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Abstract: The classical bootstrap method should be used with caution in binary logistic regression model since it 
can be easily affected by high leverage points. As a remedy to this problem, we propose two robust bootstrap 
methods, called the diagnostic logistic before bootstrap (DLGBB) and the weighted logistic bootstrap with 
probability (WLGBP). In the DLGBB, the high leverage points are excluded before applying the resampling 
process, and for the WLGBP, the high leverage points are attributed with low probabilities to be selected in the 
resampling process. The usefulness of our proposed methods is investigated through medical data and simulation 
study. Both the empirical and simulation results confirm that the DLGBB and the WLGBP methods give significant 
improvement over the classical bootstrap method.  
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1. Introduction 

Traditionally, in medical research, the 
prediction on probability of survival rate has been 
investigated by clinical trials about what medication 
or resource a patient might use for a given treatment. 
Confidence intervals have been used for many years 
in the reporting of clinical data to reflect the 
stochastic nature of data collected from a sample of 
patients. Several authors have explored methods for 
the approximation of confidence intervals, and the 
use of a statistical methodology known as 
bootstrapping has been put forward as a promising 
solution.  

Bootstrap is a nonparametric method of 
constructing confidence intervals and estimating 
parameters and standard errors. The most attractive 
feature of bootstrap method is that it can produce the 
standard errors of any complex estimator without 
going through its mathematical theory. The bootstrap 
procedure which was proposed by Efron (1979) is a 
computer intensive method where a set of 
observations can be assumed as a population. This 
can be implemented by constructing a huge number 
of samples, each of which is obtained by random 
simple sampling with replacement from the original 
dataset (Efron, 1979; Efron and Tibshirani, 1998). 
Even though the bootstrap method is designed and 
proven to provide more satisfactory result when 
classical set up fails without much affecting the 
situation where classical method works, but caution 
must be taken while considering this method because 

there is no guarantee on the accuracy of the 
parameters estimation in the presence of outliers or 
high leverage points. It is now evident that the 
classical bootstrap method is easily affected by 
outliers. The reason is mainly because of the fact that 
the bootstrap samples may have more outliers than 
the original sample because of employing bootstrap 
resampling with replacement (Imon and Ali,2005; 
Norazan et al., 2009) 

Bootstrap method with robust estimator may 
be employed as a remedy to this problem, but this 
may not be efficient when the percentage of outliers 
is higher than the breakdown point of the estimator. 
Moreover, the model structure in the bootstrap 
samples may change in the presence of outliers or 
high leverage points, and any method employed does 
not automatically provide valid inferential 
statements. Bootstrap techniques are frequently used 
in linear regression models. In recent years it is being 
applied in logistic regression as well. Likewise the 
linear regression model, the role of outliers is 
difficult to understand in logistic regression. Outliers 
in the X-space are called high leverage points which 
usually exert too much influence when the classical 
maximum likelihood estimator are employed (Syaiba 
and Habshah, 2010). 

In this paper, we would like to investigate 
the performance of the classical bootstrap (CB) 
method in logistic regression in the presence of high 
leverage points. A large body of literature is now 
available for robust bootstrap methods in linear 
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regression (Shao, 1992; Stromberg, 1997; Efron and 
Tibshirani, 1998; Salibian-Barrera and Zamar, 2002; 
Amado and Pires, 2004; Willems and Aelst, 2005; 
Imon and Ali, 2005; Salibian-Barrera, 2006; Norazan 
et al., 2009; Habshah et al., 2009), but to the best of 
our knowledge, there is not much study on the robust 
bootstrap methods in logistic regression. However, 
there are few papers that deal with bootstrapping in 
the logistic regression model based on the classical 
maximum likelihood estimator (MLE) (Izrael et al., 
2002; Roberts et al., 2003; Hossain and Khan, 2004). 
The work of Imon and Ali (2005) and Norazan et al. 
(2009) have motivated us to develop two robust 
bootstrap methods in logistic regression that we call 
the diagnostic logistic before bootstrap (DLGBB) and 
the weighted logistic bootstrap with probability 
(WLGBP). In the DLGBB method, the suspected 
high leverage points are identified by the robust 
logistic diagnostic (RLGD) method (Syaiba and 
Habshah, 2010) and omitted from the original data 
before performing bootstrap analysis with the 
remaining good data (Imon and Ali, 2005). On the 
other hand, in the WLGBP method the RLGD 
method is applied first to compute probabilities 
which act as control mechanism in random 
resampling process, so that the high leverage points 
receive lower probabilities of being selected in the 
bootstrap resamples (Norazan et al., 2009). 
 
2. Material and Methods  
2.1 Robust Logistic Diagnostic 

The identification of high leverage points in 
logistic regression model was first highlighted in 
Imon (2006). The RLGD method is then proposed to 
remedy the problem of swamping and masking effect 
(Syaiba and Habshah, 2010). Consider a general 
regression model with 1k p   coefficients. 

0 1 1 2 2
...

p p
Y X X X              (1) 

Suppose we have a sample of n  observations. Then, 
Eq.(1) can be simplified in matrix form as: 

Y X                                           (2) 

where Y  is an 1n   vector of responses. In logistic 
regression, we would logically let 0

i
y   if the ith 

unit does not have the characteristic and 1
i

y   if the 

ith unit does possess that characteristics X  is an 

n k  matrix of covariates,  0 1 2
, , ,...,T

p
    

 
is 

the vector of regression coefficients and   is an 

1n   vector of unobserved random errors. The 
specific form of the logistic regression model we use 
in this paper is 

 
 
 

exp

1 exp

X
X

X








                       (3) 

Here, the quantity 
i

  is known as probability or 

fitted value for the ith covariate. The model given in 
Eq.(3) satisfies 0 1

i
  . The model in terms of Y  

would be written as: 

 Y X                                        (4) 

