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Abstract: The theory of special relativity by Albert Einstein is extended by the requirement that not only the 
coordinate points co-moving with the moving inertial frame shall fulfil the transformation formulae, but also the 
coordinate points resting with the rest frame. It turns out that the present new theory, although derived by strictly 
employing Einstein’s original light beam procedure, confirms the ad hoc generalized Galilean transformation: The 
clock paradox is inherently avoided, without having to invoke Einstein’s general theory of relativity. However, there 
are severe consequences: (i) the velocity of the rest frame as observed in the moving frame is not equal to the 
velocity of the moving frame as observed in the rest frame; (ii) furthermore, the one-way light signal speed is not a 
universal constant any more, but has to be assumed different in the moving frame. This leads to the definition of the 
rest frame to be a preferred frame, where the assumption of an isotropic light signal speed still holds. The light 
signal speed in the moving frame is then anisotropic and dependent on the frame velocity. Several applications are 
discussed in comparison to Einstein’s original theory of special relativity: Light aberration effect, length contraction, 
time dilation, Maxwell’s equations, the electric Lorentz force, the relativistic law of motion, the electromagnetic 
wave equation, and the relativistic Doppler frequency shift of electromagnetic radiation. It is pointed out that, in the 
moving frame, it must be distinguished between the light signal speed (ray velocity) and the phase velocity of light. 
Another issue is the fact that the interpretation of Maxwell’s equations in the moving frame is not unequivocal. - 
However, despite of reasonable and interesting results, the final judgement of the theory will only be possible when 
reliable evaluations of one-way light signal speed measurements are available.  
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1. Introduction  

It took a couple of decades of years until 
Einstein’s theory of special relativity (Einstein, 1905) 
was widely excepted by the physical community. 
However, there has always been criticism of this 
theory. This has frequently to do with the well known 
clock paradox (twin paradox) which implies that an 
observer in either of two inertial frames which are in 
relative motion to each other sees time in the other 
frame elapse slower. It is impossible to solve this 
problem only by the original theory of special relativity 
because the Lorentz transformation is symmetrical. 
Einstein resolved the clock paradox (Einstein, 1918) by 
invoking the general theory of relativity. For this 
purpose, he had to admit that the rest frame is not at all 
equivalent to the moving frame, what is of course 
contradictory to the original idea of relativity. 
Furthermore, the correction supplied by the general 
theory of relativity is not a continuous one but is 
effective only during the turnaround of the moving 
frame, and thus corrects only for the final state, i. e. the 
return of the moving frame to the position of the rest 
frame. To eliminate these problems, several so called 
test theories of special relativity have been developed: 
Robertson (1949) replaced Einstein’s way of deduction 
by an experimentally supported approach, Mansouri 

and Sexl (1977) generalized the Lorentz 
transformation, and Chang (1979) reconsidered an 
older approach to special relativity, i. e. the “ether” 
theory, in the new form of the “Generalized Galilean 
transformation” which is an ad hoc modification of the 
Galilean transformation.  

The present paper returns to Einstein’s 
original light beam procedure of special relativity, 
figure 1 a (Einstein, 1905), modified however by 
extension, figure 1 b: It is required that not only the 
coordinate points P’ of the moving frame should fulfil 
the transformation formula, but also the coordinate 
points P of the rest frame, thereby leaving the way of 
Einstein’s logical deduction unchanged. In this way, a 
new transformation can very easily and 
straightforwardly be derived, together with all of its 
consequences. It turns out that this “extended 
Einsteinian theory of special relativity” approves the 
“Generalized Galilean Transformation”.  
 
2. Extension of Einstein’s original theory of special 
relativity  

The basis of Einstein’s theory of special 
relativity (Einstein, 1905) has been a thought 
experiment, depicted in figure 1 a. An inertial frame 
Σ’[x’,y’,z’] moves uniformly with a velocity of v along 
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the X-axis of the rest frame Σ(x,y,z), where Σ and Σ’ 
are axiparallel Cartesian coordinate systems. A light 
signal is emitted from the origin O’ of Σ’ when O’ 
passes through the origin O of Σ. The path of this light 
signal is given as O’P’ in the moving frame, and OP’ in 
the rest frame, where P’ is a representative point of the 
moving frame. The spatial coordinates of P’ are 
expressed in both frames, along with time t and t’ 
elapsed in Σ and Σ’, respectively.  

