus, the 
relation among factors of agricultural system 
especially Land Surface Temperature (LST), 
irrigation water, vapour pressure deficit (VPD), Crop 
Water Content (CWC), leaf Equivalent Water 
Thickness (EWT) and Leaf Area Index (LAI)  should 
be controlled to get a positive upshot. Consequently, 
the aim of this study is monitoring and determining   
the irrigation water for winter Wheat using remote 
sensing depending on several items such as Land 
Surface Temperature (LST), Vapour Pressure Deficit 
(VPD), Crop Water Content (CWC) and Leaf Area 
Index (LAI) for Wheat. Finally, create a simple 
mathematic relation between to quantify the total 
water applied for wheat per day. 
 
2. Material and methods  

Experimental location  
The experimental was carried out at 

Seraphim - Ismailia governorate; throw the project 
“Wastewater reuses in the MENA region - 
Addressing the challenges Direct Treated Wastewater 
Reuse Model for Planting Wheat, Barley and Cotton; 
which located in north eastern of Egypt (30° 28' 
49.14"N - 32° 13' 29.86"E). The study has 
established in 10 November of 2019 to 29 January 
2021 during the season of the winter Wheat. Ismailia 
site is about 30 m above sea level with an average 
rainfall of 28.2 mm, temperatures of 16.8 °C, relative 
humidity of 64.03%, and wind speed of 2.86 m/s 
(Table 1). These Meteorological parameters are 
derived from the NASA's  MERRA-2 (2020 – 2021).  
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Table 1. Climatic characteristics at Ismailia governorate. (2020-2021) 

Month 
Prc.* Tem.  Tem. min Tem max Hum. Sun shine Wind (2m) ETo 

mm/m °C °C °C % % m/s mm/d 

2020 

Nov 19.3 19.3 14.24 24.4 63.5 76.7 2.8 3.02 

Dec 5 16.4 10.8 22.1 65.1 65.5 2.7 3.0 

2021 

Jan 3.9 14.9 9.0 20.8 63.5 68.1 3.1 2.8 

*Prc. = Precipitation; Tem. min/max = minimum/maximum temperature; Hum. = relative humidity; Sun 
shine = day length; Wind (2m) = wind speed at 2m; ETo = Reference Evapotranspiration. 
 

The soil of experimental is sandy texture, 
none saline, and none calcareous. Silt and clay 
content; average 3.9% and 4.7%, respectively for 
Ismailia soils. Field capacity and available water are 
very low 5.6%, and 4.5% with EC in soil equal to 

1.37dS.m-1. Winter Wheat was cultivated on 23 
November 2020 by using a drip irrigation system 
(built-in line) (GR 4L/50cm/h – 1.2bar) and distance 
between lines 0.6m (Fig., 1).  

 

 
Figure1. Drip irrigation system with built-in line dripper for irrigating winter Wheat. 

 
Hence, water requirement for Wheat 

calculated according to Allen et al. (1998) (Table 2) 
by the following Equations.  

ETc = ETo * Kc (1) 
Where: 

ETc      Crop Evapotranspiration (mm.day-1). 
ETo     Reference Evapotranspiration (mm.day-1). 
Kc          Crop coefficients. 

 
IRn = ETc – Peff                                                          (2) 

 
 

Where: 
   IRn         Net irrigation requirement, (mm.day-1). 
   Etc         Crop evapotranspiration, (mm.day-1). 
   Peff        Effective rainfall, (mm.day-1). 
 

TWA= (IRn/Ea)*4.2 (3) 
Where:  
 TWA        Total Water Applied (m3.fed-1.day-1).    
  IRn           Net irrigation requirement, (mm.day-1). 
  Ea      Overall irrigation efficiency for modern 
irrigation system (drip), approximately 95%.   d for 
surface irrigation is 65 – 75% (Phocaides, 2000). 
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Table 2. Total Water Applied (TWA) and crop coefficients (Kc) for winter wheat during measurement. 

Item Nov. Dec. Jan. 

Days* 8 31 31 

Kc 0.7 0.9 1.15 

TWA 4.7 7.14 12.25 

*Days=from cultivated wheat; Kc=Crop coefficients; TWA=Total Water Applied (m3.fed-1.day-1) 
 
 
 
Vapour Pressure Deficit (VPD) 

The VPD metric consists of air temperature, 
leaf temperature, and relative humidity which 
measured in Kilopascals (Richard et al., 2015) to get 
VPD, need to subtract an actual vapour pressure of 
the air (VPair) from the saturated vapour pressure 
(VPsat).  

