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Abstract: We conducted this study before the rains in 2005 to assess the aggregate stability of soils of a 
toposequence as affected by soil properties under six land uses, namely cassava cultivation polluted with 
crude oil (CP), rubber plantation (RP), non polluted cassava cultivation (NCP), forest (F), oil palm 
plantation (OPP) and bare fallow (BF).Target soil sampling technique was used to collect soil samples 
based on physiography and land use. Routine laboratory analyes were conducted on soil samples and data 
generated were analyzed using simple mean (descriptive statistic) and correlation coefficient (inferential 
statistic). Results show differences in selected soil properties due to land use. Total porosity, organic matter 
(OM) water stable aggregates and mean weight diameter of soil peds varied due to land use and topography. 
Mean weight diameter increased with declining slope gradients while aggregates were more stable under 
CP, F, BF and RP. Mean weight diameter had significant relationship with OM (r=0.52), total nitrogen (r 
=0.51), exchangeable Ca (r =0.39), exchangeable Na (r = 0.34), pH(r =0.32), and exchangeable H (r =-0.21) 
at 1% level of probability. [Nature and Science. 2007;5(4):7-13].  
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Introduction  
 Aggregate stability of a soil has a great influence on crop performance, soil erosion, runoff and 
transport of contaminants from farmlands to water bodies (Rasiah and Kay, 1994). A good soil structure is 
important in sustaining long term crop production on agricultural soils (Eneje et al., 2005) because it 
influences water status, workability resistance to erosion, nutrient availability, crop growth and 
development (Piccolo and Mbagwu, 1999). Aggregate stability is one of such measures used in determining 
structural suitability  of soils for agricultural and non-agricultural uses.  
 Aggregate stability of soils is influenced by quality and quantity of organic matter (Piccolo, 1996; 
Spaccini et al., 2001; Adesodum et al., 2004), cations content (Dexter and Chan, 1991; Levy and Torrento, 
1995), soil texture (Boix-Fayos et al.,1992). These were classified into biotic and abiotic factors (Brady and 
Weil, 1999). In addition to these, anthropogenic activities influence aggregate stability. Spaccini et al. 
(2001) observed that cultivation reduced aggregate stability and increased proportions of the small size 
aggregate relative to forest soils. Labile pool of organic matter which enhances aggregate stability is highly 
affected by land use (Cambardella and Elliott, 1992). Mbagwu and Auerswald (1999) reported that forest, 
bush fallows, mulched and minimum-tilled plots had higher percolation stability when compared with 
paddy rice fields, unmulched, and continuously cropped plots. Eynard et al.(2004) reported high water 
stable aggregates in grassland than cultivated soils.  

There is a death of information on the relationship between aggregate stability and land use types 
in soils of the Southeastern Nigeria. 5cantiness of soil information as it pertains aggregate stability could be 
responsible for the increasing spate of soil structural breakdown and  development of a variety of rills and 
gullies on a once beautiful landscape, leading to soil loss, displacement of homes loss of  
farmlands, poor nutrient reserve and declining yield of crops. The major objective of this study was to 
investigate the relationship between aggregate stability and soil properties while relating these to land use 
types. 
 
MATERIALS AND METHODS 

Study Area: The study was conducted before rains in 2005 in six sites of Owerri Agricultural 
Zone lying between latitudes 5o 25’ and 5o 45’ N and longitudes 6o 45’ and 7o05’E. Soils are derived from 
Coastal Plain Sands (Benin formation) of the Miocene-Oligocene geologic era. Earlier, soils of the area 
were classified as Dystric Nitisols (Onweremadu, 2006).  

The area has a lowland geomorphology. Mean annual rainfall is about 2400mm while mean annual 
temperature ranges from 26-29oC. Rainforest vegetation predominates in the area. Farming is a major 
socio-economic activity of the area.  
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Field studies: Target soil survey sampling technique was used with emphasis on land use and 

topography. Soil samples were collected at a depth of O-15cm with an auger from six sites.  The six sites 
include Asaa, Obitti, Ihiagwa, Eziobodo, Etekwuru and Emebiam, all in Imo State. Six land use practices 
used were used and include cassava cultivation polluted with crude oil (CP), cassava cultivation not 
polluted with crude oil (NCP), forest (F), oil palm plantation (OP), rubber plantation (RP) and bare fallow 
(BF). All these land uses were of the same topography (0-1%; 3% and 5%). A total of nine bulk samples 
were collected from each study site with 3 samples from each slope gradient. Nine core samples were also 
collected from each land use type. The composite soil samples were air-dried and sieved through 4.76mm 
sieve for water stable aggregate analysis and the remaining soil particles were passed through 2-mm sieve 
for soil characterization. Core samples were used for bulk density and total porosity determinations.  

