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Abstract: The present study investigated the probable protective effect of hesperidin against kidney injury induced 
by methotrexate in rats. The rats received a single injection of methotrexate (20 mg/kg, i.p.). Hesperidin treatment 
(100 mg/kg/day, p.o.) was started 1 day before administration of methotrexate, and continued for 7 days. 
Methotrexate significantly increased serum creatinine, and renal malondialdehyde, nitric oxide, tumor necrosis 
factor-α, nuclear factor-κB p65, and caspase-3, and significantly decreased renal total antioxidant capacity in rats. 
Hesperidin significantly ameliorated the changes of biochemical parameters induced by methotrexate. Hesperidin 
also significantly reduced methotrexate-induced histopathological kidney tissue injury. In conclusion, hesperidin 
significantly protected against methotrexate-induced kidney injury in rats by inhibiting oxidative/nitrosative stress, 
inflammation, and apoptosis. 
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1. Introduction 

Methotrexate (MTX), the antifolate drug, is 
a commonly used cancer chemotherapeutic agent. 
MTX is used for leukemia, lymphoma, osteosarcoma, 
lung, and breast cancers. Additionally, MTX is used 
as an immunosuppressant in rheumatoid arthritis, 
psoriasis, and inflammatory bowel diseases (Khan et 
al., 2012). Despite wide clinical uses and high 
efficacy, nephrotoxicity associated with high 
morbidity and mortality remains a major and dose-
limiting problem of MTX. Acute kidney injury (AKI) 
and dysfunction occurs in about 2-12% of patients 
with hematological malignancies treated with high-
dose MTX (Howard et al., 2016). Increased 
generation of reactive oxygen species (ROS), and 
reactive nitrogen species (RNS) seem to play a 
pivotal role in the pathogenesis of MTX 
nephrotoxicity (Armagan et al., 2015). 
Oxidative/nitrative stress increases the production of 
inflammatory cytokines, as tumor necrosis factor-α 
(TNF-α), via activation of nuclear factor-κB (NF-κB) 
pathway. Subsequent up-regulation of the apoptotic 
pathways finally leads to AKI and renal failure 
(Erboga et al., 2015). In addition, several antioxidants 
and anti-apoptotic agents were used successfully 
against AKI induced by MTX (Dabak and Kocaman, 
2015; Ulusoy et al., 2016).         

Hesperidin (HN) is an active flavonoid 
found in citrus fruits possessing antioxidant and anti-
inflammatory actions (Li and Schluesener, 2017). It 
was reported that HN significantly protected against 

AKI induced by cisplatin, acrylamide, and iron in rats 
(Pari et al., 2014; Kumar et al., 2017; Hamdy et al., 
2017). HN also significantly prevented diabetic 
nephropathy in rats and mice with diabetes mellitus 
(Iskender et al., 2017; Zhang et al., 2018). In 
addition, the effect of HN against MTX 
nephrotoxicity was not yet investigated. Therefore, 
the present work was done to investigate the probable 
protective effect of HN against MTX-induced AKI in 
rats. 
 
2. Material and Methods  
Drugs 

HN and MTX were purchased from Sigma-
Aldrich, USA. HN was prepared in 0.5% 
carboxymethylcellulose (CMC) solution, and MTX 
was dissolved in physiological saline. The doses of 
HN and MTX were selected based on previous 
investigations (Erboga ET AL., 2015; Siddiqi ET 
AL., 2015).  
 
Animals 

The Animal House, College of Medicine, 
King Faisal University, provided 40 male Sprague-
Dawley rats, weighing 200-250 g. The rats were kept 
in standard housing conditions (24ºC, 45% humidity, 
and 12h light/dark cycle), and supplied with 
commercial chow and tap water ad libitum. The 
experiments were done according to the international 
guidelines for care and use of laboratory animals. 
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Study plan  
The rats were randomly allocated into 4 

equal groups (n = 10), as follows: 
- Group  1: (control) received a daily i.p. 

injection of physiological saline for 7 days.  
- Group 2: received a single i.p. injection of MTX 

(20 mg/kg), and oral CMC daily for 7 days 
starting 1 day before MTX administration. 

- Group 3: received MTX, and treated with HN 
(100 mg/kg/day, p.o.) for 7 days starting 1 day 
before MTX administration.  

- Group 4: received only HN for 7 days. 
 

Sampling and biochemical processes  
Rats were euthanized by thiopental (70 

mg/kg, i.p.) at the end of the experiments. Blood was 
collected via left ventricular puncture. Serum 
creatinine was measured by a commercial 
colorimetric kit (Biovision Inc., USA). The kidneys 
were dissected, the right kidneys were homogenized 
in cold potassium phosphate buffer (pH 7.4, 0.05 M), 
and the homogenate was centrifuged at 5000 rpm for 
10 min at 4ºC. The supernatant was used to assess 
malondialdehyde (MDA), nitric oxide (NO), and total 
antioxidant capacity (TAC) by colorimetric kits 
(Biovision Inc., USA). Tumor necrosis factor-α 
(TNF-α) was also measured using an ELISA kit 
(R&D Systems, USA). In addition, a colorimetric kit 
(R&D Systems, USA) was used to determine 
caspase-3 activity.  

A portion of the kidney homogenate was re-
centrifuged at 15.000 rpm for 30 min at 4ºC, and the 
pellet (nuclear fraction) was used to measure NF-κB 
p65 unit by an ELISA kit (Novus Biologicals, USA). 
 
Histopathology processes 

The left kidneys were fixed in formalin 10% 
solution, and embedded in paraffin wax. Sections 
were cut at 5 µm, stained with hematoxylin and eosin 
(H&E), and examined under light microscope.  

