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Abstract: A H∞ control for linear parameter-varying (LPV) systems with a parameter-varying state delay 
is described. A new parameter-dependent H∞ performance criterion is first established by the introduction 
of a slack variable, which exhibits a kind of decoupling between Lyapunov functions and system matrices. 
This kind of decoupling enables us to obtain a more easily tractable condition for analysis and synthesis 
problems. Then, the corresponding output feedback controller design is investigated upon this new 
performance criterion, with sufficient conditions obtained for the existence of admissible controllers in 
terms of parameterized linear matrix inequalities (PLMIs) and a non-convex constraint set. The cone 
complement linearization idea is employed to convert the controller design into a convex optimization 
problem. A numerical example is provided to illustrate the feasibility and advantage of the proposed 
controller design procedure. [Nature and Science, 2004,2(1):53-60].   
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1  Introduction 
 

Linear parameter-varying (LPV) systems have 
recently much attention because they provide a 
systematic means of computing gain-scheduled 
controllers (Shamma, 1990; Apkarian, 1995, 1998). 
LPV systems are characterized as linear systems that 
depend on time-varying real parameters. These 
parameters are assumed to be exogenous signals that are 
unknown in advance but are constrained a priori to lie in 
some known, bounded set, and can be measured in real 
time. Recently, many researchers examined the stability 
analysis and gain scheduling control of LPV systems 
extensively and a great number of important results 
have been reported to the literature (see, for instance, 
(Shamma, 1990; Apkarian, 1995, 1998; Wu, 2001; Tan, 
2000, 2003; Zhang, 2001, 2002; Bara, 2001a, 2001b) 
and the references therein).  

On the other hand, time delays are often present in 
engineering systems, which have been generally 
regarded as a main source of instability and poor 
performance. Therefore, recent research effort is 
focused more on the analysis and synthesis problems of 
LPV time-delay systems. To mention a few, (Wu, 2001;  

Tan, 2003; Tan, 2000) investigated control problems for 
LPV systems with parameter-varying delays, and 
(Zhang, 2001, 2002) with a fixed delay size.  

In this note, we extend the results in (Wu, 2001) to 
output feedback control synthesis problems for LPV 
systems with a parameter-varying state-delay. We seek 
to develop controllers that are scheduled based on the 
measurement of the parameters to guarantee stability 
and the desired H∞ performance specification. Firstly, a 
parameter-dependent H∞ performance criterion is 
established based on the Lyapunov approach. Secondly, 
we further improve the obtained performance by 
decoupling the product terms involving the positive 
definite matrices, which is enabled the introduction of 
an additional slack variable. This resulting new 
performance condition is more easily tractable for 
analysis and synthesis problems. Thirdly, upon this new 
criterion, the corresponding parameter-varying dynamic 
output feedback controllers are designed, which 
guarantee the closed-loop system to be asymptotically 
stable with a prescribed H∞ disturbance attenuation level. 
Since the sufficient conditions for the existence of such 
controllers are not expressed as parameterized linear 
matrix inequalities (PLMIs), an iterative algorithm 
involving convex optimization is proposed. Numerical 
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example shows that the effectiveness of the proposed 
methods. The results obtained in this note can be easily 
extended to LPV systems with multiple delays.  

Notations: Throughout this note the superscript T 
stands for matrix transposition,  denotes the n 
dimensional Euclidean space,  is the set of all 

 real matrices, and the notation  for 

nR
n×mR

nm×
n

0>P
nRP ×∈  means that P is symmetric and positive 

definite. In addition, in symmetric block matrices or 

long matrix expressions, we use * as an ellipsis for the 
terms that are induced by symmetry,  stands 
for a block-diagonal matrix, and  denotes 
the trace of the matrix H.  

}{Ldiag
{ }ce Htra

 
2  Problem Set-up 
 

Consider the following LPV system with a 
parameter-varying delay:

1 2

1 1 11 12

2 2 21

( ) ( ( )) ( ) ( ( )) ( ( ( ))) ( ( )) ( ) ( ( )) ( )
( ) ( ( )) ( ) ( ( )) ( ( ( ))) ( ( )) ( ) ( ( )) ( )
( ) ( ( )) ( ) ( ( )) ( ( ( ))) ( ( )) ( )

h

h

h

x t A t x t A t x t h t B t t B t u t
z t C t x t C t x t h t D t t D t u t
y t C t x t C t x t h t D t t

ρ ρ ρ ρ ω ρ
ρ ρ ρ ρ ω ρ
ρ ρ ρ ρ ω

= + − + +

= + − + +

= + − +

&
             (1) 

with initial condition 
( ) ( )x θ φ θ= , ]0)),0(([ ρθ h−∈∀                                  (2) 

where ( ) nx t R∈  is the state vector;  is the measured output vector;  is the exogenous 
disturbance signal; 

