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Abstract: In deep excavation, diaphragm wall deflection is an important field measurement that directly affects 
construction performance, site/adjacent building safety and project risk management. This paper applies historical 
data to forecast diaphragm wall deflection and proposes a new methodology, the “Evolutionary Fuzzy Neural Wall 
Deflection Prediction System”, to predict deep excavation wall deformation. At the core of this system is the 
Evolutionary Fuzzy Neural Inference Model (EFNIM), which joins together Genetic Algorithms (GAs), Fuzzy 
Logic (FL) and Neural Networks (NNs). This research established a historical database of wall deflection statistics 
from prior projects. The FL reasoning process and NN learning mechanism were then used to generalize a fuzzy 
rule. Finally, GAs were applied to optimize both FL’s and NN’s parameters coincidence. By inputting monitored 
wall deflection data from preceding deep excavation stages, the system developed in this paper helps users predict 
wall deformation in the upcoming stage and determine whether maximum allowable deflection has been exceeded. 
Simulation results demonstrated that past project data and experience can be utilized to predict wall deformation 
with a high level of precision in new projects.  
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1. Introduction 

Braced diaphragm wall structures are 
commonly used in deep excavation projects to 
improve the safety and quality of construction. 
Therefore, how to use monitored data effectively to 
predict diaphragm wall deflection, ensure project 
safety and prevent costly damage represents a critical 
issue. Data on diaphragm wall deflection is regularly 
monitored to ensure construction quality and the 
safety of adjacent buildings - particularly in high 
density urban settings. However, the complexity of 
geotechnical parameters and variety of construction 
factors make the behavior of the soil/wall/prop 
structures difficult to determine. Peck (1969), 
Goldberg et al. (1976), Long (2001) have previously 
identified the key factors in deep excavation to 
include soil type and properties, excavation depth, 
and wall stiffness, among others. The first task for 
this study was to compile historical data from relevant 
and reliable deep excavation cases. Afterward, 
approaches to estimate retaining wall support system 
defection, e.g., finite element analysis, were evaluated 
and applied. 

 Finite element analysis has previously been 
employed to simulate the braced diaphragm wall 

system (Clough and Hansen 1981; Powrie and Li 
1991). However, results are heavily dependent upon 
the constitutive behavior of soil. As model parameters 
are usually obtained from laboratory tests, they are 
unable to fully represent in-situ soil properties due to 
sample disturbance, in-situ environmental conditions, 
the diverse effects of construction, and so on. 
Feedback analysis is commonly applied to field 
measurements to determine soil parameters (Gioda 
and Sakurai 1987). Whitted et al. (1993) applied finite 
element analysis to model the top-down construction 
of a seven-story, underground parking garage at Post 
Office Square in Boston. By using optimization 
approaches, factors were modified to improve 
agreement with the measured data without recourse to 
parametric iteration. Ou and Tang (1994) proposed a 
nonlinear optimization technique to determine soil 
parameters for deep excavation finite element analysis 
and studied a hypothetical excavation case under a 
variety of ground conditions. Chi et al. (2001) 
obtained optimized parameters by applying an 
optimization technique for back-analysis that 
produced results in good agreement with field 
measurements. 
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 Neural Networks (NNs) represents an 
alternative numerical analysis procedure. Using 
compiled historical data and the selected significant 
parameters, NNs have proven a powerful tool for 
various modeling requirements, including 
geotechnical engineering applications. Civil 
engineering researches employ NNs to define 
complicated problems in which the governing 
equation is difficult to form (Flood and Kartam 
1994a; Flood and Kartam 1994b; Elkordy et al. 1993). 
In geotechnical engineering, Juang et al. (1999) used 
NNs to evaluate the liquefaction resistance of sandy 
soils; Neaupane and Adhikari (2006) used NNs to 
predict ground movement around tunnels; Nawari and 
Liang (2000) developed a system involving NNs and 
Fuzzy Logic (FL) to address uncertainties of pile 
foundations; Goh et al. (1995) demonstrated that NNs 
can capture the nonlinear interactions between 
variables and synthesize the finite element results in 
braced excavations; Hashash et al. (2003) developed 
an NNs-based constitutive model of soil with outputs 
defined as wall lateral deflection and ground surface 
settlement; Jan et al. (2002) applied NNs to eighteen 
historical deep excavation projects in metropolitan 
Taipei to predict diaphragm wall deflection; Chua and 
Goh (2005) used the hybrid evolutionary Bayesian 
back-propagation neural network and utilized genetic 
algorithms and the gradient descent method to 
determine optimal parameters for estimating wall 
deflection in deep excavation. 