VPD = VPsat – VPair (4) 
 
To get ( VPsat ) , need to know the 

temperature of the saturated environment, in this 
case, the leaf of the plant by using an infrared 
temperature gun.(UNI-T UT300C, which is an 
infrared thermometer that is specially designed for 
surface temperature measurements within the range 
from -20 ºC to 400 ºC). The formula for VPsat (in 
Kilopascals kPa) is: 

����� =
610.7 ∗ 10

�
�.��

���.���
�

1000
 (5) 

 
Where: T is leaf Temperature in Celsius (°C) 

To get (VPair), need to know the temperature 
and humidity of the air. The formula for VPair (in 
Kilopascals kPa) is: 

����� =
610.7 ∗ 10

�
�.��

���.���
�

1000
∗

��

100
 (6) 

 
Where:  

T      = Air Temperature in Celsius (°C). 
RH   = Relative Humidity (%). 
 

Satellite images 
Landsat 8 Operational Land Imager (OLI), 

Band 4, 5, 6, 7 and 10 with 30m spatial resolution 
covering the study area and taken on different dates 
10/11/2020, 26/11/2020, 28/12/2020 and 29/01/2021, 
were obtained from the USGS (2020 and 2021). The 

satellite images were used to calculate NDVI, LST, 
LAI, NDWI, NDII, and CWC (Fig., 2) as follow. The 
value extraction was performed using Arc GIS 
software (ESRI, 2017). 

 
a) Normalized Difference Vegetation Index 

(NDVI) which utilizes red and Near-
Infrared (NIR) wavelengths, where 
chlorophyll reflects more NIR and green 
light at healthy and dense vegetation and 
vice versa. Equation (7) , (Tucker ,1980), 
for the computation of NDVI is: 

���� = 
��� − ���

��� + ���
 (7) 

 
Where: 

NDVI = Normalized Difference Vegetation 
Index 

NIR = Reflectance in the near infrared 
band, and 

RED = Reflectance in the red band. 
 

b) Land Surface Temperature (LST) was 
calculated according to the following 
equations (Abdullah et al., 2020). 
L� =  M� ∗ Q��� +  A� (8) 

 
Where: 

ML = 
Band-specific multiplicative rescaling 
factor for band ten equal to 0.0003342. 

Qcal = 
Quantized and calibrated standard product 
pixel values (DN). 

AL = 
Band-specific additive rescaling factor 
equal to 0.1. 

Lλ = 
Top of Atmosphere (TOA) spectral 
radiance (Watts. m-2. srad -1 μm-1). 
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Figure 2. Spectral vegetation indices (NDVI, NDII and NDWI) calculated from Landsat-8 OLI image of the study 
area. 
 

The following equation (9) was used to 
convert TOA to satellite brightness temperature for 
satellite sensor: 

Bt = [K�/ln(1 + K�/L�)] − 273.15 (9) 
Where: 

K1&K2 = 
Calibration constants that represent at-
sensor spectral radiances (774.89 and 

1321.07, respectively) 

Bt = satellite Brightness temperature in °C 

After that calculate emissivity and surface 
emissivity for the study area as follows: 

PV = [
���� �  �������

������� �  �������
]� (10) 

E = 0.004 ∗  PV +  0.986                     (11) 
Where: 

NDVImin  = Minimum value of NDVI value. 

NDVImax = Maximum value of NDVI value. 

PV = Proportion of Vegetation. 

E = Surface Emissivity. 

Finally, land surface temperature was 
calculated using the following equation: 

LST = B�/(1 +[W * (Bt/14380) * ln (E)] (12) 
Where:  

W = 
Wavelength of emitted radiance equal to 
10.895 

LST = Land surface temperature °C. 

c) Leaf Area Index (LAI) was calculated 
according to Saito et al. (2001). 

     LAI= 0.57 ∗ exp(2.33 ∗ NDVI) (13) 
Where: 

LAI = leaf area index ( m2.m-2) 

NDVI = 
Normalized Difference Vegetation 
Index 

d) Crop Water Content (CWC) was 
calculated using flowing equations 
(Abdullah et al., 2020 and Raymond et 
al.,2018). 

