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Abstract: By using Legendre polynomials to model dynamic changes of each genetic effect, a mathematic 
model was constructed for mapping dynamic trait loci. Other than the number of estimated effects 
increasing several times, there were no differences between the mapping principles for dynamic trait and 
the general quantitative trait loci underlying the same genetic design. Therefore, given the prerequisite that, 
residual errors at each observed point have the same distribution and are independent from each other, it is 
feasible to use regression analysis (REG) as an alternative of maximum likelihood (ML) for simplifying 
the estimated model parameters and detects QTL for dynamic traits. The new strategy for mapping 
dynamic trait loci is developed in the context of an outbred population with three-order Legendre 
polynomial as a sub-model. The properties of regression analysis are demonstrated and compared with 
maximum likelihood via replicated Monte Carlo simulations. The factors considered include individual 
number, test-day frequency, marker frequency and accumulative heretability, the level combinations of 
which were based   on orthogonal table. It showed that REG performs equally well with ML, but 
deficient in accuracy and precision of residual variance estimating. The detection power of both methods 
depends greatly on size of accumulative heretability. [Nature and Science. 2004;2(4):68-78]. 
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1. Introduction 

 
The growth development of tissues and organs 

and change of performance with time of life or certain 
quantitative factors belong to the category of dynamic 
trait, which is of major interest to developmental 
genetics in plant and animal breeding studies.  

Existing methods for genetic mapping of a 
dynamic trait can be synoptically divided into two 
classes: dynamic point-based method and dynamic 
model-based method. The dynamic point-based 
method treated each dynamic point as a different trait 
and genetically map dynamic trait loci by using 
separate analysis (Cheverud et al. 1996; Nuzhdin et al. 
1997; Verhaegen et al. 1997; Emebiri et al. 1998; Wu 
et al. 1999), mutitrait analysis (Jiang & Zeng 1995; 
Korol et al. 1995; Ronin et al. 1995; Eaves et al. 1996; 
Knott and Haley 2000) or conditional analysis for 
these phenotypes at each dynamic points (Yan et al, 
1998a, b; Wu et al, 2002). However, this analysis 
approach can just provide partial estimates of genetic 

control over dynamic traits, because it was not 
possible to capture the whole information about 
infinite dynamic points in the dynamic process. Also, 
it is required to observe in equilibrium phenotypes at 
dynamic points from each individual except separate 
analysis. A dynamic model-based method proposed 
recently attempted to detect QTL affecting the 
changing process of dynamic trait via analyzing the 
phenotypic function (curve) on time in life and other 
quantitative factors. In papers just published, 
Rodriguez-Zas et al. (2002) developed a 
longitudinal-linkage analysis approach for mapping 
QTL affecting the shape and scale of lactation curves 
for production and health traits in dairy cattle in 
outbred population. By combining growth models 
with QTL mapping, W. R. Wu et al (2002) proposed 
an approach of QTL mapping based on growth models. 
Both two approaches are archived by two steps: the 
first is to fit the dynamic curve of each individual or 
line with a theoretical or empirical mathematical 
model and then map QTLs based on the estimated 
model parameters. As a rule, two-step estimation 
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performs lower statistical power because the estimated 
errors of model parameters are not considered in the 
second step. Based on functional mapping strategy 
(Ma et al 2002; Wu et al 2002; 2003), the models for 
dynamic trait mapping QTL were established by using 
Logistic curves to describe the effects of QTL 
genotypes on the growth process of a forest tree. 
Although effects of QTL genotypes can be estimated 
by one step, it is difficult to estimate the additive and 
interaction effects of QTL and fail to extent to 
arbitrary population for estimating simultaneously 
multiple QTL genetic effects. Enlightened by the 
random regression model (Henderson 1982; Schaeffer 
& Dekkers, 1994; Schaeffer, 2002), said the Legendre 
polinomial may be nested into each QTL effect in 
general QTL mapping model to describe the change of 
QTL effects on dynamic traits and so the new 
mathematic model for mapping dynamic trait loci can 
be constructed for mapping one or multiple QTLs in 
various population (Yang et al, 2003).  

Maximum likelihood, implemented with the EM 
algorithm, was used at the beginning of interval 
mapping advent. It can fully capture the information 
of data distribution, but could not be implemented in 
complex data structure because of the difficulty in 
computations. Haley and Knott (1992) introduced 
regression analysis method to interval mapping by 
substituting the probabilities of each QTL genotype 
under the markers for the indicator variable of each 
genotype and proved that it can save much time in 
computation and get similar results as ML. Other than 
the number of estimated effects increased several 
times, there were no differences between the mapping 
principles for dynamic trait and the general 
quantitative trait under the same genetic design. The 
objective in this study is to apply regression analysis 
to simplify and estimate model parameters and detect 
QTL for dynamic traits and also compare with 
maximum likelihood, simulation experiments in 
outbred populations. 