Figure 1 b shows the same situation as figure 
1 a, except a representative point P of the rest frame is 

considered. Again, the spatial and temporal coordinates 
of P are expressed in a double way, firstly when 
measured in the rest frame, secondly when measured in 
the moving frame.  

Einstein’s theory of special relativity is now 
modified by the extended requirement that the 
transformation shall be valid for both, any coordinate 
point P’ co-moving with the moving frame and any 
coordinate point P resting with the rest frame. 
  Corresponding to the initial condition, 
 

 
 

0z,0y,0x,0t,0z,0y,0x,0t =′=′=′=′====      ,                                                          (1)    
 
the desired transformation is taken as 
 

tAzAyAxAx 4321 +++=′      ,                                                                                                      (2 a)   
tBzByBxBy 4321 +++=′      ,                                                                                                        (2 b)   
tCzCyCxCz 4321 +++=′      ,                                                                                                       (2 c)   

tDzDyDxDt 4321 +++=′      .                                                                                                        (2 d)   
 
Because of rotational symmetry about the x(x’)-axis, it follows:  
 

232332414132 BC,CB,0DDCCBBAA =−=========      .                           (3)   
 
Hence,  
 

tAxAx 41 +=′      ,                                                                                                                                (4 a)   
zCyBy 22 −=′      ,                                                                                                                              (4 b)   

zByCz 22 +=′      ,                                                                                                                               (4 c)   
tDxDt 41 +=′      .                                                                                                                                 (4 d)   

 
Table 1 shows the further procedure in finding out the still open parameters A1, A4, C2, D1, and D4 (except 

B2), step by step: Special point events P’ and P, and the origins O’ and O, whose spatial and temporal coordinates 
are straightforward in both frames, are plugged into the transformation formulae, equations. 4 a-d. In this way, every 
step yields four equations, through which the results in the right column of table 1 are derived. Steps 1 to 5 are 
necessary and sufficient to derive the well known Lorentz transformation, assuming the light signal speed to be a 
universal constant c in both frames. However, proceeding with step 6 to 10, in order to get the new modified 
transformation, requires more open parameters to be adjusted: (i) The light signal speed in the moving frame, c’, has 
to be assumed as a function of the angle α’ between the X’-axis and the light beam, figure 1 b, and (ii) the amount of 
the velocity of the rest frame with respect to the moving frame, u, has not necessarily to be equal to the amount of 
the velocity of the moving frame with respect to the rest frame, v. Step 10 serves to determine the function c’(α’), 
and yields two equations, table 1, where the angle α means the angle between the X-axis and the light beam in the 
rest frame, figure 1 a. These two equations are solved for c’(α’), cos(α’), and sin(α’):  
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where  
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For α’=90°, equation 5 yields  
 

c)90(c =°′      .                                                                                                                                      (9)   
 
As can be figured from table 1, right column, and equation 9, the parameters A1, A4, C2, D1, and D4 are  
 

γ
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uBA 24122421      ,                                      (10)   

 
so that the transformation, equations 4 a-d, becomes  
 

)tvx(
v
u1Bx 2 ⋅−⋅⋅

γ
⋅=′      ,                                                                                                                     (11 a)   

yBy 2=′      ,                                                                                                                                            (11 b)   
zBz 2=′      ,                                                                                                                                            (11 c)   

t1Bt 2 ⋅
γ

⋅=′      .                                                                                                                                       (11 d)   

 
  In order to determine the ratio u/v, another definition is used, the average two-way speed of a light signal in the 
moving frame Σ’ (Reichenbach, 1969):  
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This means, the reciprocal two-way speed of a light signal is defined as an average of the reciprocal one-way speed 
of a light signal travelling in the forward (α’) direction and the one-way speed of a light signal travelling in the 
backward (α’+180°) direction. Taking into account equations 5 and 9, equation 12 yields:  
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  The Michelson-Morley optical experiment (Michelson and Morley, 1887) says that this two-way light speed in the 
moving frame Σ’ is independent of the direction (angle α’) of the light beam, and according to Kennedy and 
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Thorndike (1932), the two-way light speed is also independent of the velocity v of Σ’ relative to Σ. The result of 
those measurements was always the same, i. e. the constant two-way light speed c.  
 