NDWI = 
���� � ������ 

���� � ������
 (14) 

NDII = 
���� � ������ 

���� � ������
 (15) 

CWC = 0.230 + 1.18 * NDII (16) 
Where: 

NDWI = Normalized Difference Water Index 

NDII = Normalized Difference Infrared Index 

BNIR & 
BSWIR1 

= 
Near-Infrared (B5) and SWIR1 (B6) 
bands, respectively 

BNIR & 
BSWIR2 

= 
Near-Infrared (B5) and SWIR2 (B7) 
bands, respectively 

CWC = Crop water content (kg.m-2) 

e)  Leaf equivalent water thickness (EWT, g 
cm−2) at the leaf level usually equals the leaf water 
content per unit leaf area (Danson et al., 1992). Here, 
at the canopy level, EWT is defined as the ratio 
between the quantity of water and the area, otherwise 
known as crop water content per unit leaf area 
Equation (17). 

EWT =
CWC

LAI
∗ 100 (17) 

Where: 

EWT = 
Leaf equivalent Water Thickness 
(g.cm−2) 

LAI = Leaf Area Index ( m2.m-2) 

CWC = Crop Water Content (g . m-2) 
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Statistical model 

The simple regression models with predictor 
variables X1;……. ; Xp can be describe by Equation 
(18).  

y =B0 + B1X1 +…………….+ BpXp + k (18) 
Where: Variable y, called a response or 

dependent variable, depends on another variables 
X(1..p) which is called the independent or predictor 
variable (also called the regress or variable), B0 is 
intercept, B1-Pis the slope parameters and the 
variability of the error (k ) is constant for all values of 
the repressor.  

 
3. Result and  Discussion 
Crop water content and Leaf equivalent water 

thickness  

Figures 3 and 4 illustrate that the crop water 
content (CWC) was changed during the different 
stage of wheat crop. In addition; CWC recorded 
(250.8 g.m-2) at the first stage of wheat and after 
irrigated by (7 m3.day-1fed-1). Moreover; after two 
months from cultivated wheat the CWC obtained a 
highest value (459.4 g.m-2) after irrigated by a high 
amount of water (12.25 m3.day-1.fed-1). Data reflect 
that there is a positive reaction and relation between 
CWC and total water applied where by increasing 
water applied the CWC increase. This relation can 
explain by the flowing equation: 

��� = 207.89���� (19) 
Where:   
CWC       = Crop water content (g.m-2). 
TWA       = Total water applied (m-3.fed-1.day-1) 

 

 
 

Figure 3. Crop water content (CWC) calculated from Landsat-8 OLI image of the study area. 
 

Consequently, CWC is utilized to monitor vegetation water conditions (Clevers et al., 2010) and (Clevers et 
al., 2008) and is determined not only by vegetation water status but also by crop growth and development stages 
(Zhang and  Zhou, 2015). On the other hand; Leaf equivalent water thickness (EWT) has a good relation with 
(TWA). DATA reflect the value of EWT increase by increasing TWA. For instance; EWT recorded 0.031 g.cm-2 
when added amount of water (4.7 m3.fed-1day-1), however, the highest value (0.43 g.cm-2) for EWT obtained after 
irrigated by amount of water (12.25m3.fed-1.day-1). So; EWT can used as parameter to reflect not only water content 
but also the amount of water which adding to irrigate crop because EWT plays a crucial role in biogeochemical 
processes such as photosynthesis, evaporation, and primary productivity (Running  and Gower, 1991; Running  and 
Nemani, 1991).  Thus, the polynomial equation can used to estimate the EWT for wheat related to TWA. 

��� =  0.0021���
− (8 ∗ 10��)(���)�

+   0.029 

(20) 
 

Where: 
EWT    = Leaf equivalent water thickness (g.cm-2). 
TWA   = Total water applied (m-3.fed-1.day-1)  

Finally, The CWC and EWT can be used as physiological indicators to water stress especially at a different stage 
for crop (Zhou et al., 2013). 
 
Plant height, Land surface temperature (LST) and leaf area index (LAI) 

The Land Surface Temperature (LST) was changed during the measuring dates from highest value (27.9 °C) 
to lowest value (17.3 °C) (Fig., 5) which effected by growing stage and increasing on plant height. For instance, the 
value of LST was obtained at 21.6 °C with plant height equal 20cm, but after wheat growing and recorded 43cm the 
LST decrease to 16.6C° (Fig., 6). Contrariwise, the value of LST increased to become 17.3C° when wheat plant 
recorded 63cm as a plant height. Cao et al. (2010) found that LST decreased steadily with increasing mean 
vegetation height when height was less than 20m. Notably when plant height increased from 20 cm to 43 cm, the 
value of different between air temperature (Tair) and LST was recorded (3.4 C° and 3.9 C°), respectively. However; 
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by increasing the plant height to (63cm) the value of (Tair - LST) decrease dynamics to recorded (1.6 C°). 
Consequently, there is a significant relation between plant height and LST; also between plant height and ( Tair - 
LST) the flowing formula (21and 22) explain this relation: 