 
2. Mapping principle  
2.1 Genetic design 

The population exampled to demonstrate the 
application of QTL mapping for dynamic trait loci in 
animals in this study is the full-sibs of outbred cross, 
which is most general in animal populations. Under 
Mendelian inheritance laws, there are four possible 

genotypes denoted by Q , ,  and 

. If Legendre polynomial is used to model the 

genetic change with time or other factors of dynamic 
trait or the effect of QTL, the statistical model 
describe the phenotypic value of individual  at  

test-day may be  

ds
11Q ds

21QQ ds
12QQ

i

ds
22QQ

j

ij
k

kijikij

ijijiijiijiijiijij

eX

eXXXXy

+′+′=

+′+′+′+′+′=

∑
=

4

1

44332211

gTµT

gTgTgTgTµT

ni ,,2,1 L= ; mj ,,2,1 L= ; . 4,3,2,1=k
Where, µ  is the regression coefficient vector of the 

Legendre polynomial for population means; 

ijT′ = [ ] ′)()(1 1 ijsij PP ττ L  with τ  and s  

representing standardized time t and the order of 
Legendre polynomial selected, respectively; Xik is the 
indicator variable of QTL genotype, valued 1 when 
the genotype of individual i is the k or 0 when the 

other.  denotes vector of fixed regression effects 

corresponding to genotype k. 
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2.2 Statistical method 

Maximum likelihood. The phenotypes of the traits 
at all time points for each genotype group follow a 
multivariate normal distribution:  
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Actually, the genotype of individual i is 
unobservable, and it must be inferred by markers as 
conditional probability. Then the likelihood function 
of the outbred cross with m-dimensional 
measurements can be represented by a multivariate 
mixture distribution: 
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The unknown parameters about QTL can be estimated 
using maximum likelihood implementing the EM 
algorithm. The steps of EM algorithm can be
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 recapitulated as 
(1) Set the initial values of each 

parameter ; ][Ω )0(2)0()0()0( σµ g=

(2) Calculate the posterior probabilities of each 

QTL genotype 
∑ =

= 4
1 y

y

k ijkik

ijkik
ik )(fp

)(fp
p ; 

(3) E-step: calculate the expectations under the 
posteriors; 

(4) M-step: estimate the MLE of each 
parameter. 

 Let [ ]4321 ggggg =′ , 
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With  substituted by , iterations are 

then made between step (2), (3) and (4) and 
terminated when a predetermined criterion is satisfied. 
The final estimates are to be the MLEs. 

)0(Ω )1(Ω

In practical computations, the QTL position 
parameter θ  can be viewed as fixed because a 
putative QTL can be searched at every 1 or 2 cM on a 
map interval bracketed by two markers throughout the 
entire linkage map. The amount of support for a QTL 
at a particular map position is often displayed 
graphically through likelihood profiles. The position 
of the largest and most significant is considered the 
most possible that the putative QTL lying.  

Regression analysis. Different from ML, the 
indicator variables for each genotype in the statistical 
model are first replaced by their conditional 

expectations given marker information, i.e., 

ij
k

kijikijij eXy +′+′= ∑
=

4

1
gTˆµT . 

)
Where, MN)|( ikiik XEX = , MN 

represented the flanking markers. The estimation and 
statistical test of QTL effects can be accomplished 
using conventional multiple regression analysis by 
treating  as observed values. ikX̂

The conditional probabilities of each QTL 
genotype, , were calculated by 
multipoints estimation method (Rao and Xu, 1998; Xu 
et. 1998). 

MN)|Pr(Q

Let , then ikpQ =MN)|Pr(
[ ]43|(ˆ

iiikik ppXEX = 21MN) ii pp= , and  
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The estimates of each parameter can be calculated by 
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Ulteriorly, the means to detect the possible position of 
the putative QTL in linkage map is the same as the 
ML’s.  
 
2.3 Estimation for genetic effects 
    In an outbred family, the genotypic value of a 
progeny can be partitioned according to the following 
genetic model, 
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Where  and  are the effects of the two 
alleles in the sire,  and  are the effects of the 
two alleles in the dam, and  are the dominance 
deviations. Because these effects are not estimable, 
some constraints are required. These constraints are 2222
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2.4 Hypothesis tests 
The hypothesis about the existence of a QTL 

affecting an overall process of dynamics can be 
formulated as 

H0:   H0γ =k A:  ( k=1,2,3 ) 0γ ≠k
That H0 is rejected means there has a QTL 

existent in the map.  
The test statistics for testing the hypothesis is 

calculated as the log-likelihood ratio (LR) of the full 
over reduced model: 
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Where Ω~  and Ω  denote the ML estimates of the 
unknown parameters under H

ˆ
0 and H1, respectively. 