)v,.(constcc α′==′      .                                                                                                                          (14)   
 
From these experimental facts, it can be concluded that the term in parentheses in equation 13 must be zero: Thus it 
follows that  
 

2

v
u

γ=      .                                                                                                                                                (15)   

 
  The last unknown parameter B2 can be determined by the requirement that transverse effects should not occur, i. e. 
y’ and z’ should not be affected by motion of Σ’ in the X-direction, see equations 11 b and c. This means that  
 

1B2 =      .                                                                                                                                              (16)   
 
Equation 16 was confirmed by Ives and Stilwell (1938) who quantitatively detected the relativistic second-order 
Doppler shift.  
  Finally, the transformation, equations 11 a-d, together with the light signal speed in the moving frame Σ’, equation 
5, and the light aberration, equations 6 and 7, can be written down as:  
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The direction dependent light signal speed in Σ’, equation 17 f, is plotted in polar coordinates in figure 2. This gives 
an idea of how the velocity v of Σ’ affects the light speed in Σ’, for v/c=0.5 as an example. As can be figured from 
equation 17 f, the polar plot is an ellipse with one focal point at the origin, eccentricity v/c, semimajor axis cγ2, and 
semiminor axis cγ. However, it should be noted that this is a theoretical finding which has still to be confirmed 
experimentally.  
  The equations 17 a-d form modified Lorentz transformation equations which are in accordance with the 
“Generalized Galilean Transformation”. Equations 17 g and h express Einstein’s well known light aberration effect 
(Einstein, 1905).  
 
3. Applications and interpretations  
3.1. Clock synchronisation  

The initial condition, equation 1 (t=0,t’=0), implies that clocks can be synchronised in both frames. In case 
of the rest frame, the standard synchronisation procedure by light signals, according to Einstein (Einstein, 1905), can 
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be employed. However, this method is not applicable for internally synchronising clocks in the moving frame. The 
reason for this complication is the direction-dependent one-way light speed. Instead of the standard synchronisation 
procedure, a non-standard synchronisation method is then necessary to be applied. A simple external 
synchronisation is as follows: Both frames shall be thought of being equipped with a rigid arrangement of close-
spaced clocks, like a lattice with clocks at the lattice points. Once the rest frame is synchronised (e. g. t=0), the 
moving frame simultaneously is too (e. g. t’=0), at any spatial position, just by transmission of the time setting from 
the nearest-by clock in the rest frame. This definition of time synchronisation can be called an absolute one, and 
makes the theory self-consistent, without internal contradictions.  
 
3.2. Length contraction and time dilation  

Length contraction of a moving rigid object as measured in the rest frame was already predicted by Einstein 
(1905) using the Lorentz transformation. He transformed the equation of the surface of a sphere in the moving frame 
back to the equation of the surface of a rotational ellipsoid in the rest frame, and found out that the axis of the 
ellipsoid in the direction of motion was shrunk by a factor of γ. By following his deduction, but using the present 
transformation, equations 17 a-d, this result is readily confirmed.  
  Dilation of time in the moving frame, compared to the time elapsed in the rest frame, was predicted using the 
Lorentz transformation (Einstein, 1905) to amount a factor of 1/γ. The same result is confirmed by using the present 
transformation, equation 17 d.  

In both theories, the rest frame must correctly be chosen to achieve the right result. If the reference frame is 
chosen to be identical with the rest frame, then the Lorentz transformation yields correct results. However, if the 
reference frame is chosen to be the moving frame, then the Lorentz transformation yields wrong (inverse) results, i. 
e. the clocks in the rest frame are slow compared to the clocks in the moving frame. This is the well known clock 
paradox caused by the symmetrical form of the Lorentz transformation. Contrary to this erroneous result, the present 
theory, equation 17 d, gives directly the right answer, no matter which of the two frames is chosen to be the 
reference frame: The clocks in the rest frame are fast compared to those in the moving frame.  
 
3.3. Transformation from one moving frame to another  

Three inertial frames are considered: frame no. 1, Σ’(x’,y’,z’;t’), moving with velocity v’, the rest frame 
Σ(x,y,z;t), and frame no. 2, Σ’’(x’’,y’’,z’’;t’’), moving with velocity v’’. Wanted is the transformation from Σ’ to 
Σ’’. The transformation from Σ to Σ’’ is given by the equations 17 a-d, what can be written in a general vector 
formulation as:  
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The transformation from Σ’ to Σ is given by the inverse of the transformation from Σ to Σ’:  
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The transformation from Σ’ to Σ’’ is then obtained by plugging the right hand expressions of equations 20 and 21 for 
r and t into equations 18 and 19:  
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tt ′⋅
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=′′      ,                                                                                                                                         (23)   

 
where  
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and the radius vectors r’ and r’’ define the locations in the moving frames Σ’ and Σ’’, respectively.  
 