The fitted values in logistic regression model are 
calculated for each covariate which depend on the 
estimated probability for that covariates, denoted as 
ˆ ˆ
i i

y  . Thus, the ith residuals are defined as: 

ˆ ˆ
i i i

y                                             (5) 

The RLGD method is utilized as an initial stage in 
our proposed robust bootstrap methods to identify the 
high leverage points. On the second stage of the 
RLGD method, the potential values are computed by 

the distance from the mean values. Denote  ˆ D 
 as 

the corresponding vector of estimated coefficients 
after D  suspected high leverage points are deleted 
which yields the fitted values 

 

  
  

ˆexp
ˆ

ˆ1 exp

D

D

i D

X

X














                    (6) 

Let 
1

2X V X  where V  is diagonal matrix with 

elements  垐1
i i i

v    .Thus, group deleted 

distance from mean based on group deleted cases D  
is 

   
1

D T T

i i R R i
b x X X x




                         (7) 

The value of Eq.(7) computed using  ˆ D 
 for R  

remaining cases and 
1 2

1, , ,...,T

i i i pi
x x x x     is the 

1 k  vector of observations corresponding to the ith 

case. The relationship between potential values 
proposed by Hadi (1992) and Eq.(7) gives 

   
 

 

1

1

D

D i T T T i

i i R R i i i D

i

b
b x X X x x x

b




 


  


      (8) 

Based on group deleted cases indexed by D , by 
adopting distance from mean, we define the group 
deleted potential denoted by 

 

 

 

 

*
;

1

;

D

i

D D

ii i

D

i

b
i R

p b

b i D



 






 




                 (9) 

Since the distribution of  * D

ii
p


 is unknown, we apply 

cut-off point based on median and median absolute 

deviation (MAD) for  * D

ii
p


 as suggested by Hadi 

(1992). Hence, any observation corresponding to 
excessively large potential values with cut-off points 

       * * *
3

D D D

ii ii ii
p Med p MAD p

  
         (10) 

where 
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  
     * *

*

0.6745

D D

ii ii
D

ii

Med p Med p
MAD p

 




     (11) 

will be declared as high leverage points. The step of 
RLGD method is summarized as follows: 
1. For each point, compute the robust 

Mahalanobis distance (RMD) defined as: 

      
1T

i i i
RMD x T X C X x T X


      

where the estimation subset is determined by 
either the minimum covariance determinant 
(MCD) or the minimum volume ellipsoid 
(MVE) methods proposed by Rousseeuw and 
Leroy (1987). These two robust estimators 
(MCD and MVE) can be easily computed by 
standard available routines of the Robust 
Package of SPLUS or R. 
 

2. The ith point with  

   3
i i i

RMD Med RMD MAD RMD    

are suspected as high leverage points and will 
be included in the deletion set D . 
 

3. Based on the remaining observations from the 

set R , compute  * D

ii
p


  using Eq.(10). 

4. Any deleted points with 
       * * *

3
D D D

ii ii ii
p Median p MAD p

  
   

are finally declared as high leverage points. 
 
2.2 Classical Bootstrap 

There are two different ways of generating 
bootstrap samples in regression namely the fixed-X 
resampling and the random-X resampling. The fixed-
X resampling is also known as bootstrapping 
residuals. A set of residuals by the MLE method is 
estimated, and then the bootstrap residuals are 
replicated by random sampling from the estimated 
residuals. Unfortunately, this procedure is not 
suitable for logistic regression model. We have 
already mentioned that the most extreme points in the 
covariate space may have the fitted probabilities 
which are closer to 1 or 0, consequently may affect 
the estimation and produce larger bias (Croux et al., 
2002; Croux and Haesbroeck, 2003). Therefore the 
fixed-X bootstrapping may be very much ineffective 
for logistic regression model. Another approach of 
generating bootstrap samples is the random-X 
resampling which is also known as the case 
resampling or bootstrapping pairs, where the 
regression model is fitted with response variable Y  
and explanatory variables X  .The resampling 
procedure therefore involves sampling pairs with 
replacement from the original data set (Imon and Ali, 

2005; Norazan et al., 2009). The following 
summarizes the random-X resampling procedure: 
1. The bootstrap sample 

     
* * *

1 1 2 2
, , , ,..., ,

n n
y x y x y x   

is taken independently with equal probabilities 
1/ n  from the original sample 

     1 1 2 2
, , , ,..., ,

n n
y x y x y x  . 

2. Compute *  from the bootstrap sample  

     
* * *

1 1 2 2
, , , ,..., ,

n n
y x y x y x . 

3. Repeat Step 1 and Step 2 for B  times to obtain 
*1 *2 *垐 ?, ,..., B    bootstrap replications  

 
2.3 Robust Bootstrap 

The major drawback of the classical 
bootstrap method is that it shows a tendency of 
possessing higher number of high leverage points as 
compared to the original sample because of 
employing resampling with replacement (Norazan et 
al., 2009; Habshah et al., 2009). Even the resampling 
without replacement would not be an option to 
guarantee that bootstrapping is free from high 
leverage points. This problem becomes worse when 
the bootstrap samples are fitted using the MLE 
because the MLE is easily affected even by a single 
high leverage point (Croux et al., 2002; Croux and 
Haesbroeck, 2003). 
 