 
3. Simulation studies 

 
The properties of the method, especially 

unbiaseness, standard errors of the parameter 
estimation and statistical power, were investigated 
numerically via Monte Carlo simulations with a 
full-sib population. On a single chromosome segment 
of length 100 cM consider and simulate 6, 11 and 21 
evenly spaced codominant markers covered, 
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respectively, and a single QTL was supposed locating 
at position 27 cM. The test-day of the data observed a 
range from 1 to 150. Alleles inherited at each position 
in individuals were generated by the linkage phase 
inherited from estimation. 

Assume the effects of the QTL of dynamic trait 
were fixed in statistical model and described its 
different contribution to phenotypic values at different 
time points by three-orders Legendre polynomial. The 
first four terms of Legendre polynomial were 

,)(,1)( 10 τττ == PP

)33 ττ −5(
2
1)(),13(

2
1)( 3

2
2 τττ =−= PP  

Let the mean values of regression effect in population 
be 0, then the phenotypic value of individual i at time 
j can be calculated as follow according to QTL 
genotypes of each individual and test project of this 

population, given the additive effect ( a  for sire and 

 for dam) and dominance effects ( ) of the 

parents and the residual variance .  

s
0

d
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Where, ξ  is a random number of standardized 
normal distribution. 

    Given effect, ( ) and , the 

variance and covariance of each regression effect were 

calculated as 

0a 000 aa ads == 0d
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4
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16
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Combined with residual variance , the heredity in 

each point of the dynamic process can be calculated as  
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2
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 = [ ] . iT′ ′)()(1 1 isi tPtP L

The phenotypic value, additive effect value, 
dominance effect value at each dynamic points were 
calculated under each given genetic regresson effect, 

[ ]65.102.165.058.1a0 −=′  and 
[ ]27.171.036.077.1d 0 −=′ , and graphically 

represented in Figure 1a and 1b. 
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Figure 1a. Dynamic curve of total genetic value, 

additive and dominance effect value  
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Figure 1b. Heritability change at each dynamic point 

under three accumulative accumulative heretability 

levels 

The factors considered included individual 
number, test-day frequency, marker number and 
heredity level and each taken three levels as 0.05, 0.20 
and 0.40 were taken in accumulative heretability; 100, 
300 and 500 in individual; 6, 11 and 21 in marker; 5, 
10 and 15 in test-day frequency. 

Since the combinations of factors considered 
were too much, the experiments of simulation were 
arranged according to orthogonal table (Table 1). The 
simulation was repeated 100 times for each situation. 
The mean estimate and the standard error of an 
estimated parameter, calculated from 100 replicated 
simulations, were showed in Table 2-4.
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The statistical power was determined by counting 
the proportion of the number of runs (over 100 
replicates) with test statistic values greater than an 
empirical threshold. The empirical threshold value 
was obtained by choosing the 95-th and 99-th 
percentiles of the highest test statistic over 1000 

additional runs under the null model (no QTL is 
segregating). Table 2 shows that ML method provides 
slightly higher threshold values than regression 
analysis, but these critical values hardly depend on 
each factor. 

 

Table 1. Experimental factor and its combinations  

Factors 
Groups 

Heretabilities Marker frequencies Individual numbers Test-day frequencies 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.05 

0.05 

0.05 

0.2 

0.2 

0.2 

0.4 

0.4 

0.4 

6 

11 

21 

6 

11 

21 

6 

11 

21 

100 

300 

500 

300 

500 

100 

500 

100 

300 

5 

10 

15 

15 

5 

10 

10 

15 

5 

Table 2. Empirical critical values of the test statistics in different combinations（95%, 99%） 