( ) my t R∈ ( ) lt Rω ∈

( ) pz t

) )(1 ⋅B

R∈

)(2 ⋅B

 is the control output vector;  is control input. The state-space matrices 
, , , , C , C , C

( ) qu t R∈

)(⋅A (⋅hA )(1 ⋅ )(2 ⋅ 1 ( )h ⋅ , 2 hC ( )⋅ )(11 ⋅D , )(12 ⋅D , )(21 ⋅D
( )t

and the delay  are assumed to 
be bounded continuous functions of a time-varying parameter vector 

)(⋅h
ν
ψρ ∈ℜ . The set ν

ψℜ  is the set of 
allowable parameter trajectories 

{ : ( ) , , 1, 2, , , }i it i s tν
ψ ρ ρ ψ ρ υ R+ℜ = ∈ ≤ = ∀ ∈& L                       (3) 

where ψ  is a compact set of sR , 
1{ }s

i i
υ

=
 are nonnegative numbers and it is assumed that the parameter 

trajectories are bounded with bounded variation rates. And the delay )(⋅h  is assumed to be a differentiable function 
such that 0 .For simplicity, ( ) ,   ( ) 0h t H h t< ≤ < ∞ ∀ ≥& 1,    t<σ≤ ρ denotes time-varying parameters ( )tρ  
respectively throughout this note.  

Construct a dynamic output feedback LPV controller described by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

c c c c

c c c

x t A x t B y t
u t C x t D y t

ρ ρ
ρ ρ

= +
= +

&                                 (4) 

where ( ) n
cx t R∈  is the state vector and ( )cA ρ , ( )cB ρ , C ( )c ρ , ( )cD ρ  are to be determined parameter- 

varying matrices. 
The feedback connection of the system (1) with the controller (4) produces a closed-loop system described by      

( ) ( ) ( ) ( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( ) ( ( )) ( ) ( )
h

h

t A t A E t h B t

z t C t C E t h D t
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ρ ξ ρ ξ ρ ρ

= + − +

= + − +

&

ω
                       (5) 

where  
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= =   
   

+ +   
= =   
   
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2 1 12
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( ) ( ) ( ) ( ) ( ), 0 .
c h h c h

c

C C C D D C

D D D D D E I
2ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

= +

= + =

ρ

 (6)  

Our objective is to seek an output feedback controller that asymptotically stabilizes the closed-loop system and 
guarantees a prescribed H∞ performance, that is, it should be guaranteed that  
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2 2
2

z 2

2
γ ω<                                            (7) 

for all nonzero 2[0, )lω∈ ∞  under zero initial conditions, where γ  is a positive scalar, 

∫
∞

=
0

2
2 )()( dtttT ωωω , ∫

∞
=

0

2

2
)()( dttztzz T . 

 
3  H∞ Performance Criterion 
 

In this section, we will establish the H∞ performance criterion for time-delayed LPV systems. 
Lemma 1: Consider system (1) and suppose γ  is a given positive constant. Then the closed-loop system (5) is 

asymptotically  stable  and  has  an  H∞  performance level less than γ  if there exists a matrix function 
2 20 ( ) ( )TP P Rρ ρ ×< = ∈ n n  and a matrix  such that for all nnT RQQ ×∈=<0 ν

ψρ ∈ℜ  and i iτ υ≤  the follow-
ing inequality holds  
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I D
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=

=

∂ + + + ∂ 
 ∂

− − < ∂ 
 −
 

−  

∑

∑ ( )

( )

T

s

n n

           (8) 

Remark 1: The above lemma will be obtained by the similar way to (Wu, 2001) using different 
Lyapunov-Krasovskii type functional 

( )
( ( ), ( )) ( ) ( ) ( ) ( ) ( )

tT T T

t h
V t t t P t s E QE s d

ρ
ξ ρ ξ ρ ξ ξ ξ

−
= + ∫                     (9) 

where  0 (   and    0 .  2 2) ( )TP P Rρ ρ ×< = ∈ nnT RQQ ×∈=<

Remark 2: It should be noted that the condition presented in Lemma 1 contain product terms between 
Lyapunov matrices and system matrices, such that condition (8) is a bilinear matrix inequality when (6) is 
considered. In the following, we will present an improved version of Lemma 1 by introducing a slack variable to 
decouple these product terms, which is more easily tractable for controller synthesis problems. 