��� = 0.004(��)� − 0.427(��) + 28.145 (21) 
 

���� − ��� = −0.0023(��)�

+ 0.1442(��) + 1.6507 
(22) 

Where: 
LST         = Land Surface Temperature (°C). 
PL           = Plant height for wheat (cm). 
Tair           = Air temperature (°C). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Impact total water applied on Crop Water Content (CWC) and leaf Equivalent Water Thickness (EWT). 
 

 
Figure 5. Land surface temperature (LST) and leaf area index (LAI) calculated from Landsat-8 OLI image of the 
study area 
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Figure  6. Influence of plant height on Land surface temperature (LST) and leaf area index (LAI) 
 
 

As shown at fig. (6) Data represented that 
there are a variations on the values leaf area index 
(LAI) related to the different plant height (PL). For 
instance; the highest values for (LAI) has recorded 
(1.07m2.m-2) with plant height (63cm) comparing 
with (43cm) which obtained (0.8 m2.m-2) for (LAI). 
Furthermore; after 11dayes from sowing date; the 
value of plant height was (20cm) and observed a 
lowest value for (LAI) by (0.68 m2.m-2). Thus; the 
dynamics of plant height during the whole growing 
season could be used to assess critical genetic traits, 
fundamental plant physiology and environmental 
effects (Malambo et al., 2018) Leaf Area Index (LAI) 
is an important physiological trait and can be used to 
indicate the performance of a plant canopy for growth 
and yield (Roth et al., 2018). Obviously, on the basis 
of previous studies, LAI has been considered as one 
of the crucial factors which affect the plant metabolic 
activities through its effect on irrigation or fertigation 
management due to improper VPD and crop 
transpiration (Medrano et al., 2005).There is a 
Dynamic response between both LAI and Plant 
Height (PL) for Wheat with R2 more than 0.63, 
equation (23). 

 
��� =  (7 ∗ 10��)(��)� − 0.0004 (��) +

0.7061                   
(23) 

 
 
Where: 

LAI         = Leaf Area Index. 
PL           = Plant height for wheat (cm). 
 
 

Land Surface Temperature (LST) and Vapour 
Pressure Deficit (VPD). 

Land surface temperature (LST) is a key 
variable in determination of the land surface energy 
budget, thus often assimilated into land surface 
models (Rodell et al., 2004). LST (as soil or 
vegetation canopy temperature) is also used in 
models of vegetation stress. In addition; Vapour 
pressure deficit (VPD) has been widely recognized as 
the evaporative driving force for water transport, the 
potential to reduce plant water consumption and 
improve water productivity by regulating VPD. 
Consequently; data on fig (7) represent that there are 
a significant linear relation between LST and VPD 
where by increasing LST the VPD increase and 
reflect that plant suffering and has a water stress. In 
particular; data recorded a highest value for VPD by 
(2.233 KPa) when LST obtained (27.9C°) before 
cultivated wheat but after one month, on 28th 
December 2021, and irrigated plant with average 
(7m3.fed-1day-1) the VPD got (0.886 KPa) with 
reduced at LST value to acquired (16.9C°).  
Moreover; after two months especially on 29th 
January2021 the VPD recorded (0.934 KPa) with 
LST value (17.3 C°).  

Subsequently; As the VPD increases, 
Evapotranspiration also increases as the air has an 
increased capacity to hold water vapour, creating a 
larger potential gradient across the leaf-air and soil-
air boundaries (Garratt, 1992). Further; Vapour 
Pressure Deficit reflects plant efficiency and how to 
deal with internal energy balance and external 
environment. Thus; the VPD can estimated by 
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knowing LST value using the flowing model (24) 
which reflects this significant relation with R2= 
0.9203:    

��� = 0.119 (���) − 1.2102 (24) 
 

Where:- 
VPD        = Vapour Pressure Deficit (KPa). 
LST         = Land Surface Temperature (°C). 