3.4. Transformation of velocity and acceleration of a particle  

The transformation equations, equations 17 a-d, are given in differential form by:  
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From equations 25 a-d it is easy to derive the transformation formulae for the first and second time derivatives of the 
spatial coordinates:  
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Provided that the motion of a particle in the moving frame is given by sufficiently small (non-relativistic) 

velocities dx’/dt’, dy’/dt’, and dz’/dt’ (all << c), it can be figured from equations 26 a-c that approximately  
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Thus, equations 27 a-c yield the components of the acceleration in the moving frame in form of:  
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where (dx/dt)/c is substituted for v/c (first of equations 28). These results coincide with the results achieved by using 
the Lorentz transformation (Einstein, 1905).  
  The components of the driving force F’ in the moving frame, F’x, F’y, F’z, are equal to the products of the rest mass 
m of the particle and the second time derivatives of the spatial coordinates, d2x’/dt’2, d2y’/dt’2, d2z’/dt’2, respectively 
(Newton’s law of motion for sufficiently small velocities): 
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The driving force F’ of an electromagnetic field on a co-moving electro-charged particle as observed in the moving 
frame is determined in the next section 3.5.  
 
3.5. Maxwell’s equations in free space, electric Lorentz force, relativistic law of motion  

The Maxwell equations of electrodynamics in empty space are given in the rest frame by:  
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where E is the electric field vector, B is the magnetic field vector, and ∇ denotes the Nabla operator which is 
defined as the formal vector (∂/∂x,∂/∂y,∂/∂z). Written in components, equations 31 a-d are given by:  
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The transformation to the moving frame is achieved through the equations 17 a-d, and by using the chain rule of 
differentiation:  
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The application of these transformation rules, equations 33 a-d, to equations 32 a-d, yields the Maxwell equations in 
the moving frame, written in components:  
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Equations 34 a-d can be written as  
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where the primed field quantities are defined as:  
 

XX EE =′ ,      )BvE(E ZYY ⋅−⋅γ=′     ,      )BvE(E YZZ ⋅+⋅γ=′      ,                                     (36 a)   

XX BB =′ ,      ⎟
⎠

⎞
⎜
⎝

⎛ ⋅+⋅γ=′ Z2YY E
c
vBB ,      ⎟

⎠

⎞
⎜
⎝

⎛ ⋅−⋅γ=′ Y2ZZ E
c
vBB      .                                (36 b)   

 
The equations 36 a-b are just the well known Lorentz transformation equations of the electromagnetic field 
quantities from the rest frame (unprimed) to the moving frame (primed) (Einstein, 1905). The equations 35 a-d and 
36 a-b can be written in a general vector form:  
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where E’ and B’ are given by  
 

2
)()1()(

v
vEvBvEE ⋅⋅

⋅−γ−×+⋅γ=′      ,                                                                                            (37 e)    

22
)()1()

c
1(

v
vBvEvBB ⋅⋅

⋅−γ−×⋅−⋅γ=′      ,                                                                                    (37 f)    

 
and ∇’ is the Nabla-operator in the moving frame, defined as the formal vector (∂/∂x’,∂/∂y’,∂/∂z’). The equations 37 
a-d correspond to the extended notation of Maxwell’s equations, formally including terms of the quasi electric 
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volume charge density, ρe’, and the quasi magnetic volume charge density, ρm’, along with their quasi current 
densities, je’ and jm’, respectively:  
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and  
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with ε0 and μ0 meaning the permittivity and the permeability of vacuum, respectively. Using the equations 37 a-b, 
and taking into account that v is assumed to be constant, the equations 39 a can be rewritten as:  
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Thus, in the moving frame, an oscillating electric field generates a quasi electric volume charge density according to 
equation 41 a, and an oscillating magnetic field generates a quasi magnetic volume charge density according to 
equation 41 b.  
  It should be noted that the quasi charge densities ρe’ and ρm’ and quasi current densities je’ and jm’ fulfil the 
respective continuity equations:  
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Thus, the requirement of form invariance of physical laws in the theory of special relativity, equations 31 a-d versus 
equations 38 a-d, is considered to be fulfilled. An exact coincidence cannot be expected under the modified 
transformation (equations 17 a-d), but rather some extended form, since the rest frame and the moving frame are not 
equivalent. Therefore, the equations 36 a-b are taken unchanged to be the valid transformation rules for the 
electromagnetic field quantities, in the new theory as well as in Einstein’s special relativity.  
  The force of an electromagnetic field on a co-moving test particle with electric charge qe is given in the moving 
frame by 
 