Theorem 1: Consider system (1) and suppose γ  is a given positive constant. Then the closed-loop system (5) 
is asymptotically stable and has an H∞ performance level less than γ  if there exists matrix 
function 0 (  and three matrices  such 

that for all 

2 2) ( )TP P Rρ ρ ×< = ∈ n n n×2 20 , ,T n n T n n nQ Q R Z Z R W R×< = ∈ < ∈ ∈0× =

ν
ψρ ∈ℜ and i iτ υ≤  the following inequality and an non-convex condition hold  

1

1

( ) ( ) ( ) ( ) ( ) 0 0

* ( ) ( ) 0 0 ( ) 0
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0
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* * * * * * (
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S
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i
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S
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T
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P
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=

=
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 
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 ∂
 

∂ − −  <∂
 
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)
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          (10)
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QZ I=                                               (11) 

Proof : The proof is based on the generalization of  the stability results of (Apkarian, 2001). The inequality 
(10) is equivalent to:
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Now we can drop the matrix  by using the Projection Lemma. The null-spaces of[W ]0 0 0 0 0 0I  and 

( ) ( ) ( ) 0 0hI A A B Iρ ρ ρ   are respectively 
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 
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thus the projection conditions yield to:
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By Schur complement (Boyd, 1994), the inequality (13) is equivalent to (8), and (12) is equivalent to the 

constraint 
1 1

( ) ( ) 0, (1 ( )) 0
S S

i i
i ii i

P hP ρ τ τ
ρ ρ= =

∂ ∂
− + < − >

∂ ∂∑ ∑     

This means that the domain of solution given by (10-11) is included in the domain of solutions 
satisfying (8) and thus the condition (10-11) is sufficient to ensure the closed-loop system asymptotically 
stable and guarantee the prescribed H∞ performance level.                                                     

 
4  H∞ Output Feedback Synthesis  
 

In this section, the H∞ performance criterion presented in the above section will be used to design the 
parameter-dependent H∞ output feedback controllers. 

First we introduce a partition of the slack matrix W and its inverse 1V W −=  in the form 









=

2221

1211

WW
WW

W , 11 121

21 22

V V
V W

V V
−  

= =  
 

                              (14) 

There is no loss of generality in assuming that  and W  are invertible. Then we introduce the notation 
21V 21









=

021

11

W
IW

J W
,                                       (15)  









=

21

11

0 V
VI

J V

then . Multiplying the righthand and left-hand sides of the inequality (10) by 
VWWV JVJJWJ == ,

{ , , , , , ,V V }VJ diag J J I I I I J=  and its transpose, respectively, we obtain: 
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* * * * * * (
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∑ 0





)

<








  (16) 

Defining the following matrices 

11 11 11 11 21 21

11 11 21 21 21 2 11 11 2 21

11 2 2 11

( ) ( ) , , , ,

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

T T
V V

T T T T
c c c

T
c

X J P J R W F V U W V W VT

A W A V W A V W B C V W B C V

W B D C V

ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

= = = = +

= + + +

+

%                    (17) 

21 11 2( ) ( ) ( ) ( )T T
c cB W B W B Dρ ρ ρ= +% ρ

21V

   

2 11( ) ( ) ( ) ( )c cC D C V Cρ ρ ρ ρ= +%  

( ) ( )cD Dρ ρ=%  

and considering (6) and (15), we have 
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
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1 2

3

( ) ( )
0

* ( )
X X

X
ρ ρ

ρ


>
 

                               (19) 

Summarizing the above way, we can derive the following theorem.  

Theorem 2: Consider system (1) and suppose γ  is a given positive constant. Then an admissible H∞ output 

feedback controller exists if there exist matrices functions 

1 10 ( ) ( )T n nX X Rρ ρ ×< = ∈ ,
2 ( ) n nX Rρ ×∈ ,

3 30 ( ) ( )T n nX X Rρ ρ ×< = ∈ , ( ) n nA Rρ ×∈% , ,( ) n mB Rρ ×∈% ( ) q nC Rρ ×∈% ,

( ) q mD R ×∈ ∈ρ%  and matrices , n nR R × F Rn n×∈ , n nU R ×∈  such that for all ν
ψρ ∈ℜ and i iτ υ≤  (11), (18) and 

(19) hold. 
Furthermore, if (11), (18) and (19) have feasible solution, an admissible output feedback can be carried out by 

two steps: 

a. Compute a factorization  of U V  and deduce V  and W . 
21 21
TV W 11 11

TW− 21 21
b. Compute the controller data ( ), ( ), ( ), ( )c c c cA B C Dρ ρ ρ ρ  by reversing the formulas in (17). 

Remark 3: Notice that the PLMI conditions (18) and (19) correspond to infinite-dimensional convex problems 
due to their parametric dependence. Using the gridding technique and the appropriate basis functions (Apkarian, 
1998;  Wu, 2001; Tan, 2000, 2003), infinite-dimensional PLMIs can be transformed to finite-dimensional ones, 
which can be solved numerically using convex optimization techniques. We choose the appropriate basis functions 

as 
1

( )
jn

j
j

f ρ
=
∑ , then, for example, we have    
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1
1

( ) ( )
fn

j
j

X fρ ρ
=

= ∑ 1X j
                                            (20) 

Remark 4: The condition (11) is a non-convex constraint. We can readily modify the algorithm proposed in (El 
Ghaoui, 1997) to solve the above nonlinear problem to obtain the suboptimal minimum H∞ performance level γ . 