Laboratory Analyses: Particle size distribution was determined by Bouyoucos hydrometer 
method (Gee and Or, 2002) while bulk density was measured by core method (Grossman and Reinsch, 
2002). Soil aggregate stability was estimated by wet-sieving techniques (Kemper and Rosenau, 1986). 
Mean weight diameter (MWD) was computed as:  
 
MWD  =      XiW        
 
Where  MWD   = m
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type. Conversely bulk density decreased downslope, ranging from 1.47 to 1.24 g/cm3 (mean values). 
Highest bulk density values were recorded in RP, CP and NCP in all the physiographic positions.  

Aggregate Stability: Aggregate stability varied among physiographic position (Table 3). Highest 
percentage of water-stable aggregates were recorded in the less than 0.25 mm diameter water-stable 
aggregates at each slope type. The 4-2 mm water-stable aggregates increased in the downslope  direction 
for all the land use types. Organic matter (OM) increased downslope with RP having highest mean OM at 
the bottomslope. Very sharp increased in OM occurred in CP from 5 to 3 % slope gradient while BF 
exhibited the least OM increased.  
 Mean weight diameter (MWD) increased with declining slope gradient, having 0.41 mm (5% 
slope), 0. 54 mm (3%) and 0.66 mm (0-1%). Aggregates were most stable in CP, jointly followed by F and 
OP, then BF, RP and NCP in a decreasing order. The NCP followed the general trend of decreasing upslope 
as in other treatments but values not as comparable with others. Surprisingly; BF did not show least 
stability despite its exposure to climatic and anthropogenic forces.  
Relationship between Aggregate Stability and Soil Properties: Results of correlation analysis between 
aggregate stability (MWD) and some soil properties are shown in Table 4. There were very significant (P 
=0.01) positive relationship between OC, pH T.N., exchangeable calcium and exchangeable and sodium 
MWD while exchangeable hydrogen  related very significantly (P-0.01) but negatively related with the 
aggregate stability index. However, exchangeable potassium has a significant (P=0.05) with MWD while 
exchangeable magnesium, total exchangeable acidity, BD, ESP and SAR showed no significant 
relationship with MWD. Of the variables assessed organic fractions (OC and TN) had the best relationship 
with MWD. These results show consistency with the studies of Rachman et al. (2003) which reported 
greater aggregate stability as OM increased in long-term cropping systems.  
 
TABLE 1. Selected properties of soils studied (0-15 cm)  
Properties  Unit   CP   RP    NCP      F         OP      BF  
 
