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1. Introduction 

In abstract algebra, Ring Theory is the study of 
rings algebraic structures in which addition and 
multiplication are defined and have similar properties 
to those operations defined for the integers. Ring 
theory studies the structure of rings, their 
representations, or, in different language, modules, 
special classes of rings (group rings, division rings, 
universal enveloping algebras), as well as an array of 
properties that provide to be of interest both within the 
theory itself and for its applications, such as 
homological properties and polynomial identities. 
Briefly, a ring is an abelian group with a second binary 
operation that is associative, is distributive over the 
abelian group operation and has an identity element. 
The abelian group operation is called addition and the 
second binary operation is called multiplication by 
extension from the integers. A familiar example of a 
ring is the integers. The integers form a commutative, 
since the order in which a pair of elements are 
multiplied does not change the result. The set of 
polynomials also forms a commutative ring with the 
usual operations of addition and multiplication of 
functions. An example of a ring that is not 
commutative is the ring of n×n real square matrices 
with n>= 2. Finally, a field is a commutative ring in 
which one can divide by any nonzero element: an 
example is the field of real members. Non 
commutative rings are quite different in flavor, since 
more unusual behavior can arise. While the theory has 
developed in its own right, a fairly recent trend has 
sought to parallel the commutative development by 
building the theory of certain classes of non 

commutative rings in a geometric fashion as if they 
were rings of functions on (non-existent) ' non 
commutative spaces’. This trend started in the 1980s 
with the development of non commutative geometry 
and with the discovery of quantum groups. It has led to 
a better understanding of non commutative rings, 
especially non commutative Noetherian rings. 
(Goodearl 1989) 
3. Prelimineries Set: 

A well defined collection of distinct objects. 
Subset: 

If every member of the set A is also a member of 
the set B, then A is said to be a subset of B. 

Symbolically this is written as: A⊆B ( A is 
subset of B) 

The relationship between sets established by ⊆ is 
called inclusion or containment. 
Proper Subset: 

If A is a subset of B and B contains at least one 
element which is not an element of A, then A is said to 
be a proper Subset of B. In such case we write A ⊂ B 
(A is proper Subset of B) 
Improper Subset: 

If A is a subset of B and A=B, then we say that A 
is an improper Subset of B. Every set A is an improper 
Subset of itself. 
Equal Sets: 

Two sets A and B are said to be equal if every 
element of A is contained in B and then vice versa. 
Symbolically A=B 
Singleton Set: 
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A set containing only one element is called 
Singleton set. It is denoted by {1} 
Power Set: 

A collection of all subsets of a given set X is 
called power Set of X and denoted by P (X). 
Binary Operation: 

In mathematics a binary Operation is a 
calculation involving two input quantities. Binary 
Operations on sets are union, intersection and 
difference. 
4. Group 

Let G be a non-empty set and * be a binary 
Operation on G then G is called group if it satisfies the 
following actions. 
I. Closure Law 

a*b ∈ G   for all a,b ∈ G 
II. Associative Law 

a*b ∈ G   for all a,b ∈ G  
III. Identity Element  

∃ an element “ e” in G such that 
a*e = e*a = a   for all a∈G 

IV. Inverse Element 
For each a ∈ G ∃ a’ ∈ G such that 
a*a’= a’ * a = e 
Then G is called a group under * written as ( G, 

*) 
5.Abelian Group 

If G is a group and a*b = b*a for all a,b ∈ G. 
Then G is called an abelian group. 
6. Ring Theory 

A non empty set R together with two binary 
Operations namely addition and multiplication is said 
to be a ring if 

(1) ( R, +) is an Abelian group. 
(2) ( R,.) is a semi group. 
(3) Left and right distribution laws are satisfied. 
a (a+b) = ab+ ac   for all a,b,c ∈ R 
(a+b)c = ac + ab   for all a,b,c ∈ R 

7. Field 
A non empty set containing at least two elements 

with two binary Operation namely addition and 
multiplication is said to be field if it satisfies the 
following axioms. 

(1) (R, +) is an abelian group. 
(2) ( R /{0},.) is an abelian group. 
(3) Left and right distribution laws are satisfied. 
Remarks: Every field is a ring but converse is 

not true in general. 
Zero Divisor 

If the product of two non zero elements in a ring 
is zero, then it is called zero divisor. 

Z = { 0,1,2,3} 
Integral Domain 

A commutative ring with no zero divisor is called 
integral Domain. 

a.b = b.a 

Division Ring or Skew Field 
A ring whose non zero elements from a group 

under multiplication. 
“ OR “ 
A commutative division ring is a field. 