EF ′⋅=′ eq      .                                                                                                                                      (43)    
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Since the particle is assumed to co-move with the moving frame, i. e. dx’/dt’=0, the velocity v in the equations 36 a-
b can be replaced by dx/dt. Then the equations 43, 36 a, 30, and 29 a-c yield:  
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These equations can be written in vector form to obtain the well known relativistic law of motion:  
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where r denotes the radius vector of the particle’s location in the rest frame. The expression on the left side of 
equation 46 is straightforwardly defined to be the force of an electromagnetic field acting on a moving charged 
particle when measured by an observer resting in the rest frame.  
 
3.6. Electromagnetic wave equations in free space, Doppler frequency effect, normal velocity and signal 
velocity of light  

The classic electromagnetic wave equations in the rest frame can be derived, as is well known, from the 
corresponding Maxwell equations 31 a-d. Taking the curl of equations 31 a-b, and taking into account equations 31 
c-d, yields:  
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On the other hand, by using a general vector identity, and taking into account equations 31 c-d, it follows that  
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The resulting wave equations are received by combining the equations 47 a-b, with equations 48 a-b, respectively:  
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The plane wave solutions of these equations, in complex form, are:  
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where E0 and B0 are complex vector amplitudes, f is the frequency, and nX, nY, nZ are the direction cosines of the 
plane wave normal n. For transformation of the equations 49 a-b to the moving frame, the second spatial and time 
derivatives must be transformed. This is done through differentiation of equations 33 a-d:  
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The transformed wave equations are achieved by applying these transformation rules to the equations 49 a-b:  
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This means that any component of the vectors E or B fulfils the equations 52 a-b. Hence any linear combination of 
two of these components, e. g. the components of E’ and B’, equations 36 a-b, does too:  
 

tx
v2

zyx
c

t

2
2

2

2

2

2

2

2
22

2

2

′∂′∂
′∂

⋅⋅γ⋅+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′∂

′∂
+

′∂

′∂
+

′∂

′∂
⋅⋅γ=

′∂

′∂ EEEEE      ,                                            (53 a)   

tx
v2

zyx
c

t

2
2

2

2

2

2

2

2
22

2

2

′∂′∂
′∂

⋅⋅γ⋅+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′∂

′∂
+

′∂

′∂
+

′∂

′∂
⋅⋅γ=

′∂

′∂ BBBBB      .                                           (53 b)   

 
These equations can be rewritten in general form:  
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Equations 54 a-b are the theoretical basis for the evaluation of guided wave experiments to measure the one-way 
light signal speed in a moving frame (Sfarti, 2007).  
  The transformed plane wave solutions of these equations are easily obtained through transformation of the 
corresponding plane wave solutions in the rest frame, equations 50 a-b, by using the inversed equations 17 a-d: After 
employing some algebra, the final result is:  
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Because of the linearity of the equations 36 a-b, this again means, like above, that the electromagnetic quantities of 
the moving frame, E’ and B’, also fulfil the equations 55 a-b: 
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On the other hand, the mathematical standard form of a plane electromagnetic wave in the moving frame is given 
by:  
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where f’ is the wave frequency in the moving frame, and c’n denotes the normal (phase) speed of light in the moving 
frame, in the direction of the plane wave normal n’ given by the direction cosines, n’X, n’Y, n’Z. Comparison of 
equations 56 a-b with equations 57 a-b, respectively, yields:  
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For the sake of simplicity, a two spatial dimensions formulation is used (see figures 1 a and b), without restriction of 
generality. This means:  
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where α is the angle between n and the X-axis, and α’n is the angle between n’ and the X’-axis. It follows from 
equations 58 a-d, taking into account equation 59:  
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Equation 60 a expresses the relativistic Doppler effect, in agreement with Einstein (1905). Furthermore, the 
equations 60 a-c can be solved for c’n, cos(α’n), and sin(α’n): 
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It is interesting to note that the equations 61 a-c do not coincide with the equations 17 f-h, respectively. 
This means, there are two light speeds, the signal speed c’ and the normal speed c’n, and two respective direction 
angles, the beam direction α’ and the direction α’n normal to planes of constant phase. This can be understood by 
assigning the space in the moving frame anisotropic quality. Following Max Born’s treatment of the optics of 
anisotropic media (crystals) (Born, 1985), the signal speed of light can be interpreted as the speed at which light 
energy is transported along the beam direction given by the angle α’ (ray velocity). This interpretation is put to a 
simple plausibility test: The ratio c’/c’n is determined in two independent ways. Firstly, c’/c’n is calculated using the 
equations 17 f-h and 61 a-c. The result is:  
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Secondly, c’/c’n is determined by the ratio of the wave lengths, λ’/λ’n:  
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where λ’/λ’n can be directly seen in figure 3 to be equal to the right side of equation 62.  
  In the next section 3.7 it is confirmed that the direction of the light signal in the moving frame (angle α’) really 
agrees with the direction of the light energy flux density, i. e. the Poynting vector.  
 