2.3.1 Diagnostic Logistic Before Bootstrap 

Imon and Ali (2005) pointed out it may be 
useless to apply diagnostic tools after the 
bootstrapping is done as the bootstrap replicates may 
include more unusual cases than the original sample. 
So if any protective measure is taken it should be 
done before bootstrap but not after that. They 
proposed the diagnostic before bootstrap (DBB) in 
the context of linear regression model in order to 
protect the bootstrap method against the outliers. The 
suspected outliers were first identified by using the 
robust reweighted least squares (RLS) and then 
deleted from the analysis before performing bootstrap 
with the remaining observations. Their works have 
inspired us to develop a robust bootstrap method for 
logistic regression model in the presence of high 
leverage points. In the proposed method, the 
suspected high leverage points were first identified 
by the RLGD method and then omitted from the 
analysis. The bootstrap procedure is then applied 
only to good observations. Norazan et al. (2009) 
pointed out that the weakness of DBB is its crude 
rejection method by assigning weight ‘0’ to identified 
outliers and weight ‘1’ to the remaining points. By 
this crude rejection, there is a tendency for moderate 
outliers to receive ‘0’ weight, thus leaving only a few 
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observations for the remaining set. To overcome this 
shortcoming, we need to rely on a good detection 
method. The RLGD method is proven to be a good 
detection method that can identify the high leverage 
points correctly and free from swamping and 
masking effects (Syaiba and Habshah, 2010). Thus, 
the DLGBB method based on the RLGD method can 
improve the bootstrapping procedure in logistic 
regression model. The following summarizes the 
bootstrapping process for the DLGBB method: 
1. Apply the RLGD using either the MCD or the 

MVE to n  original sample 

     1 1 2 2
, , , ,..., ,

n n
y x y x y x . 

The high leverage points thus identified will 
form the deletion set D  

2. The bootstrap sample 

     
* * *

1 1 2 2
, , , ,..., ,

n d n d
y x y x y x

 
 

is taken independently with equal probabilities 
1/ n  from the remaining sample 

     1 1 2 2
, , , ,..., ,

n d n d
y x y x y x

 
. 

3. Compute *   from the bootstrap sample 

     
* * *

1 1 2 2
, , , ,..., ,

n d n d
y x y x y x

 
. 

4. Repeat Step 2 and Step 3 for B  times to obtain 
*1 *2 *垐 ?, ,..., B    bootstrap replications  

 
2.3.2 Weighted Logistic Bootstrap with Probability 

Here we propose another bootstrap method 
that we call the weighted logistic bootstrap with 
probability (WLGBP). We extend the idea of 
Norazan et al. (2009) by incorporating a re-
descending function, namely the Bisquare weighting 
function for determining weights of the observations 
in the original sample. Here the outlying observations 
are attributed with low probabilities and consequently 
have low chances of being selected in the resampling 
process. The probability of a particular point in the 
original sample to be selected in the resampling will 
be based on the assigned weights. At first we assign 
weights to the observations in the original sample. 
There are several weighting functions such as 
Hampel, Tanh, Huber and Tukey that have been used 
in robust bootstrap for linear regression model 
(Norazan, 2008). In logistic regression model, we 
specifically focus on the Bisquare weighting function 
in order to give less weight to the high leverage 
points. In the WLGBP, we first apply the RLGD 
method to identify the high leverage points. Based on 
this method, we obtain the set of weight for the 
weighted maximum likelihood estimator (WMLE). 

The weights are denoted as RLGD

i
w  and are defined 

as: 

  
2

*
min 1,RLGD

i
D

ii

p
w

p


 
 

  
 
 

               (12)  

where p  is the number of coefficients without 

intercept terms, yielding 

 ˆRLGD

i i i i
r y w                              (13) 

The Eq.(13) was first introduced by Hubert and 
Rousseeuw (1997). They computed positive weights, 

i
w  based on the robust Mahalanobis distance 

 iRMD x  defined as: 

  
2

min 1,
i

i

p
w

RMD x

 
 

  
  

              (14) 

Thus, iterative estimates of ˆWMLE  are then obtained 

as: 
       

11垐 ˆK K T T

i i
X VX X y  


         (15) 

The  ˆ D 
 from the RLGD method is used as an 

initial estimated coefficients to compute V  as 

diagonal matrix with elements  垐1RLGD

i i i i
v w    . 

The weights RLGD

i
w  are assigned to down weight the 

high leverage points. We obtain the modified 
standardized Pearson residual (MSPR) based on the 
WMLE defined as: 

 

 

ˆ

1

i iWMLE

si

i i

y
r

v h





                         (16) 

For the notational ease, let us define WMLE

si
u r in 

Eq.(16). Then we define the new weights as: 

   Bisquare
w u u u                        (17)  

where  Bisquare
u  is defined as: 

 
   

 

2
2

1 ;

0 ;
Bisquare

u u d abs u d
u

d abs u


      
 

     (18) 

and 4.685d   is the tuning constant. Based on 
these weights, we expect that the high leverage points 
in the original sample will receive relatively less 
weights. We expect that only the excessively high 
leverage points will receive weight ‘0’. To protect the 
whole procedure against the high leverage points, we 
propose to do bootstrap resampling with selection 
probabilities. Thus, the ith  observation will get the 
selection probability of 

i
p  where  

1

n

i i i

i

p w w


   and 0 1
i
p  . 

These selection probabilities become a control 
mechanism whereby the excessively high leverage 
points are attributed with ‘0’ probability and 
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consequently having zero chances of being selected 
in the resampling process. The following steps 
represent the WLGBP method: 
1. Apply the RLGD using either the MCD or the 

MVE to the original sample 

     1 1 2 2
, , , ,..., ,

n n
y x y x y x and obtain  * D

ii
p


. 

2. Compute WMLE

si
u r  by the MSPR. 

3. Compute re-descending weighting function  

   Bisquare
w u u u .

 4. Compute probability of relative weight 

1

n

i i i

i

p w w


  . 

5. The bootstrap sample  

     
* * *

1 1 2 2
, , , ,..., ,

n n
y x y x y x  

is taken independently with probabilities  
i
p   

from the original sample 

     1 1 2 2
, , , ,..., ,

n n
y x y x y x . 

6. Compute *  for the bootstrap sample 

     
* * *

1 1 2 2
, , , ,..., ,

n n
y x y x y x . 

7. Repeat Step 5 and Step 6 for B  times to obtain 
*1 *2 *垐 ?, ,..., B    bootstrap replications. 

 
The WLGBP method is expected to be 

resistant to the high leverage points as the most 
outlying points in X-space are likely to receive zero 
probabilities and thus will have no chance of being 
selected. 
 