 This study applied the Evolutionary Fuzzy 
Neural Inference Model (EFNIM) (Chen and Ko 
2003), which joins together Genetic Algorithms 
(GAs), Fuzzy Logic (FL) and Neural Networks (NNs) 
to predict deep excavation diaphragm wall deflection. 
Within the EFNIM, GAs optimize the 
topology/weightings of NNs and distribute FL 
membership functions (MFs) (Jagielska et al. 1999); 
FL is used as the fuzzy inference mechanism to 
describe inputs/outputs (Gorzalczany and Gradzki 

2000); and NNs are applied to tune the shapes of MFs 
and to extract the fuzzy rules from training data 
(Ghezelayagh and Lee 1999). This study applied 
diaphragm wall deflection data previously compiled 
from 18 metropolitan Taipei projects to the EFNIM to 
improve prediction result accuracy relative to that 
achieved by the methodology of Jan et al. (2002), 
which employed only NNs. 

 
2. The Evolutionary Fuzzy Neural Inference 
Model (EFNIM)  

Knowledge and experience helps us 
overcome uncertainty, learn and adapt in order to deal 
with complex problems. Artificial Intelligence (AI), 
an approach to data management that allows 
computers to execute tasks normally done by humans, 
is frequently applied to the resolution of geotechnical 
engineering problems that have numerous 
uncertainties inherent in their parameters. GAs, FL 
and NNs, all popular methods applied to various 
kinds of problems, each present distinct advantages 
and drawbacks, and complement the effectiveness of 
the others. This paper applied EFNIM (a model that 
fuses GAs, FL and NNs) to predict deep excavation 
diaphragm wall deflection and prevent the occurrence 
of illegal and sub-optimal solutions, which usually 
occur when only NNs are employed. 

 Although FL can be effectively employed to 
describe highly complex, ill-defined or difficult-to-
analyze subjects, MF distribution and composition 
operators are difficult to define. Therefore, NNs are 
employed to infuse self-learning capabilities for 
solving non-linear and ill-structured problems. Using 
a Fuzzy Neural Network more effectively imitates the 
human brain’s decision-making processes than using 
FL alone. In order to meet global optimization, GAs 
should be used to determine optimal MF distribution 
and NN parameters necessary to evolve the model 
toward an ideal adaptation. EFNIM architecture is 
shown in Figure 1. 

 

 
Figure 1. EFNIM Architecture 
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Figure 2. EFNIM Adaptation Process 

 
Figure 2 illustrates the EFNIM adaptation process, where P(t) is used to represent ξ individuals in 

generation t; PO(t) means that performing crossover ξ individuals yield σ individuals; and PM(t) denotes a mutation 
population of τ individuals. Initially (t=0), a population of ξ individuals, is randomly generated. Each solution 
encodes model variables (such as distributions of MFs, NN topology, interconnections, synaptic weights, etc.) into a 
binary string that simulates a natural chromosome. EFNIM then evaluates chromosome fitness. 
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3. EFNIM for Predicting Diaphragm Wall Deflection  