CS   %  55   49     70       76         63         62  
Fs   %   28  28     17       16         24      18  
Silt   %   7   12     2        1       7       9  
Clay   %   10   11     11        7       6      11  
TC     LS   SL     Ls        S      L      SL  
BD   g/cm3  1.53   1.43     1.36        1.29      1.29     1.36  
TP   %   42   46     48        51   51      52  
pH(1:2.5/H20)    4.8   4.7     4.8        1.4         4.7     4.5  
OC   %  2.2   2.2     1.1        1.7         1.9     1.7    
TN   %   0.20   0.20     0.10     0.16       0.18    0.11   
Av.P  ppm  8.1   26.6      9.5     10.2        7.6     7.9   
Ca2+    meq/100g 0.8  1.8      0.4      0.6   1.6     0.8   
Mg2+    meq/100g 0.5  0.6      0.6      0.5   0.9     0.5     
K+    meq/100g  0.1  0.2      0.1      0.1   0.1     0.1     
Na+    meq/100g  0.8  0.7      0.7      0.6   0.5     0.6  
H+    meq/100g  0.2  0.2      0.3      0.3   0.2     0.2    
AI3+    meq/100g  0.7  0.5      0.8      1.1   0.2     0.8  
CEC    meq/100g  4.9  5.6      3.8      5.2   5.9    4.5    
Bsat   %   44  59       47      34   50    44     
ESP   %   16  12       18      11   8    13    
SAR     3.2  2.4      3.3      2.8   1.5    2.4    
CP  = Cassava cultivation polluted with crude oil     
RP  = rubber plantation, NCP = Cassava Cultivation not polluted, F = forest, OP = 
 oil palm plantation, BF = Bare  Fallow, LS = Loamy Sand, S = sand,  
SL =  sandy loamy    
CS =  Coarse sand, FS = fine sand, TC =textural class,    
BD  =  Bulk density, TP = total porosity, OC = organic carbon,    
TN  = Total nitrogen, AVP = available phosphorus, CEC = cation    
Exchange capacity, BSat = base saturation, ESP = exchangeable    
Sodium percentage, SAR = sodium absorption ratio.    
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Table 2. Properties of  soils under 6 land uses in  relation to slope  
(0-15cm) 
Land use     CS  FS     Silt  Clay     TP     BD        OM   
      (%)    (%)      (%)   (%)     (%)     (%)        (%)  
                        5  % slope 
CP       54.5        30.0       6.5     9      41    1.56        2.0  
RP       55.5  29.0        7.5     8      38      1.64  1.8  
NCP       72.5  15.0        2.5    10      43     1.50  1.5  
F       75.0  18.5         0.5    6     48      1.38  3.1  
OP       67.0  21.5         6.5    5      47      1.40  1.9  
BF       65.5        14.0       12.5    8     49      1.35  1.8  
Mean      65.0   21.3         6.0   7.6    44.3    1.47  2.0  
         3% Slope  
CP     54.0  29.5         6.5    10      42      1.53  4.5  
RP     55.0  28.5         7.5     9      42      1.54  2.7  
NCP     70.0  16.5          2.5    11      50     1.32  2.0  
F     76.0  15.5          1.5     7      52     1.25  2.6  
OP     64.0  23.5          7.5     5      52      1.26  3.7  
BF     60.5  20.0          8.5    11     49      1.24  1.9  
Mean    60.8  22.2          5.6   8.3    48.0     1.35  2.9  
        0 –1% slope  
CP   56.5     25.0         7.5    11        43      1.52  4.8  
RP   38.0           25.5         20.5    16      58       1.12  6.6  
NCP   67.0          18.5          5.2    12      52       1.25  2.2  
F  76.5         13.0          2.5     8      53       1.24  2.8  
OP   57.0           26.5          8.5    8      54       1.22  4.0  
BF   58.5           23.0          6.5    14      58       1.10  2.2  
Mean  58.9            22.2          8.4  11.5    53.0      1.24  3.8  
CS  = Coarse sand, FS = fine sand, TP = Total porosity,  
BD =  Bulk density, OM = organic matter 
 
 
Table 3. Structural stability of studied soils  
Land Use     Water-stable aggregates (mm)  MWD(mm)  OM 
     4-2       2-1  1-0.5     0.5-0.25       <0.25  
CP    11.2      10.9   16.9      19.7     32.9 0.75   1.9  
RP      2.1        1.1  4.8       21.3     69.8  0.28   1.8  
NCP      1.3        2.1  8.1      20.5     64.0  0.29   1.5  
F      3.5        4.9  13.2       24.9     50.8  0.44   3.1  
OF     1.6         1.4  5.1       34.1      55.3  0.31   1.9  
BF      4.1         3.5  9.7       27.5      53.7  0.42   1.8  
Mean     3.96       4.00  9.63      24.66     54.91  0.41   2.0  
   3 % Slope 
CP     13.2  13.2    11.5       14.0      46.9  0.79   4.5 
RP       4.6  5.2    12.9        23.7       50.1 0.47   2.7  
NCP       2.2  2.5      8.6         27.5       58.2  0.35   2.0  
F       4.8  10.8     17.3       25.4       39.1  0.58   2.6  
OP        8.7  6.6      9.2         23.8       49.2  0.58   3.7  
BF       6.0  4.3    10.5         29.1       48.2  0.49   1.9  
Mean     6.58  7.10    11.66      23.91    48.61  0.54   2.9  
   0 – 1% Slope  
 