3. Findings and Interpretation  
3.1. The Simulated Data  

In this section, a Monte Carlo simulation 
study is carried out to investigate various properties 
and performances of the CB, DLGBB and WLGBP 
methods by performing the percentile bootstrap on 
different percentages of high leverage points, 
s=(0%,5%,10%15%,20%) for n=(100,300,500) of 
original samples. The choice for sample size starting 
with n=100 is to ensure the existence and stability of 
the MLE. Victoria-Feser (2002) pointed out that 
small data may lead to unstable MLE estimates even 
without contamination. Following Čížek (2007), 
three uncontaminated x  variables, are generated 

from a standard normal distribution,  0,1
p
x N  

with the error terms is generated according to logistic 

distribution,  0,1
i
   . The response variable 

i
y  

is computed in the following way: 

0 1 1 2 2 3 3

0 1 1 2 2 3 3

0 , 0

1 , 0
i

i

i

if x x x
y

if x x x

    

    

   
 

   
     (19) 

Meanwhile, for contaminated data, two 
z variables are generated from same standard normal 

distribution,  1
0,1z N  and  2

0,1z N  with 

magnitude of outlying shift distance in X space is 

taken as 10  . Then the contaminated *x  are 

defined as *

1 1
x z    and *

2 2
x z    with the 

error  0,4
i
  . For the contaminated data, the 

response variable is computed by the following 
equation: 

* *

* 0 1 1 2 2 3 3

* *

0 1 1 2 2 3 3

0 , 0

1 , 0
i

i

i

if x x x
y

if x x x

    

    

    
 

   
    (20) 

We set the true parameters as 

   0 1 2 3
, , , 0.5,1, 1,0T       . Then we employ 

the RLGD method with cut-off point, 3 for median 
and MAD. In order to resample uncontaminated 
bootstrap, 1000B   bootstrap samples were drawn 
from n  original sample. Meanwhile for 
contaminated bootstrap samples,  1000B   

bootstrap samples were drawn from  n s  good 

observations with s  contaminated observations. 100 
replications of such simulations were executed to 
perform percentile bootstrap to determine the 
percentage of times the true value of the parameter 
estimates are contained in the interval and the length 
was calculated. The same procedure is repeated for 
the different percentages of high leverage points. 
Some summary values over 1000B   replications 
were computed, such as the mean 

* *

1

1垐
B

B

j j

bB
 



                                  (21) 

where b=1,2,…,B and j=1,2,…,p which yields the 
bias 

*ˆ T

j j
                                             (22)

 
The estimated root mean squared error (RMSE) is 
given by 

 
2

* * *

1

1垐 ?
1

B

T B

j j j j

bB
   



  
             (23) 

 
In practice, we call a bootstrap method 

‘good’ if its estimated coefficients, standard errors, 
biases and RMSE are reasonably closer to the MLE 
for uncontaminated data. A ‘good’ bootstrap method 
also should have smallest bias and RMSE in the 
presence of high leverage points. Another set of 
assessments is based on the coverage probability, the 
equitailness and the length of confidence interval 
(Habshah, 2000). By equiltailness, we mean that a 

confidence interval for   of level  1 2  is such 

that proportion for   lying outside the interval is 
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divided equally between the lower and upper limits 
of the intervals. In other words, the proportion of   

lower than the lower limit of the interval is 
reasonably equal to  , as is the proportion of   that 

exceeds the upper limit. In this assessment, a ‘good’ 
bootstrap method is that one which have coverage 
probability closer to the nominal probability (95%), 
good equitailness and smaller average interval length. 
The results of the simulation studies are illustrated in 
Table 1-Table 11. 

Let us first focus on bootstrap estimates of 
one contaminated covariate, 

1
x  for three different 

sample sizes (n = 100, 300 and 500) and these results 
are presented in Tables 1-3. We observe from these 
tables that when there is no high leverage point, the 
three bootstrap methods produce estimated 
coefficients, standard errors, biases and RMSE fairly 
close to each other and reasonably closer to the MLE 
estimates for clean data. Nonetheless, the MLE and 
the CB perform poorly in the presence of high 
leverage points. The estimated coefficients and 

standard errors for 
1
̂  are far from the true value 

 1
1  . We observe that the biases and RMSE’s 

increase with the increase in the percentages of high 

leverage points. 
0
̂  is not much affected in terms of 

estimated coefficients and standard errors, but biases 
and RMSE’s are bigger compared to those of the 
MLE for uncontaminated sample. As expected the 
DLGBB performs the best overall in terms of 
estimated coefficients, standard errors, biases and 
RMSE which are reasonably closer to the 
uncontaminated MLE for different levels of 
percentages of high leverage points. We also observe 
that the biases and RMSE’s of the WLGBP are 
slightly higher than the DLGBB, but are much better 
than the MLE and the CB. The results are consistent 
for all different samples sizes considered in this 
study.  

Next, we will focus on the results for two 
contaminated covariates, 

1
x  and 

2
x  as shown in 

Tables 4-6. We present only the results for 
1
̂  and 

2
̂  for brevity. The results of 

0
̂  for two 

contaminated covariates are similar to with one 
contaminated covariate. Likewise the previous results 
for one covariate model, the performances of CB, 
DLGBB and WLGBP are equally good and their 
estimates are fairly close to the MLE for 
uncontaminated data. Again the MLE and CB 
perform very poorly in the presence of high leverage 
points. Likewise the previous results the DLGBB 
performs best overall followed by the WLGBP for 
contaminated data. 