3.7. Electromagnetic energy transport in free space in a moving frame  

The propagation of light in free space in a moving frame is governed by the transformed Maxwell equations 
37 a-d. The mathematical form of a plane electromagnetic wave in a moving frame is given by equations 57 a-b. 
Plugging equations 57 a-b into equations 37 a-b yields in terms of complex field vectors:  
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Applying again for simplicity a two dimensional spatial formulation by setting n’Z=0 (equation 59), and orienting 
the positive X(X’)-axis in the direction of v, it follows in terms of complex field vector components, without 
restriction of generality:  
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Solving equation 65 a for B’X, B’Y, B’Z, and plugging the result into equation 65 b leads to a system of linear 
homogeneous equations with unknowns E’X, E’Y, E’Z:  
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This system of equations has non-trivial solutions (E’X,E’Y,E’Z)≠(0,0,0) only if the determinant of the coefficient 
matrix is zero:  
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That is the case if either  
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is fulfilled.  
 
These conditions, equation 67 b and equation 67 c, are equivalent: They lead to the same quadratic equation for 
determining the normal light velocity c’n:  
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The solution is:  
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or in terms of the direction angle α’n:  
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A second solution, with the root in the equations 69 a and 69 b taken negative, however, has no meaning 

because it gives negative values of c’n. Equation 69 b coincides with the result obtained by transformation of the 
plane wave solution, equations 61 a-c of section 3.6, when the angle α is eliminated.  

In the following, the ray direction in the moving frame will be determined: The light ray points per 
definition in the direction of the energy transport. It is assumed that the energy flux density in the moving frame is 
still given by the Poynting vector defined as  
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with H’=B’/μ0 being the complex magnetic field intensity. For determining the direction of the Poynting vector, it is 
sufficient to employ its time average which is given for time-harmonic fields by  
 

)(Re
2

1)(Re
2
1

0

∗∗ ′×′⋅
μ⋅

=′×′⋅=′ BEHES      ,                                                                                 (71)    

 
where H’* and B’* denote the complex conjugate quantities of H’ and B’, respectively, and Re means the real part 
of a complex quantity. E’Z can be chosen freely, equations 66 c and 67 c. E’X and E’Y however are linked together 
according to equations 66 a and 66 b, so that only one of these variables can be arbitrarily chosen. Equations 66 a 
and b yield  
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which leads to a simple relation between E’X and E’Y:  
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E’Y shall be chosen as the independent quantity. Thus, the Poynting vector is evaluated by plugging B’X, B’Y, and 
B’Z obtained from equation 65 a into equation 71, and then substituting the right hand side of equation 73 for E’X in 
the resulting formula. The final result, in terms of components, is:  
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0SZ =′      .                                                                                                                                            (74 c)   
 

The angle between the (time-averaged) Poynting vector and the unit vector n’ normal to planes of constant 
phase is then, taking credit of the equations 68 and 69 a, given by:  
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This expression of cos(n’,S’) coincides with cos(α’-α’n) of equation 62, taking into account the equations 

61 a-c and 17 f-g. That means, the direction of the light signal is indeed identical with the direction of the Poynting 
vector, as expected. This finding indicates the consistency of the theory.  
 