 
Statistical analysis 

Data analysis (mean ± S.E.M.) was done 
using GraphPad Prism Software Program, version 
6.01 by applying one-way ANOVA test followed by 
Tukey test for post hoc comparisons, and significance 
was at p < 0.05. 
 
3. Results  

Administration of a single dose of MTX (20 
mg/kg, i.p.) resulted in significant increase of serum 
creatinine as compared to the control (p < 0.05). On 
the other hand, HN treatment (100 mg/kg/ day, p.o.) 
for 7 days starting 1 day before MTX injection, 
significantly decreased serum creatinine in rats 
received MTX (p < 0.05) (Figure 1).    

In addition, MTX administration 
significantly increased renal MDA, NO, and 
significantly decreased kidney TAC in rats as 
compared to the control (p < 0.05). However, HN 
treatment significantly decreased renal MDA and 
NO, and significantly increased TAC in kidneys of 
rats challenged with MTX (p < 0.05) (Figure 2). 

 

 
Figure 1. Effect of hesperidin (HN) on serum 
creatinine in rats received methotrexate (MTX). 
Results are mean ± S.E.M., *p < 0.05 vs. control, •p < 
0.05 vs. MTX. 

 

 
Figure 2. Effects of hesperidin (HN) on kidney 
malondialdehyde (MDA), nitric oxide, and total 
antioxidant capacity (TAC) in rats received 
methotrexate (MTX). Results are mean ± S.E.M., *p 
< 0.05 vs. control, •p < 0.05 vs. MTX. 

 
Moreover, MTX significantly increased 

TNF-α and NF-κB p65 in rat kidneys as compared to 
the control (p < 0.05). Contrarily, HN treatment 
significantly decreased TNF-α and NF-κB p65 in 
kidneys of rats challenged with MTX (p < 0.05) 
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(Figure 3). Additionally, HN significantly prevented 
the increase of and caspase-3 induced by MTX in rat 
kidneys (p < 0.05) (Figure 4).  

 

 
Figure 3. Effects of hesperidin (HN) on kidney 
nuclear factor-κB p65 (NF-κB p65) and tumor 
necrosis factor-α (TNF-α) in rats received 
methotrexate (MTX). Results are mean ± S.E.M., *p 
< 0.05 vs. control, •p < 0.05 vs. MTX. 
 

 
Figure 4. Effects of hesperidin (HN) on caspase-3 in 
kidneys of rats received methotrexate (MTX). Results 
are mean ± S.E.M., *p < 0.05 vs. control, •p < 0.05 vs. 
MTX. 

 
 
Histopathological examination showed 

widespread renal tubular necrosis, degeneration and 
desquamation of tubular epithelium, vacuolization, 
interstitial edema, and leukocytic infiltration in rat 
kidneys challenged with MTX. Treatment with HN 
markedly minimized renal injury induced by MTX 
(Figure 5). 

 
 

 
 

 
 
 

  
 
 
 
 

Figure 5. H&E (200×) of rat kidneys from: (A) 
control showing normal renal histology; (B) 
methotrexate (MTX) group showing marked 
distortion of kidney architecture, widespread necrosis 
of renal tubules, tubular dilatation, epithelial 
desquamation, vacuolization, and coagulative 
necrosis; (C) hesperidin (HN) + MTX showing that 
normal kidney architecture is preserved. 

 
The results obtained with the group of rats 

received HN only were comparable to the 
corresponding values of the control group without 
significant differences (results not shown).  
 
4. Discussions  

The molecular mechanisms underlying 
nephrotoxicity induced by MTX are multifactorial. 
Growing evidence indicates the major role of 
oxidative stress, increased ROS generation, depletion 
of endogenous antioxidants, and lipid peroxidation of 
biological membranes with increased MDA 
production in the pathogenesis of AKI induced by 
MTX (Abd El-Twab et al., 2016). Production of ROS 
activates the inflammatory cascades, particularly 
TNT-α, NF-κB, and NO pathways. The ROS and 
TNT-α surge boost nuclear translocation of NF-κB 
p65, the main unit of cytoplasmic NF-κB 
sequestration, which augments gene transcription of 
TNT-α. Therefore, the inflammatory responses, RNS 
yield, and nitrosative stress of cellular 
macromolecules are reinforced (Abdel-Raheem and 
Khedr, 2014). This is in accordance with the current 
investigation, in which MTX up-regulated the 
oxidative, nitrative, and inflammatory markers in rat 
kidneys. In addition, the present study illustrated that 
HN significantly impeded AKI induced by MTX as 
demonstrated by decreased lipid peroxidation, 
preservation of antioxidant defenses, inhibition of 
inflammatory responses, and suppression of NF-κB 
pathway. Similarly, earlier reports related the 
nephroprotective effect of HN to the inhibition of 
oxidative/nitrative stress, and inflammation (Siddiqi 
et al., 2015; Turk et al., 2018). 

In the same line, previous investigations 
revealed that apoptotic pathways are involved in AKI 
induced by MTX (Hafez et al., 2015; Gad et al., 

A B C 
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2017). The present study also disclosed that HN 
significantly inhibited the activation of caspase-3, the 
main executioner of apoptotic cell death (Subasic et 
al., 2016), through its antioxidant and anti-
inflammatory effects. 

In agreement with the present work, past 
studies showed that MTX caused significant 
histopathological kidney tissue injuries (Hafez et al., 
2015; Asci et al., 2017). The present study also 
denoted that kidney architecture was significantly 
kept intact in MTX-challenged rats and treated with 
HN. 

From the current results, it was concluded 
that HN significantly protected against MTX-induced 
AKI in rats by inhibiting oxidative and nitrative 
stresses, inflammation, and apoptosis.  
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