Results presented in Tables 7-9 illustrate the 
summary statistics for three covariates in the model 

with two contaminated covariates. The results of 
0
̂  

and 
1
̂  are consistent and are not included for 

brevity. Likewise the previous results, the CB, the 
DLGBB and the WLGBP produce estimated 
coefficients, standard errors, biases and RMSE’s 
fairly close to each other and reasonably closer to the 
uncontaminated MLE. The performances of the MLE 
and the CB are not satisfactory at all in the presence 
of high leverage points as their estimates are far from 
the MLE for clean data. It is interesting to note that 
the DLGBB consistently estimates coefficients, 
standard errors, biases and RMSE’s which are 
reasonably closer to the uncontaminated MLE for 
different levels of contamination followed by the 
WLGBP. 

The findings from simulation study of 
estimates of coefficients, standard errors, biases and 
RMSE’s reveal that the DLGBB outperforms other 
bootstrap methods in the presence of high leverage 
points in logistic regression model. In order to 
provide more evidences, the performances of CB, 
DLGBB and WLGBP are further investigated based 
on the coverage probability, equitailness and average 
interval length. Table 10-11 shows where the data is 
uncontaminated the MLE is the best estimator with 
the smallest average interval length, though a little 
over coveraged while the CB, the DLGBB and the 
WLGBP perform reasonably close to each other with 
average interval length slightly larger than 
uncontaminated MLE. Under contamination, the 
MLE and the CB give erroneous results. It can be 
seen from Table 10-11 that they have very bad 
coverage probabilities and equitailness although their 
average interval lengths are smaller than the DLGBB 
and the WLGBP. The coverage probabilities and 

equitailness of 
3
̂  for the contaminated MLE and CB 

are a little over coverage by 5% with wider length 

compared to the 
3
̂  for the uncontaminated MLE. As 

mentioned earlier, we insert high leverage points in 

1
x and 

2
x . Therefore, 

3
̂  is not much affected in the 

presence of high leverage points. However, 
0
̂  gives 

poor coverage probabilities, especially for the 
contaminated MLE. On the other hand, the DLGBB 
and the WLGBP consistently provide good coverage 
probabilities. 

 
3.2. The Real Data Sets  

So far we have considered artificial data to 
investigate the performance of our newly proposed 
robust bootstrap methods. Now we apply these 
methods to several well-known real world data sets to 
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investigate the performance of our newly proposed 
robust bootstrap methods. For assessing different 
estimators we consider another criterion proposed by 
Kordzakhia et al. (2001) where we use a Chi-square 

statistic based on the arcsin transformation 2

arc
 , 

defined as: 
 

2
2

1

4 arcsin arcsin
n

arc i i

i

y 


  
          (24) 

 
Bootstrap estimates with better fits should have lower 

2

arc
  value. 

 
3.2.1 The Modified Coronary Heart Disease Data 

At first we consider the coronary heart 
disease data taken from Hosmer and Lemeshow 
(2000). This data investigated the relationship 
between age (Age) and the presence Y=1 or absence 
Y=0 of coronary heart disease (CHD) of 100 patients. 
The original data are free from high leverage points. 
In our study we contaminated this data by replacing 
three clean observations with three high leverage 

points for case 1    11 12
, 0,120y x  , case 2 

   21 22
, 0,123y x   and case 3    31 32

, 0,124y x  . 

 

 
Figure 1. Index plot of Age for the modified coronary 
heart disease data. 
 
The index plot of Age as shown in Figure 1 clearly 
shows the existence of three X-outliers (cases 1, 2, 
and 3) in this data. 
 
 
 
 
 
 

 

 
Figure 2. Index plot of RLGD for the modified 
coronary heart disease data. 
 
For confirmation we apply the RLGD method based 
on the MCD which yields the cut-off point 0.1968. 
We compute the group deleted potentials for the 
entire data set and observe that the RLGD values 
corresponding to cases 1, 2 and 3 which are 0.3593, 
0.3775, and 0.3837 respectively are much higher than 
the cut-off point, which reveal that these three cases 
are high leverage points. Similar conclusion may be 
drawn from the index plot of RLGD as shown in 
Figure 2. All the three suspected cases are clearly 
separated from the rest of the data. 
 

Table 12 presents estimates of parameters, 
standard errors and goodness of fit tests for the 
modified coronary heart disease data. The MLE_97 
in Table 1 refers to the ML estimates for the clean 
data after the three inserted high leverage points are 
omitted from the data. The MLE_100 are the ML 
estimates for 100 observations including the three 
high leverage points. We observe from Table 1 that 
the MLE_100 gives the worst set of results in term of 
estimated coefficient and standard error for Age 
which is far from the MLE_97 and gives the highest 

2

arc
 . The CB is also severely affected by the high 

leverage points. But the newly proposed DLGBB 
performs best overall. The estimated coefficients and 
standard errors of the DLGBB are very close to those 
of the MLE_97 and this method yields the smallest 

2

arc
  value. Even though the WLGBP gives the 

highest standard errors, its 2

arc
  value is smaller 

compared to the MLE and the CB. 
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3.2.2. The Prostate Cancer Data 
Our next example is the prostate cancer data 

given by Brown (1980). Here the objective was to see 
whether two continuous variables, an elevated level 
of acid phosphates in the blood serum, (AP) and age 
of 53 patients (Age) would be of value for predicting 
whether or not prostate cancer patients also had 
lymph node involvement (LNI). 

 

 
Figure 3. Index plot of AP and Age for the prostate 
cancer data. 
 

 
Figure 4. Index plot of RLGD for the prostate cancer 
data. 
 

It was reported by many authors (Hadi, 
1992; Ryan, 1997; Imon, 2006) that there exist three 
leverage points (cases 24, 25 and 53) in this data. The 
index plot of AP and Age illustrates these three high 
leverage points. These three observations are 
confirmed as high leverage points when the RLGD 
method is employed. The RLGD values for these 

three observations are 5.7149, 2.0575 and 1.2104 
respectively while the cut-off point is 0.6900. The 
index plot of the RLGD values as shown in Figure 4 
reconfirms the above statement. 