8. Boolean Ring 
A ring R is said to be a Boolean ring if its every 

element of R is idempotent i.e. x^2 = x for all x∈R 
9. Nilpotent Ring 

A ring for which a^n = 0 for all a ∈ R is called a 
nilpotent ring. 
10. Sub Ring 

A non empty subset S of a ring R is said to be a 
sub group of R if it is a ring itself. 
Improper/ Trivial Sub Ring 

If R is a ring then {0} and R are called improper 
or trivial sub groups. 
11. Homomorphism 

Let R and R' be two rings, a mapping ɸ:R → R’ 
is said to be homomorphism if  

(I) ɸ(a+b) = ɸ(a) + ɸ(b) 
(II) ɸ(ab) = ɸ(a)• ɸ(b) 

Monomorphism 
A one-one homomorphism is called 

monomorphism. 
Epimorphism 

A on to homomorphism is called epimorphism. 
Isomorphism 

An objective homomorphism is called 
isomorphism. 
Endomorphism 

A homomorphism mapping from R →R is called 
endomorphism. 

Automorphism 
A homomorphism ɸ: R →R’ is said to be 

automorphism if ɸ is bijective.  
12. Kernel 

Let ɸ: R → R` be a ring homomorphism, then 
kernel ɸ is defined as  

K ɸ = { a ∈ R, ɸ(a) = 0, 0 ∈ R }⊆R 
13. Center of Ring 

C (R) = {x ∈ R: xy = yx for all y∈R} 
14. Ideal 

A non empty subset I of R said to be a two sided 
ideal. 

(I) I is a sub group to R 
(II) For a∈I and r∈ R both ar and ra in I.  

Left ideal 
A non empty subset I of R said to be left ideal in 

R if ar ∈ I.  
Right ideal 

A non empty subset I of R said to be right ideal 
in R if ra∈I.  
Remarks: 

A non empty subset commutative then every left 
ideal = right ideal and conversely 
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1. In general let ideal may not be right ideal and 
vice versa  

2. Every ideal is a sub Ring. 
Properties 

Let I and J be two ideal of a ring R the 
I. In J is an ideal of R. 
II. I+J is an ideal of R. 
III. IJ is an ideal in R. 

15. Quotient Ring 
Let I be an ideal in R. For a∈R we define R/I as  
R/I = { a+I, a∈R}  
={ I + a, a∈R} 
With addition and multiplication defined by 
(a+I) + (b+I) = (a+b) + I  
(a+I) (b+I) = ab + I  

16. Maximal ideal 
An ideal M≠R in a ring R said to be maximal 

ideal of R if there is an ideal U of R such that 
M⊆U⊆R 

Then either M=U or U=R 
17. Principal ideal 

Let a≠0∈R then  
I= Ra={ra; r∈R} 

Is called principal ideal generated by a single 
element. 

It is also called cyclic ideal or irreducible ideal. 
Remark: 

A ring is said to be a principal ideal ring au of its 
ideal are principal ideals. 
18. Prime ideal 

An ideal P≠R in a commutative ring R is said to 
be a prime ideal if a b∈P or b∈P 
Remark: 

If R is an integral Domain then {0} is a trivial 
prime ideal 
19. First fundamental theorem of Ring 
Homomorphism 

If φ:R→Sφ:R→S is a homomorphism of rings, 
then the kernel of φφ is an ideal of RR, the image of 
φφ is a subring of SS and R/kerφR/kerφ is isomorphic 
as a ring to φ(R)φ(R). 

Proof: Let φ:R→Sφ:R→S be a ring 
homomorfism. If r∈Rr∈R and r′∈kerφr′∈kerφ, then we 
have rr′,r′r∈kerφrr′,r′r∈kerφ (so that it is closed under 
multiplication by elements of RR) since 

 
 
 
φ(rr′)=φ(r)φ(r′)=φ(r)0=0=0φ(r)=φ(r′)φ(r)=φ(r′r);φ(rr′)=φ(r)φ(r′)=φ(r)0=0=0φ(r)=φ(r′)φ(r)=φ(r′r); 

 
since kerφkerφ is also a subring of RR, it is an ideal of RR. It's clear that φ(R)φ(R) is a subring of SS. Now, let 

II be an ideal of RR, so that R/IR/I is also a ring, and define π:R→R/Iπ:R→R/I by π(r)=r+Iπ(r)=r+I. We know ππ is 
a group homomorphism with kernel II, and for r,s∈Rr,s∈R, we have 

π(rs)=(rs)+I=(r+I) (s+I)=π(r)π(s),π(rs)=(rs)+I=(r+I) (s+I)=π(r)π(s), 

so that ππ is in fact a ring homomorphism. Define then ϕ:R/kerφ→φ(R)ϕ:R/kerφ→φ(R) by 

ϕ(r+(kerϕ))=φ(r),ϕ(r+(kerϕ))=φ(r), 

for each (r+(kerϕ))∈R/kerφ(r+(kerϕ))∈R/kerφ, for some r∈Rr∈R. This is well defined because 
if r′∈(r+(kerφ)),r′∈(r+(kerφ)), then 

ϕ(r′+(kerφ))=φ(r′)=φ(r)=ϕ(r+(kerφ)).ϕ(r′+(kerφ))=φ(r′)=φ(r)=ϕ(r+(kerφ)). 