3.8. Another interpretation of Maxwell’s equations in anisotropic space  

The interpretation of Maxwell’s equations in free space in a moving frame, equations 37 a-d, is not 
unequivocal. Quasi-electric charges and quasi-magnetic charges (equations 38 a-d) as they occur with the Lorentz 
transformation of electromagnetic fields, equations 37 e-f, can be avoided by an additional second transformation of 
the field quantities:  
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The inversion of equations 76 a-b gives:  
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Substitution of these expressions for E’ and B’ in equations 37 a-d yields:  
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where D’’ denotes the electric displacement field, and H’’ means the magnetic field intensity, in the moving frame. 
These formulae, equations 79 a-f, correspond to the Maxwell’s equations in anisotropic space by T. Chang (Chang, 
1979). Quasi-electric and quasi-magnetic charges are avoided, but instead of the usual vacuum relations, D’’=ε0E’’ 
and H’’=μ0

-1B’’, there formally appear unusual “quasi-material properties” of the vacuum, equations 79 e-f. The 
interpretations of the two formulations, equations 37 a-d, and equations 79 a-f, are quite different. In the first case, 
an observer in the moving frame would measure the electromagnetic field E’, B’, in the second case he would 
observe E’’, B’’. This second interpretation does not affect the formula for the electric Lorentz force since E’’ 
equals E’, but its magnetic counterpart differs, equation 76 b: An electric field in the rest frame does not induce a 
magnetic field in the moving frame, equation 77 b.  
  The Poynting vector is no distinguishing feature of the two interpretations because it is invariant under the 
transformation equations 76 a-b:  
 

SBEHES ′=
μ

′
×′=′′×′′=′′

0
     ,                                                                                                           (80)    

 
what can readily be proved by employing equation 79 f. Thus, experimental evidence seems to be the only way to 
decide between the two interpretations.  
 
4. Summary and conclusions  

Einstein’s theory of special relativity states that there is no preferred frame, i. e. any inertial frame can be 
chosen to be the rest frame. This is not satisfactory since it yields opposite results dependant on the choice of the rest 
frame, which is due to the symmetry of the Lorentz transformation. This paradox (clock paradox) cannot be resolved 
by the standard theory of special relativity itself but needs supplement from the theory of general relativity along 
with the equivalence principle (equivalence of acceleration and gravity).  

  In order to make the special relativity an independent theory, the old “ether” theory was reconsidered in the 
new form of the “Generalized Galilean Transformation”. This means to back off repudiating Einstein’s work. 

  In contrast, the present paper is meant to step forward by fully using Einstein’s light beam procedure, and even 
extending it. This is accomplished by the requirement that, for completeness, the coordinate points resting in both of 
the two inertial frames, not only those ones resting in the moving frame, are to fulfil the transformation formulae. 
Consequently, more open parameters are needed to meet all of these requirements. This is accomplished by (i) 
allowing the ratio of the velocities of the frames relative to each other to be an open fit parameter, not necessarily 
equal to 1, and (ii) by allowing the light signal speed c’ in one of the two inertial frames, the “moving frame”, to 
deviate from the constant c. The other frame, the “rest frame”, is, contrary to Einstein’s  statement above, but in 
accordance with the “Generalized Galilean Transformation”, assumed to be a preferred frame defined to be 
motionless, in which the light signal speed is equal to the constant c in all directions. As a consequence, it turns out 
that (i) the light signal speed in the moving frame must be direction dependent, (ii) that the relative velocities of the 
frames must be different, and (iii) that the transformation of time must be independent of the spatial coordinates.  

  Some applications are carried out to check the new transformation: Light aberration effect, length contraction, 
time dilation, relativistic law of motion, electric Lorentz force, and electromagnetic Doppler frequency are found to 
be equal to Einstein’s results. However, the clock paradox is avoided. Another effect is rather puzzling at a first 
glance: The transformation of the plane wave solution of the electromagnetic wave equation yields a light speed and 
its propagation direction which differ from those found for the light signal. This additionally occurring light speed is 
interpreted as to mean the phase velocity or normal velocity of light. In contrast, the light signal speed is supposed to 
be the velocity of electromagnetic energy transportation, i. e. the ray velocity. The existence of these two speeds of 
light in different directions is obviously due to the optical anisotropy of the moving frame. Another result 
noteworthy is the formal generation of quasi electric and quasi magnetic volume charge densities by an oscillating 
electromagnetic field in a moving frame. It is shown how to avoid this effect applying a different interpretation of 
Maxwell’s equations in anisotropic space, but then there formally appears an unusual electromagnetic behaviour of 
the vacuum.  