We observe from the results presented in 
Table 2 that the MLE_53 and the CB give estimated 
coefficients which are far from the MLE_50 and they 

also possess higher 2

arc
 . The DLGBB performs the 

best followed by the WLGBP with estimated 
coefficients which are close to the MLE_50 and give 

the smallest 2

arc
  value. On deleting the high 

leverage points, the remaining data may have less 
overlapping cases. This may be the reason for which 
the DLGBP and the WLGBP possessing a bit higher 
standard errors. 
 
3.2.3. The Intensive Care Unit Data 

Our final example is the intensive care unit 
(ICU) data which consists of 200 subjects related to 
survival of patients following admission to an adult 
intensive care unit. The major goal of this study was 
to predict the probability of survival status (STA) to 
hospital discharge of cancer patients and to study 
three risk factors of age at ICU admission (Age), 
systolic blood pressure at ICU admission (SYS) in 
mm/Hg and heart rate at ICU admission (HRA) in 
Beat/min which are associated with ICU mortality. 
Data were collected at Baystate medical center in 
Springfield, Massachusetts and provided by Hosmer 
and Lemeshow (2000). 
 

 
Figure 5. Index plot of SYS and HRA for the 
intensive care unit data. 
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Figure 6. Index plot of RLGD for the intensive care 
unit data. 
 
The index plot of SYS and HRA clearly suggests that 
observations 112 and 200 may be outlying in the 
covariate space of SYS. For the confirmation we 
employ the RLGD method here. The RLGD values 
corresponding to cases 112 and 200 are 0.5266 and 
0.7417 respectively which exceed the cut-off point 
0.3690. Thus these two observations are confirmed as 
high leverage points. The index plot of RLGD as 
shown in Figure 6 also supports this statement. 

Results presented in Table 3 give exactly 
same kind of conclusions as we got in the previous 
two examples. The MLE_200 and the CB produce 

the worst results. Their 2

arc
  values are large. The 

DLGBB and the WLGBP give satisfactory results 
where their parameter estimates are reasonably closer 

to the MLE_198 and have smaller 2

arc
  compared to 

the MLE_200 and the CB. 
 
4. Discussions  

In this paper we propose two techniques for 
bootstrapping logistic regression model in the 
presence of high leverage points. The simulation 
studies suggest that for clean data, the classical 
bootstrap, and the proposed DLGBB and the 
WLGBP performs similarly in terms of coverage 
probabilities, equitailness and average interval length. 
But the CB suffers a huge set back in the presence of 
high leverage points. In this situation, the CB 
produces remarkably low coverage probabilities, 
poor equitailness and wider average interval length. 
However, the DLGBB and the WLGBP consistently 
provide adequate coverage probabilities, good 
equitailness and shorter average interval length. The 
real world examples show that the DLGBB and the 
WLGBP provide smaller values of goodness of fit,  

2

arc
  in comparison with the CB. The results 

consistently show that the DLGBB is performs better 
than the WLGBP. Hence, the DLGBB method can be 
considered as the best techniques for bootstrapping 
logistic regression model in the presence of high 
leverage points.  
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Table 1. Bootstrap estimates for one covariate with 100n  . 

% Estimation 0
̂  

1
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 
0 MLE 0.5102 0.2402 0.0102 0.2404 1.0610 0.2938 0.0610 0.3001 
 CB 0.5260 0.3556 0.0260 0.3565 1.1222 0.4281 0.1222 0.4452 
 DLGBB 0.5260 0.3556 0.0260 0.3565 1.1222 0.4281 0.1222 0.4452 
  WLGBP 0.5260 0.3556 0.0260 0.3565 1.1222 0.4281 0.1222 0.4452 
5 MLE 0.3290 0.2156 -0.1710 0.2752 -0.0492 0.0574 -1.0492 1.0508 
 CB 0.3301 0.3001 -0.1699 0.3449 0.0001 0.2065 -0.9999 1.0210 
 DLGBB 0.5169 0.3482 0.0169 0.3486 1.0914 0.4579 0.0914 0.4669 
  WLGBP 0.6788 0.4414 0.1788 0.4762 1.4189 0.6754 0.4188 0.7947 
10 MLE 0.3166 0.2234 -0.1834 0.2890 -0.1305 0.0500 -1.1305 1.1316 
 CB 0.3154 0.3183 -0.1846 0.3680 -0.1272 0.0802 -1.1272 1.1301 
 DLGBB 0.5344 0.3688 0.0344 0.3704 1.1104 0.4819 0.1104 0.4944 
  WLGBP 0.6855 0.4575 0.1855 0.4937 1.4200 0.6864 0.4200 0.8047 
15 MLE 0.3153 0.2340 -0.1847 0.2981 -0.1761 0.0501 -1.1761 1.1772 
 CB 0.3172 0.3317 -0.1828 0.3788 -0.1775 0.0741 -1.1775 1.1799 
 DLGBB 0.5494 0.3878 0.0494 0.3909 1.0960 0.4773 0.0960 0.4868 
  WLGBP 0.6736 0.4660 0.1736 0.4973 1.3818 0.7545 0.3818 0.8456 
20 MLE 0.3204 0.2341 -0.1796 0.2950 -0.2006 0.0500 -1.2006 1.2017 
 CB 0.3204 0.3250 -0.1796 0.3713 -0.2053 0.0727 -1.2053 1.2075 
 DLGBB 0.5267 0.3863 0.0267 0.3872 1.0790 0.4837 0.0790 0.4901 
  WLGBP 0.6895 0.4792 0.1895 0.5153 1.3460 0.7728 0.3460 0.8467 

 
 

Table 2. Bootstrap estimates for one covariate with 300n  . 