Also, this is a ring isomorphism because for each φ(s)∈φ(R)φ(s)∈φ(R) for some s∈Rs∈R, we have 

(∗) ϕ−1{φ(s)}=ϕ−1φ[r+(kerφ)]=ϕ−1φ[π−1{r+(kerφ)}]={r+(kerφ)}, 
(∗) ϕ−1{φ(s)}=ϕ−1φ[r+(kerφ)]=ϕ−1φ[π−1{r+(kerφ)}]={r+(kerφ)}, 

a set with a single element of R/kerφR/kerφ, so that it is a bijection, and for 
every r+(kerφ),r′+(kerφ)∈R/kerφr+(kerφ),r′+(kerφ)∈R/kerφ, for some r,r′∈Rr,r′∈R, we have 

ϕ[ (r+(kerφ))+(r′+(kerφ))]=ϕ[ (r+r′)+(kerφ)]=φ(r+r′ =φ(r)+φ(r′)=ϕ[r+(kerφ)]+ϕ[r′+(kerφ)],ϕ[ 
(r+(kerφ))+(r′+(kerφ))]=ϕ[ (r+r′)+(kerφ)]=φ(r+r′)=φ(r)+φ(r′)=ϕ[r+(kerφ)]+ϕ[r′+(kerφ)], 
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and 

ϕ[ (r+(kerφ)) (r′+(kerφ))]=ϕ[ (rr′)+(kerφ)]=φ(rr′)=φ(r)φ(r′)=ϕ[r+(kerφ)]ϕ[r′+(kerφ)],ϕ[ (r+(kerφ)) 
(r′+(kerφ))]=ϕ[ (rr′)+(kerφ)]=φ(rr′)=φ(r)φ(r′)=ϕ[r+(kerφ)]ϕ[r′+(kerφ], 

so that it is a ring homomorphism. 
 
 
20. Second fundamental theorem of Ring 
Homomorphism 

Let GG be a group, let H≤G,H≤G, and let 
N⊴G.N⊴G. Then the set 

HN={hn:h∈H,n∈N}HN={hn:h∈H,n∈N} 
is a subgroup of G,G, H∩N⊴H,H∩N⊴H, and 
H/(H∩N)≃HN/N. 

 
21. Third fundamental theorem of Ring 
Homomorphism 

Let GG be a group, and let KK and NN be 
normal subgroups of G,G, with K⊆N.K⊆N. Then 
N/K⊴G/K,N/K⊴G/K, and 

(G/K)/(N/K)≃G/N. 
 
22. Applications of Fundamental Theorem of Ring 
Homomorphism 

In abstract algebra, the fundamental theorem on 
Homomorphisms, also known as the fundamental 
Homomorphism theorem, relates the structure of two 
objects between which a Homomorphism is given, and 
of the kernel and image of the Homomorphism. The 
first isomorphism theorem follows from the category 
theoretical fact that the category of groups is ( normal 
epi, mono) factorizable; in other words, the normal 
epimorphism and the monomorphism form a 
factorization system for the category. This is captured 
in the commutative diagram in the margin, which 
shows the objects and morphism whose existence can 
be deduced from the morphism f: G 

➜
H. The diagram 

shows that every morphism in the category of groups 
has a kernel in the category theoretical sense; the 
arbitrary morphism f factors into i o π, where i is a 
monomorphism and π is an epimorphism (in a 
conormal category, all epimorphisms are normal). This 
is represented in the diagram by an object Kerf and a 
monomorphism k: Kerf 

➜
G ( kernels are always 

monomorphisms), which complete the short exact 
sequence running from the lower left to the upper of 
the diagram. The use of the exact sequence convention 
saves us from having to draw the zero morphism from 
kerj to H and kerj/ G. 

If the sequence is right split ( i.e. there is a 
morphism σ that maps G/Ker f to a π- pre-image of 
itself), then G is the semi direct product of the normal 
subgroup im k and the subgroup im σ. If it is left ssplit 
then it must also be right split, and im k× im σ is a 
direct product decomposition of G. In general, the 

existence of a right split does not imply the existence 
of a left split; but in an abelian category ( such as the 
abelian groups), left splits and right splits are 
equivalent by the splitting lemma, and a right split is 
sufficient to produce a direct sum decomposition im 
k+ imσ. In an abelian category, all monomorphisms 
are also normal and the diagram may be extended by a 
second short exact sequence 0

➜
G/ker f 

➜
H 

➜
coker 

f 

➜
0. 

In the second isomorphism theorem, the product 
SN is the join of S and N in the lattice of subgroups of 
G, while the intersection S⋂N is the meet. 

The third isomorphism theorem is generalized by 
the nine lemma to abelian categories and more general 
maps between objects. This isomorphism theorem has 
been called the “ diamond theorem” due to the shape 
of the resulting subgroup lattice with SN at the top, 
S⋂N at the bottom and with N and S to the sides. It 
has even been called the “ parallelogram rule” (by 
analog with the parallelogram rule for vectors) because 
in the resulting subgroup lattice the two sides assumed 
to represent the quotient groups (SN)/N and S/(S⋂N) 
are “ equal” in the sense of isomorphism. 
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