 
 

 
 
 
 
 
 
 
 
Figure 7. Relevance Land Surface Temperature (LST), Vapour Pressure Deficit (VPD) and Leaf Area Index        

(LAI) 
 
 
 
 
 
 
 
 

On the other hand, Fig. (7) illustrate that 
Leaf Area Index (LAI) effected on land surface 
temperature (LST); for instance, when (LAI) 
obtained lowest value by (0.68 m2.m-2) the (LST) 
recorded (21.6°C). Further; after 60 days from 
cultivated wheat the value of (LST) decreased 
dynamics to acquired (17.3°C) with increasing at the 
(LAI) value by (1.07 m2.m-2).obviously; that (LAI) 
has reverse relation with (LST) by increasing (LAI) 
the (LST) decrease because (Azad et al., 2020) that 
the observed daytime cooling was due to increased 
Evapotranspiration, while night-time warming is 
found to increase with latitude and decrease with 
average rainfall. In addition; while LAI values 
fluctuated according to the vegetative period of the 
tree: highest in spring summer, with an average value 
of 2.3 and lower in autumn winter with an average of 
1.38. The environmental variables showed a 
statistically significant relationship with respect to 
LAI, giving positive but weak correlations (Ibáñez et 
al., 2021)  Thus; (LAI) parameter reflect to plant 
height and density moreover (Lijun et al., 2015) 
allowed us to disregard the impacts of different soil 
conditioners and application rates on the dynamic 
changes in the LAI of wheat. The flowing equation 
(25) explain the relation between (LAI) and (LST) 
but with weak correlation (R2= 0.493). 

��� =  0.0032(���)� − 0.1621 (���)
+ 2.7134 

(25) 
 

Where: 
LAI         = Leaf Area Index. 

LST       = Land surface temperature (°C).        
 

 
Statistical model 

 A model is a schematic representation of the 
conception of a system or an act of mimicry or a set 
of equations, which represents the behaviour of a 
system (Murthy, 2003). A crop water content and 
plant growth model is a very effective tool for 
predicting the possible impacts of different factors on 
irrigation and crop growth. Total water applied 
models are useful for solving various practical 
problems in agriculture. Thus regression model (26) 
was developed by utilized some parameters CWC, 
VPD and LST to determine amount of water for 
different wheat stages in the Ismailia governorate in 
sandy soil.  

��� = 0.0187(���) − 0.93(���)
− 0.4826 (���) + 11.72 

(26) 
 

R2= 0.831 
TWA       = Total water applied (m-3.fed-1.day-1) 
CWC       = Crop water content (g.cm-2). 
VPD        = Vapour Pressure Deficit (KPa). 
LST        = Land surface temperature (°C).        
 
Conclusion  

The direct impact of irrigation on the land 
surface is to enhance soil moisture, which in turn 
changes the surface albedo, and can have a 
subsequent influence on the solar radiation absorption 
(Rn). Irrigation has an indirect impact on vegetation, 
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which can affect ET. Irrigation can be expected to 
offer feedback to the surface climate, especially LST. 
Consequently, Data reflect that there is a positive 
reaction and relation between CWC and total water 
applied (TWA) where by increasing water applied the 
CWC increase. For instance; CWC obtained a highest 
value (459.4 g.m-2) after irrigated by a high amount 
of water (12.25 m3. fed-1.day-1). Leaf equivalent water 
thickness (EWT) EWT can used as parameter to 
reflect not only water content but also the amount of 
water which adding to irrigate crop using this model 
(��� =  0.0021��� − (8 ∗ 10��)(���)� +
0.029)  .on the other hand; when plant height 
increased from (20cm to 43 cm) the value of deferent 
between air temperature (Tair ) and land surface 
temperature ( LST) was recorded ( 3.4 C and 3.9 C°) 
respectively. Further; the highest values for (LAI) has 
recorded (1.07m2.m-2) with plant height (63cm) 
comparing with (43cm) which obtained (0.8 m2.m-2) 
for (LAI). Moreover; there is a significant linear 
relation between LST and Vapour pressure deficit 
Vapour pressure deficit VPD where by increasing 
LST the VPD increase and reflect that plant suffering 
and has a water stress. Thus; VPD can estimated by 
knowing LST value by applied at this model ��� =
0.119 (���) − 1.2102 . Finally; the flowing 
regression model was developed by utilized some 
parameters CWC, VPD and LST to determine 
amount of water for different wheat stages in the 
Ismailia governorate in sandy soil with R2= 0.831.. 
��� = 0.0187(���) − 0.93(���) −
0.4826 (���) + 11.72  
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