% Estimation 0
̂  

1
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 
0 MLE 0.5068 0.1358 0.0068 0.1360 1.0198 0.1563 0.0198 0.1576 
 CB 0.5086 0.1905 0.0086 0.1907 1.0360 0.2253 0.0360 0.2281 
 DLGBB 0.5086 0.1905 0.0086 0.1907 1.0360 0.2253 0.0360 0.2281 
  WLGBP 0.5086 0.1905 0.0086 0.1907 1.0360 0.2253 0.0360 0.2281 
5 MLE 0.3281 0.1171 -0.1719 0.2080 -0.0460 0.0319 -1.0460 1.0465 
 CB 0.3245 0.1709 -0.1755 0.2450 -0.0375 0.0675 -1.0375 1.0397 
 DLGBB 0.5068 0.1895 0.0068 0.1896 1.0232 0.2444 0.0232 0.2455 
  WLGBP 0.6533 0.2344 0.1533 0.2801 1.3495 0.2988 0.3495 0.4599 
10 MLE 0.3237 0.1275 -0.1763 0.2176 -0.1306 0.0281 -1.1306 1.1309 
 CB 0.3222 0.1828 -0.1778 0.2551 -0.1294 0.0443 -1.1294 1.1303 
 DLGBB 0.5087 0.2047 0.0087 0.2048 1.0369 0.2454 0.0369 0.2482 
  WLGBP 0.6661 0.2437 0.1661 0.2950 1.3449 0.3072 0.3449 0.4619 
15 MLE 0.3195 0.1336 -0.1805 0.2246 -0.1705 0.0280 -1.1705 1.1708 
 CB 0.3256 0.1932 -0.1744 0.2603 -0.1722 0.0400 -1.1722 1.1729 
 DLGBB 0.5044 0.2090 0.0044 0.2091 1.0389 0.2599 0.0388 0.2628 
  WLGBP 0.6617 0.2319 0.1617 0.2827 1.3494 0.3170 0.3494 0.4718 
20 MLE 0.3134 0.1367 -0.1866 0.2313 -0.1944 0.0287 -1.1944 1.1947 
 CB 0.3167 0.1952 -0.1833 0.2678 -0.1973 0.0410 -1.1973 1.1980 
 DLGBB 0.5125 0.2171 0.0125 0.2174 1.0338 0.2594 0.0338 0.2616 
  WLGBP 0.6603 0.2529 0.1603 0.2995 1.3478 0.3266 0.3478 0.4772 
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Table 3. Bootstrap estimates for one covariate with 500n  . 

% Estimation 0
̂  

1
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 
0 MLE 0.5052 0.1040 0.0052 0.1041 1.0004 0.1157 0.0004 0.1157 
 CB 0.5165 0.1490 0.0165 0.1499 1.0156 0.1740 0.0156 0.1747 
 DLGBB 0.5165 0.1490 0.0165 0.1499 1.0156 0.1740 0.0156 0.1747 
  WLGBP 0.5165 0.1490 0.0165 0.1499 1.0156 0.1740 0.0156 0.1747 
5 MLE 0.3286 0.0906 -0.1714 0.1939 -0.0471 0.0235 -1.0471 1.0473 
 CB 0.3320 0.1262 -0.1680 0.2101 -0.0418 0.0469 -1.0418 1.0429 
 DLGBB 0.5096 0.1464 0.0096 0.1467 1.0160 0.1869 0.0160 0.1876 
  WLGBP 0.6537 0.1703 0.1537 0.2295 1.3192 0.2343 0.3192 0.3959 
10 MLE 0.3250 0.0980 -0.1750 0.2006 -0.1299 0.0213 -1.1299 1.1301 
 CB 0.3287 0.1392 -0.1713 0.2207 -0.1298 0.0340 -1.1298 1.1303 
 DLGBB 0.5094 0.1546 0.0094 0.1549 1.0209 0.1884 0.0209 0.1896 
  WLGBP 0.6630 0.1802 0.1630 0.2430 1.3235 0.2383 0.3235 0.4018 
15 MLE 0.3211 0.1016 -0.1789 0.2058 -0.1688 0.0213 -1.1688 1.1690 
 CB 0.3293 0.1481 -0.1707 0.2260 -0.1700 0.0314 -1.1700 1.1704 
 DLGBB 0.5081 0.1613 0.0081 0.1615 1.0199 0.1876 0.0199 0.1887 
  WLGBP 0.6568 0.1865 0.1568 0.2436 1.3200 0.2358 0.3200 0.3975 
20 MLE 0.3160 0.1034 -0.1840 0.2110 -0.1936 0.0211 -1.1936 1.1937 
 CB 0.3165 0.1446 -0.1835 0.2337 -0.1942 0.0315 -1.1942 1.1946 
 DLGBB 0.5028 0.1643 0.0028 0.1643 1.0234 0.1937 0.0234 0.1951 
  WLGBP 0.6560 0.1845 0.1560 0.2416 1.3296 0.2431 0.3296 0.4095 

 
Table 4. Bootstrap estimates for two covariates with 100n  . 