Diaphragm wall systems are widely used in deep excavation, and significant amounts of data are collected 
to monitor their safety. As such large amounts of data have been accumulated, how to use such to improve the 
safety of current and future projects represents an important area of potential development. The EFNIM has been 
adopted to solve this problem, employing historical data to predict diaphragm wall deflection during excavation. 
The key initial issue faced is how to configure data into a useable format. In Figure 3, W represents diaphragm wall 
thickness; D the temporary depth of excavation; Ri the observation point factor where 18 segments are set; and He 
the final depth of excavation. Embedment depth is typically set as 0.8 He. However, in cases where embedment 
depth is less than 0.8 He, deflection between the bottom of the diaphragm wall and 19th observation point is 
assigned as linear and converges to zero and the total depth of diaphragm wall is set as 1.8 He. Referring to Jan et 
al. (2002), seven important factors were selected as inputs and one output was set. Each observation point can be 
regarded as an individual case, with related parameters illustrated as follows: 

 

 
Figure 3. Representation of the Diaphragm Wall Structure 
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Seven Inputs: 
(1)Diaphragm wall thickness: W. 
(2)Excavation depth: H. 
(3)The equivalent SPT-N value between H+0.25He and H-0.25He: . 
(4)The factor of an observation point factor linearly interpolated by the depth: R. 
(5)The deflection of the observation point in the last stage, i.e., the (i-1)-th stage in the current i stage in excavation: 
Di-1. 
(6)The deflection of the observation point in the (i-2)-th stage: Di-2. 
(7)The deflection of the observation point in the (i-3)-th stage: Di-3. 
One Output: 
(1)The deflection of the observation point in i-th stage: Di.  

 
 To prevent the absence of fifth to seventh inputs, i has to be greater than or equal to three. When i=3, the 

Di-3 is set as zero. 
 

Eighteen historical cases from metropolitan Taipei, Taiwan were collected. These cases are listed in Table 
1, which provide information on the number of excavation stages, excavation depth and construction method used 
(top-down or bottom-up). The number of stages in these cases varied from four to seven. As each stage was treated 
individually, these cases comprised 93 stages in total. Excluding the first and second stages of construction, 57 
stages of valuable data were collected. The first seventeen construction cases, including 52 stages total, were used 
for training. The remaining five stages of the 18th case were employed in testing. Nineteen observation points were 
set, although excavation depths were not uniform. Therefore, 19 sets of data were collected in each stage. Based on 
the above, 52×19 = 988 training data sets and 5×19 = 95 testing data sets were collected. 

 
4. Comparison of Results 

Training data (988 sets from 52 excavation stages) and testing data (95 sets from 5 excavation stages) were 
used to develop the EFNIM diaphragm wall deflection prediction system. The crossover rate was adopted as 0.9 
and the mutation rate as 0.025. After training 11,000 generations, network interconnections numbered 31 and the 
RMSE equaled 3.794%. In Figure 4, the accuracy of maximum diaphragm wall displacements is demonstrated by 
comparing results with actual measurements and the average correlated coefficient (ACC) between the maximum 
predicted wall displacement and the maximum measured wall displacement (average of [predicted/measured]). 
ACCtraining equals 1.0077 and ACCtesting equals 0.7943. Among the 52 training excavation stages, there were 28 
cases with relative errors less than 10%; 13 cases with relative errors between 10% and 20%; and 11 cases with 
relative errors exceeding 20%. If we define the criterion of failed prediction as an error of maximum predicted 
displacement that exceeds 20%, then 10 of 52 can be considered to have failed in prediction, i.e., the accuracy of 
diaphragm wall deflection prediction using this model is 80.77%. The data of project No. 18 (the project reserved 
for use in testing data) and its 5 stages with 5×19=95 sets of testing data were calculated and, while the same 
criterion was taken, only 3 of the 5 were qualified. This gives an accuracy of prediction of 60%. While this result is 
still applicable, it is certainly not ideal. To sum up training and testing data results, 12 of 57 sets of results fail to 
meet the criterion, i.e. the model achieves an accuracy of 78.94%. This result is an improvement one than done by 
Jan et al., which used NNs only. In the following section, improvements will be applied to the prediction model to 
improve results even further. 