Algorithm 1:  
i) Find a feasible solution to (18-21). Set  

00,k γ γ= = .  where                                  (21) 0
Q I
I Z

 
≥ 

 

ii) Find a feasible set .)~,~,~,~,~,~,~,~,~,~,~,~,,,,,,( 0
21212121321 nfnfnfnf DDDCCCBBBAAAXXXUFR LLLL  

iii) Choose a sufficiently small initial 0 1ε< � and solve the following LMI problem. 

Minimize  subject to (18-21) . ( k kTrace QZ Q Z+ )

f

f

n

n

Set    ( , 1 2 3 1 2 1 2 1 2 1 2

1 2 3 1 2 1 2 1 2 1 2

, , , , , , , , , , , , , , , , )

( , , , , , , , , , , , , , , , , , )
f f f

f f f

k
n n n

n n n

R F U X X X A A A B B B C C C D D D

R F U X X X A A A B B B C C C D D D=

% % % % % %% % % % % %L L L L

% % % % % %% % % % % %L L L L

     

iv) If Tr ( )ace QZ n ε≤ +  holds, then set 0γ γ=  and return to ii) after decreasing γ  to some extent. If 

( ) nTrace QZ ε> +  within a specified number of iterations, then exit. Otherwise, set , and go to iii). 1+k k=
 

5  Numerical Example 
     

Consider the following time-delay LPV system:

[ ]

0 1 0.2 ( ) 0.2 ( ) 0.1 0.2 1
( ) ( ) ( (1 0.5 ( )) ( ) ( )

2 3 0.1 ( ) 0.2 0.1 ( ) 0.3 0.2 0.2

0 1 0
( ) ( ) ( )

0 0 1

( ) 0 1 ( )

t t
x t x t x t t t

t t

z t x t u t

y t x t

ρ ρ
ρ ω

ρ ρ
+       

= + − + +       − − + − + −       
   

= +   
   

=

& u t+

        (22) 

where )sin()( tt =ρ  satisfies ( ) [ 1,1], ( ) [ 1,1]t tρ ρ∈ − ∈ −&  and the time delay ( ( )) 1 0.5 ( )h t tρ ρ= +  is varying 

from 0.5 to 1.5 and the condition  holds. To design a parameter-dependent output feedback controller to 
guarantee a prescribed H

/ 1dh dt <
∞ performance level γ , we choose appropriate basis functions 

1 ( ( )) 1f tρ = , 2 ( ( )) ( )f t tρ ρ=  

and grid the parameter space using 9 points grid. By Algorithm 1,  for 0.4061γ = ,  an  admissible parameter-
-dependent output feedback controller is given by

[ ]

277.6489 0.1781 ( ) 89.7425 0.0921 ( ) 345.9074 0.2329 ( )
( ( )) , ( ( )) ,

44.6239 0.5853 ( ) 14.7158 0.0273 ( ) 60.4045 0.8487 ( )

( ( )) 0.0965 0.0062 ( ) 0.2957 0.0050 ( ) , ( ( ))

c c

c c

t t
A t B t

t t

C t t t D t

ρ ρ
ρ ρ

ρ ρ

ρ ρ ρ ρ

− − + − −  
= =  − − + − −  
= + − = −0.1054 0.0313 ( )tρ−

0.4141

t
t

ρ
ρ



  

and for γ = , the controller is described by 
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[ ]

264.9895 0.1852 ( ) 85.8323 0.0946 ( ) 325.8208 0.2406 ( )
( ( )) , ( ( )) ,

39.3147 0.5791 ( ) 12.9948 0.0282 ( ) 53.0215 0.8355 ( )

( ( )) 0.0975 0.0064 ( ) 0.3014 0.0051 ( ) , ( ( ))

c c

c c

t t
A t B t

t t

C t t t D t

ρ ρ
ρ ρ

ρ ρ

ρ ρ ρ ρ

− − + − −  
= =  − − + − −  
= + − = −0.1057 0.0315 ( )tρ−

t
t

ρ
ρ



  

Even for 0.105γ =  and 0.0008ε = , we can 
still find feasible output feedback controller which 
produces relatively larger gain than the above results. 
Therefore, we can choose appropriate γ  to design 
feasible output feedback controller. 
 
6  Concluding Remarks 
 

In this note, a new H∞ performance criterion for 
time-delayed LPV systems is presented, upon which 
the parameter-dependent H∞ output feedback controller 
design problem is investigated. An iterative output 
feedback controller design procedure is described. A 
numerical example has shown the feasibility and 
applicability of the proposed designs. 
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