Groups Methods 95% 99% 

ML 21.72 24.24 
1 

REG 21.03 23.50 

ML 19.68 21.53 
2 

REG 19.54 21.38 

ML 18.87 20.64 
3 

REG 18.86 20.64 

ML 18.34 19.98 
4 

REG 18.34 19.98 

ML 19.53 20.00 
5 

REG 18.41 19.88 

ML 19.98 21.96 
6 

REG 19.85 21.83 

ML 17.95 19.71 
7 

REG 17.86 19.58 

ML 19.57 21.52 
8 

REG 19.59 21.57 

ML 19.44 21.33 
9 

REG 19.44 21.33 
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Table 3 showed the estimates (and standard 

deviation) of QTL position, residual variance and the 
powers of regression analysis for detection compared 
with ML in different combinations. Generally 
speaking, the two methods show virtually no 
differences, which is consistent with the observation 
of Xu (1998) and Haley and Knott’s (1992) 
comparison of ML and REG in mapping QTL for 
general quantitative trait. The methods behave as 
expected: a high level factor tends to produce an 
unbiased estimate of the QTL position and small 
estimation errors. Both methods perform well in 
detection power, which may reach 98% when 
individual number over 300 even only the 5% 
variation of the trait was controlled by the QTL. The 

power of QTL detection in regression analysis was 
above 65% when the individual number was just 100. 
If only analysis single records of a trait, the number of 
individual needed that ensure detection power be of 
95% would be 500 in the same situation. It 
sufficiently shows the complement of test-day 
frequency and individual number. 

Both methods perform well in estimating the 
residual variance with little estimation error and high 
precision under every combination. Although ML 
behaves better than REG in the same situation, the 
estimates of the two methods are both tending to the 
true values as the sample size, which defined as the 
product of individual number and test-day frequency 
increasing. 

 

Table 3. Estimates of QTL Position, Residual Variance and the Powers for Detection Calculated from 1000 
Repeated Simulations 

Statistical power 
Groups Methods cM 2σ  α =0.05 α =0.01 

ML 28.735(0.541) 33.106(0.0806) 79 69 
1 

REG 29.188(0.537) 36.949(0.0775) 77 71 

ML 27.249(0.0784) 34.895(0.0294) 100 100 
2 

REG 27.277(0.0801) 35.047(0.0308) 99 98 

ML 26.988(0.0314) 35.018(0.0181) 100 100 
3 

REG 26.988(0.0311) 35.017(0.0191) 100 100 

 True 27.00 7.379   

ML 27.179(0.0633) 7.350(0.00597) 99 99 
4 

REG 27.168(0.0787) 7.283(0.00719) 99 99 

ML 27.017(0.0383) 7.329(0.00676) 100 100 
5 

REG 27.071(0.0412) 7.336(0.00857) 100 100 

ML 26.913(0.0576) 7.262(0.0104) 100 100 
6 

REG 26.889(0.0602) 7.298(0.0144) 100 100 

 True 27.00 2.767   

ML 26.880(0.0415) 2.758(0.00224) 100 100 
7 

REG 26.786(0.0625) 2.717(0.00394) 100 100 

ML 27.018(0.0601) 2.728(0.00376) 100 100 
8 

REG 27.035(0.0654) 2.635(0.00818) 100 100 

ML 27.001(0.0242) 2.760(0.00199) 100 100 
9 

REG 27.007(0.0275) 2.7037(0.00628) 100 100 
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Table 4. Mean Estimates and Standard Deviations (in parentheses)  

of Effects of QTLCalculated from 1000 Repeated Simulations 

Groups Methods s
0a  

s
1a  s

2a  s
3a  d

0a  d
1a  

d
2a  d

3a  d0 d1 d2 d3 

 True 1.58 0.65 -1.02 1.65 1.58 0.65 -1.02 1.65 1.77 0.36 -0.71 1.27 

ML 
1.55 

(0.024) 

0.64 

(0.036) 

-0.98 

(0.045) 

1.65 

(0.057) 

1.61 

(0.025) 

065 

(0.037) 

-1.02 

(0.045) 

1.62 

(0.057) 

1.68 

(0.058) 

0.35 

(0.092) 

-0.65 

(0.102) 

1.13 

(0.138) 
1 

REG 
1.54 

(0.023) 

0.64 

(0.037) 

-0.98 

(0.045) 

1.68 

(0.057) 

1.58 

(0.023) 

0.66 

(0.037) 

-1.00 

(0.043) 

1.64 

(0.057) 

1.70 

(0.057) 

0.39 

(0.086) 

-0.63 

(0.104) 

1.07 

(0.137) 

ML 
1.58 

(0.008) 

0.63 

(0.013) 

-1.01 

(0.015) 

1.66 

(0.018) 

1.58 

(0.008) 

0.64 

(0.013) 

-1.01 

(0.016) 

1.65 

(0.018) 

1.78 

(0.016) 

0.32 

(0.027) 

-0.74 

(0.033) 

1.34 

(0.040) 
2 

REG 
1.58 

(0.008) 

0.63 

(0.013) 

-1.01 

(0.015) 

1.66 

(0.018) 

1.58 

(0.008) 

0.64 

(0.013) 

-1.01 

(0.016) 

1.65 

(0.018) 

1.78 
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0.33 

(0.027) 