CP     16.3         17.5     17.8  17.6       26.9  0.99   4.8  
RP    11.1      12.1     12.1  6.8       46.7  0.69   6.6  
NCP      2.3    2.9       6.8     31.9       55.3  0.35   2.2  
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F      6.3           12.1     15.7  23.5       39.7  0.63   2.8  
OP       9.7         12.5       20.8  15.9       38.7  0.74   4.0  
BF      5.3            8.5     13.6   21.1            39.7  0.55  2.2  
Mean     8.50          10.93    14.46             19.46         41.16  0.66   3.7   
MWD  = Mean weight diameter  
 
 
Table 4. Relationship between MWD and some soil properties (N=90)  
 
Variable    r   r2   Level of Significance  
OC     0.52   0.270   * * 
pH(water)    0.32   0.100   * *  
TN     0.51  0.260   * * 
Ca2+    0.39   0.150   * * 
Mg2+     -0.03   0.001   NS 
K+     0.22   0.050   * * 
Na+     -0.34   0.110   * * 
BSat    0.34   0.110  * * 
H     -0.21   0.040  * * 
TEA     -0.13  0.010  NS  
BD     -0.07   0.005   NS 
SAR     0.05   0.003  NS  
ESP     0.13  0.02  NS 
 
MWD  = Mean weight diameter, OC = organic carbon, TN = total nitrogen, TEA= exchangeable 
acidity, BSat = base saturation, BD =bulk density, SAR = sodium Adsorption Ratio ** Significant at P = 
0.01, * Significant at P = 0.05 NS = not significant, r =correlation coefficient, r2 = coefficient of 
Determination.   
 
Discussion  
 Sandiness, acidity and low organic matter content of soils could be attributed to a combination of 
influences from parent materials climate, land use type and land use history. The presence of Coastal Plain 
Sands as a parent material resulted in the formation of sand-sized fractions with little clay content and 
clayiness affects aggregate stability (Kay and Angers, 1999). It implies that the predominance of sand-sized 
particles promotes aggregate instability, and this is characteristic of studied soils of the study site. 
Instability of aggregates is worsened by high rainfall duration, amount and intensity which heighten 
erosivity of these disaggregated soils. Also, low content of organic matter in these soils especially those on 
5% slope enhances disaggregation of macroaggregates. It has been reported that a positive relationship 
exists between organic matter and aggregate stability (Spaccini et al. 2001; Adesodum et al., 2004). 
Despite a good value of OC recorded in CP, it still has the highest value of bulk density (1.53 g/cm3), and 
this is attributable to effect of cultivation and crude oil pollution of these soils. Foth (1984) reported that 
crude oil spillage increases bulk density due to aggregate disintegration as tillage operations break down 
aggregates, reduce structural stability while increasing bulk density (Eynard et al., 2004). In Southern 
Brazil, Viera et al.(2002) reported changes in bulk density resulting from cultivation.  
 Exchangeable calcium strongly correlated with MWD (r =0.39; p = 0.01, N = 90) possibly due to 
the ability of the basic cation to promote flocculation of soil colloids (Curlin et al., 1994; Dontsova and 
Norton, 2002). Exchangeable potassuim had the same effect while Na+ significantly decreased as MWD 
increased (r = 0.34; P =0.01). Earlier, Dontsova et al. (2004) reported that exchangeable cations 
significantly influence soil-water relations and this may have affected structural stability. Exchangeable Na 
and Mg enhance dispersion and clay swelling in the soil exchange complex. Cationic hydrogen had a 
significant negative correlation (r = -0.21; p = 0.01) with MWD, which could be attributed to its 
preponderance after intensive leaching of basic cations in the tropical rainforest agroecology. In the same 
study, values of exchangeable Na were low and exhibited insignificant relationship with ESP and SAR, 
suggesting that exchangeable sodium is not a  principal factor influencing MWD and consequent erodibility 
of soils of the study area.   
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Conclusions  
The study revealed that properties of soils varied due to land use practices. Rubber plantation and 

CP soils exhibited highest BD values while RP and CP soils were high in OM. While BD decreased 
downslope, OM increased towards 0-1% slope. Structural stability of aggregates also varied with land use, 
with CP  showing highest MWD in all the physiographic positions. However,in all land use types, MWD 
was very strongly related with OC and TN. There is a great need to use other aggregate stability indices in 
soils of the study site for increased knowledge and for purposes of comparisons.  
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