The typical deep excavation project has many stages and the deflection observed in any given stage is 
highly correlated to deflection parameters in previous stages. Therefore, diaphragm wall deflection data from prior 
stages are important inputs to help predict the values of deflection variables in succeeding stages of an excavation 
project. As diaphragm deflections accumulate during an excavation, data from previous stages can be employed to 
predict deflection in the following stage with improved accuracy. Based on the above, project No. 18 data shown in 
Table 1 are treated as a new excavation project. In this project, the depth of the diaphragm wall is 35 meters and the 
total excavation depth is 19.7 meters. Seven excavation stages are adopted as follows: 1st stage: 2.8 meters; 2nd 
stage: 4.9 m; 3rd stage: 8.6 m; 4th stage: 11.8 m; 5th stage: 15.2 m; 6th stage: 17.3 m and 7th stage: 19.7 m. 
Monitored data from preceding stages can be adding into the training data as a new excavation project progresses 
from stage to stage. As long as the initial model had been trained, the mutation rate is reduced from 0.025 to 0.001, 
and 5000 iterations are adopted (reduced from 11,000) to economize on computational time.  
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Figure 4. Measured vs. Predicted Maximum Diaphragm Wall Displacements 

 
 For each excavation stage after the 2nd, data compiled from previous stages were added into the training 

data to present the individual characteristics of this particular project instantaneously. As shown in Table 2, errors 
have been greatly reduced and accuracy improved by this modified process. The modified process significantly 
improved ACCtesting compared to the previous result (from 0.7943 to 0.9277). Detailed results on wall deflection at 
every stage are shown in Figure 5. According to the results, the improvement works due to the adding of previous 
stages’ data from the current project. Such data may be highly related with the prediction target based on a project’s 
discrete characteristics.  

 
Table 1. 18 Historical Excavation Projects in Metropolitan Taipei. 

No. Stages Depth (m) Construction method No. Stages Depth (m) Construction method 
1 5 12.30 Top-down 10 6 14.05 Top-down 
2 4 13.90 Bottom-up 11 4 13.60 Top-down 
3 6 16.00 Top-down 12 5 17.35 Bottom-up 
4 5 12.60 Top-down 13 5 13.15 Top-down 
5 5 12.30 Top-down 14 5 23.85 Top-down 
6 5 12.25 Top-down 15 6 19.40 Top-down 
7 4 10.00 Top-down 16 6 19.40 Top-down 
8 6 18.95 Top-down 17 5 13.70 Top-down 
9 4 9.30 Top-down 18 7 19.70 Bottom-up 
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Table 2. Taxonomic distribution of species (G, Genus; S, Species) 

Excavation stage 
Measured Max. 

displacement (mm) 
Predicted Max. 

displacement (mm) 
Original 

Error (% ) 
Modified Max. 

displacement (mm) 
Modified Error 

(% ) 
3rd 43.44 35.23 18.90% 51.16 17.77% 
4th 64.34 55.26 14.11% 59.77 7.10% 
5th 79.57 70.23 11.74% 68.19 14.30% 
6th 99.64 73.33 26.41% 76.89 22.83% 
7th 105.72 72.23 31.68% 95.47 9.70% 
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Figure 5. Wall Deflection Prediction Using the Modified Process 

 
 
 
 
4. Discussions  

In the EFNIM, FL handles soil parameter 
uncertainties; NNs form the complicated mapping 
relationships; and GAs handle global optimization for 

FL and NN parameters. As useful information is 
hidden within monitored data, the EFNIM may be 
employed to extract the critical effects of diaphragm 
wall deflection. Diaphragm wall deflection 
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predictions not only employ historical case data, but 
also the data of previous stages in the training sets in 
order to reflect in-situ particularities. By applying 
EFNIM, a strict understanding of parameters or their 
effects is not required. The magnitude of deflection 
and the position where the maximum displacement 
occurs in deep excavation diaphragm walls can, 
therefore, be predicted to ensure safety during the 
construction process. Deflection in the embedded 
position can also be performed. This permits 
engineers to make highly accurate appraisals of the 
diaphragm wall structure prior to starting the next 
excavation stage. 
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