-0.75 
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1.34 
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ML 
1.59 

(0.005) 

0.66 

(0.008) 
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(0.010) 

1.66 
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(0.008) 
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0.65 

(0.003) 
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(0.003) 

-1.03 

(0.004) 

1.65 

(0.004) 

1.77 

(0.004) 

0.36 

(0.007) 

-0.71 

(0.008) 

1.28 

(0.009) 
7 
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1.58 

(0.003) 

0.65 

(0.003) 

-1.02 

(0.004) 

1.65 

(0.006) 

1.58 

(0.004) 

0.66 

(0.004) 

-1.02 

(0.005) 

1.66 

(0.006) 

1.79 

(0.010) 

0.36 

(0.008) 

-0.71 

(0.010) 

1.28 

(0.014) 

ML 
1.57 

(0.003) 

0.65 

(0.005) 

-1.01 

(0.007) 

1.63 

(0.008) 

1.58 

(0.003) 

0.66 

(0.005) 

-1.02 

(0.007) 

1.63 

(0.008) 

1.77 

(0.006) 

0.36 

(0.011) 

-0.72 

(0.014) 

1.27 

(0.015) 
8 

REG 
1.58 

(0.004) 

0.64 

(0.005) 

-1.01 

(0.007) 

1.63 

(0.008) 

1.58 

(0.004) 

0.66 

(0.005) 

-1.03 

(0.007) 

1.64 
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1.78 

(0.007) 

0.36 

(0.011) 
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(0.014) 

1.29 

(0.016) 

ML 
1.58 

(0.002) 

0.65 

(0.003) 

-1.02 

(0.004) 

1.65 

(0.004) 

1.58 

(0.002) 

0.65 

(0.003) 

-1.03 

(0.004) 

1.65 

(0.004) 

1.77 

(0.003) 

0.37 

(0.006) 

-0.71 

(0.007) 

1.29 

(0.008) 
9 

REG 
1.57 

(0.003) 

0.64 

(0.005) 

-1.02 

(0.006) 

1.66 

(0.007) 

1.58 

(0.003) 

0.65 

(0.005) 

-1.02 

(0.006) 

1.64 

(0.008) 

1.77 

(0.006) 

0.37 

(0.010) 

-0.70 

(0.012) 

1.25 

(0.015) 
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   Figure 2a. Comparison of the likelihood ratio test          Figure 2b. Comparison of the likelihood ratio test 
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Figure 2c. Comparison of the likelihood ratio test statistic 
profiles of REG (dotted line) with ML (solid line) at three 
levels of QTL heritability with 500 individuals 

To compare the two methods in QTL detection, 
the likelihood ratio test statistic profiles were plotted 
against the chromosome position (Figure 2a-c). It is 

easily seen that the profiles of the two methods almost 
overlapped under the heritbility of low level. The test 
statistic of ML method seems apparently greater than 
that of REG method. Both methods could hardly 
detect the existence of QTL under low heritability, but 
both showed high ability in detection for the trait with 
high heritability. 

h2=0.40 

4. Discussion and Conclusion  
 
QTL mapping is a typical problem of the 

regression with uncertain independent variables. It is 
well known that ML is the optimal method for this 
problem because the distributions of the unknown 
independent variables are fully taken into account 
(Lander and Botstein 1989; Jansen 1994; Zeng 1994). 
Under normal residual distribution, the REG method 
can provide a first-order approximation to the ML in 
the sense that the unobserved independent variables 
replaced by their conditional expectations (Haley and 
Knott 1992; Xu 1998). Other than time number of 
estimated effects increased, there were no differences 
between the mapping principles for dynamic trait and 
the general quantitative trait loci by using Legendre 
polynomial to describe QTL genetic effects 

h2=0.20 

h2=0.05 
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underlying same genetic design. If residual variance 
of each observation point is supposed to be equal and 
of normal distribution, the unknown indicator variable 
for QTL genotypes can be replaced by its expectation 
and REG method could be used to estimate the 
parameter of QTL for mapping dynamic traits. The 
estimation for the residual variance tends to be 
slightly expanded whereas the unknown QTL 
genotypes simply replaced by their conditional 
probabilities given maker information. 

The process of simulation analysis indicated that 
REG method is of absolute advantage in 
computational algorithm and speed and of certain 
detection power compared with the ML. 

The results of simulation showed that REG 
performs equally well with ML, but deficient in 
accuracy and precision of residual variance estimating. 
The detection power of both methods depends greatly 
on heredity level, but the power of detection would be 
sufficient with individuals above 300, makers over 6 
and test-day frequency at 5% or more even if in lower 
heritability. 
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