  In real cases, it cannot be expected that one of the frames is the preferred rest frame. In these cases, the 
adequate transformation formulae are found by a first transformation from one of the moving frames to the rest 
frame, followed by a second transformation from the rest frame to the other moving frame. However, this procedure 
can only be evaluated if the velocities of the two moving frames relative to the rest frame are known. A 
measurement of the velocity of a frame could in principle be carried out by an observer resting in that frame through 
measurement of the light signal speed in different directions.  
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  Finally, it is surprising that the present theory, although based on Einstein’s special relativity, at last approves 
the “Generalized Galilean transformation”, and hence supports any application of it. In other words, the 
“Generalized Galilean transformation” which was up to now just an ad hoc assumption appears to be a result within 
the framework of the present deductive theory: The “rest frame” is interpreted to be a “preferred frame”, and 
corresponds to the fiction of the “ether”.  
 
 
Table 1. Transformation from rest frame Σ to moving inertial frame Σ’ in standard configuration (Einstein, 1905): 
Special points are chosen for P’ co-moving with the moving frame Σ’ ( figure 1 a) and for P resting in the rest frame 
Σ (figure 1 b). The coordinates of each point event, P’ as well as P, are expressed in both frames, Σ and Σ’, and 
plugged into the transformation formulae, equations 4 a-d, in order to find out their yet unknown coefficients C2, A4, 
D4, A1, D1, step by step (B2 remains open). Current results of each step are given in the right column of the table. v 
is the velocity of Σ’ as observed in Σ, -u is the velocity of Σ as observed in Σ’. c denotes the isotropic light signal 
speed in Σ, c’(α’) means the anisotropic light signal speed in Σ’ (step 10). γ is defined as γ=(1-v2/c2)-1/2 .  
 

                                                                                 Deduction of transformation                             
                                            point event                                
category                                  coordinates                        

step 
no. 

O, P: 
resting 
in rest  
frame Σ. 
O’, P’: 
co-moving 
with 
moving  
frame Σ′ 

t ; x, y, z  
as observed 
in rest  
frame Σ 
 

t’ ; x’, y’, z’  
as observed 
in moving 
frame Σ′ 

results obtained through plugging the 
coordinates of the point event into the 
transformation formulae, equations 4 a-d:   
 
 x’ = A1 x + A4 t  
 y’ = B2 y – C2 z  
 z’ = C2 y + B2 z  
 t’ = D1 x + D4 t  
 

  1  P’ 0,y,x;t  0,y,x;t ′′′  0C2 =  
  2  O’ 0,0,tv;t  0,0,0;t′  vAA 14 ⋅−=  
  3  P’ 0,tvc,tv;t 22 −  0,t)90(c,0;t ′°′′  
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BD 1
2

4 ⋅−
γ

⋅
°′
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B
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1
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cBuDA 2
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Figure 1 a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 b  
Figure 1. Thought experiment (Einstein, 1905): Light is emitted from the origin O’ of the inertial frame Σ’ moving 
with uniform velocity v as observed in the rest frame Σ. Σ and Σ’ are Cartesian coordinate systems, with the axes X, 
Y, Z of Σ parallel to the axes X’, Y’, Z’ of Σ’, respectively. The plane of drawing shows the X/Y(X’/Y’)-plane. The 
initial condition is: t = 0, x = 0, y = 0, z = 0, t’ = 0, x’ = 0, y’ = 0, z’ = 0.  
a) A representative point P’ is co-moving with Σ’, with its coordinates expressed in both frames, Σ and Σ’.  
b) A representative point P is resting with Σ, with its coordinates expressed in both frames, Σ and Σ’. -u is the 
velocity of Σ observed in Σ’.  
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Figure 2. Anisotropy of one-way light signal speed c’ as observed in a moving frame Σ’: c’/c is depicted as function 
of the angle α’ between light beam in Σ’ and velocity v of Σ’, for v/c=0.5 as an example (c = isotropic light signal 
speed in the rest frame Σ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Plausibility test of the definition of two different light speeds, the velocity of energy flow (ray velocity, 
signal speed), c’, and the normal (phase) velocity, c’n: This ambiguity is caused by different wave-lengths in two 
propagation directions: The ratio c’/c’n is equal to λ’/λ’n=1/cos(α’-α’n). The plane of drawing displays the (x’,y’)-
plane of the moving frame.  
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