% Estimation 1
̂  

2
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 

0 MLE 1.0670 0.3057 0.0670 0.3130 -1.0440 0.3074 -0.0440 0.3106 

 CB 1.1291 0.4686 0.1291 0.4861 -1.1038 0.4688 -0.1038 0.4801 

 DLGBB 1.1291 0.4686 0.1291 0.4861 -1.1038 0.4688 -0.1038 0.4801 

  WLGBP 1.1291 0.4686 0.1291 0.4861 -1.1038 0.4688 -0.1038 0.4801 

5 MLE -0.0454 0.1567 -1.0454 1.0571 0.0433 0.1532 1.0433 1.0545 

 CB -0.0154 0.2565 -1.0154 1.0473 0.0160 0.2744 1.0160 1.0524 

 DLGBB 1.1305 0.5121 0.1305 0.5285 -1.1333 0.4940 -0.1333 0.5116 

  WLGBP 1.5627 0.7118 0.5627 0.9073 -1.5687 0.7106 -0.5687 0.9102 

10 MLE -0.0919 0.1540 -1.0919 1.1027 0.0891 0.1536 1.0891 1.0999 

 CB -0.0939 0.2382 -1.0939 1.1195 0.0837 0.2356 1.0837 1.1091 

 DLGBB 1.1406 0.5314 0.1406 0.5496 -1.1623 0.5408 -0.1623 0.5646 

  WLGBP 1.5631 0.7249 0.5631 0.9179 -1.5901 0.6894 -0.5901 0.9075 

15 MLE -0.1161 0.1629 -1.1161 1.1279 0.1166 0.1643 1.1166 1.1287 

 CB -0.1156 0.2419 -1.1156 1.1415 0.1189 0.2442 1.1189 1.1452 

 DLGBB 1.1296 0.5286 0.1296 0.5442 -1.1529 0.5618 -0.1529 0.5822 

  WLGBP 1.5678 0.8513 0.5678 1.0233 -1.5975 0.9722 -0.5975 1.1412 

20 MLE -0.1339 0.1667 -1.1339 1.1461 0.1335 0.1651 1.1335 1.1455 

 CB -0.1361 0.2385 -1.1361 1.1609 0.1390 0.2383 1.1390 1.1637 

 DLGBB 1.1647 0.5772 0.1647 0.6002 -1.1726 0.5890 -0.1726 0.6138 

  WLGBP 1.5559 0.7547 0.5559 0.9373 -1.6045 0.8606 -0.6045 1.0516 
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Table 5. Bootstrap estimates for two covariates with 300n  . 

% Estimation 1
̂  

2
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 
0 MLE 1.0264 0.1735 0.0264 0.1755 -1.0227 0.1761 -0.0227 0.1775 
 CB 1.0443 0.2465 0.0443 0.2505 -1.0437 0.2410 -0.0437 0.2449 
 DLGBB 1.0443 0.2465 0.0443 0.2505 -1.0437 0.2410 -0.0437 0.2449 
  WLGBP 1.0443 0.2465 0.0443 0.2505 -1.0437 0.2410 -0.0437 0.2449 
5 MLE -0.0444 0.0847 -1.0444 1.0479 0.0428 0.0830 1.0428 1.0461 
 CB -0.0453 0.1264 -1.0453 1.0529 0.0349 0.1265 1.0349 1.0426 
 DLGBB 1.0289 0.2500 0.0289 0.2517 -1.0407 0.2545 -0.0407 0.2578 
  WLGBP 1.3915 0.3441 0.3915 0.5212 -1.3960 0.3337 -0.3960 0.5178 
10 MLE -0.0862 0.0861 -1.0862 1.0896 0.0925 0.0858 1.0925 1.0959 
 CB -0.0875 0.1246 -1.0875 1.0946 0.0911 0.1226 1.0911 1.0979 
 DLGBB 1.0460 0.2559 0.0460 0.2600 -1.0427 0.2512 -0.0427 0.2548 
  WLGBP 1.4199 0.3423 0.4199 0.5418 -1.4062 0.3443 -0.4062 0.5325 
15 MLE -0.1103 0.0874 -1.1103 1.1138 0.1179 0.0880 1.1179 1.1213 
 CB -0.1115 0.1270 -1.1115 1.1188 0.1173 0.1266 1.1173 1.1245 
 DLGBB 1.0530 0.2701 0.0530 0.2753 -1.0496 0.2681 -0.0496 0.2726 
  WLGBP 1.4088 0.3552 0.4088 0.5416 -1.4130 0.3468 -0.4130 0.5393 
20 MLE -0.1346 0.0953 -1.1346 1.1386 0.1278 0.0948 1.1278 1.1318 
 CB -0.1358 0.1314 -1.1358 1.1434 0.1288 0.1319 1.1288 1.1365 
 DLGBB 1.0393 0.2729 0.0393 0.2758 -1.0440 0.2801 -0.0440 0.2836 

  WLGBP 1.4012 0.3571 0.4012 0.5371 -1.4203 0.3688 -0.4203 0.5591 
 

Table 6. Bootstrap estimates for two covariates with 500n  . 

% Estimation 1
̂  

2
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 

0 MLE 1.0028 0.1235 0.0028 0.1235 -1.0103 0.1299 -0.0103 0.1303 

 CB 1.0124 0.1814 0.0124 0.1819 -1.0161 0.1857 -0.0161 0.1864 

 DLGBB 1.0124 0.1814 0.0124 0.1819 -1.0161 0.1857 -0.0161 0.1864 

  WLGBP 1.0124 0.1814 0.0124 0.1819 -1.0161 0.1857 -0.0161 0.1864 

5 MLE -0.0417 0.0646 -1.0417 1.0437 0.0447 0.0655 1.0447 1.0467 

 CB -0.0384 0.0967 -1.0384 1.0429 0.0432 0.0966 1.0432 1.0476 

 DLGBB 1.0183 0.1908 0.0183 0.1917 -1.0161 0.1945 -0.0161 0.1951 

  WLGBP 1.3696 0.2474 0.3696 0.4447 -1.3625 0.2478 -0.3625 0.4391 

10 MLE -0.0826 0.0678 -1.0826 1.0847 0.0957 0.0673 1.0957 1.0978 

 CB -0.0828 0.0977 -1.0828 1.0872 0.0957 0.0983 1.0957 1.1001 

 DLGBB 1.0297 0.2004 0.0297 0.2026 -1.0136 0.1890 -0.0136 0.1895 

  WLGBP 1.3815 0.2588 0.3815 0.4610 -1.3603 0.2427 -0.3603 0.4344 

15 MLE -0.1138 0.0667 -1.1138 1.1158 0.1134 0.0669 1.1134 1.1155 

 CB -0.1171 0.0988 -1.1171 1.1214 0.1104 0.0992 1.1104 1.1148 

 DLGBB 1.0289 0.1917 0.0289 0.1939 -1.0342 0.2035 -0.0342 0.2063 

  WLGBP 1.3859 0.2605 0.3859 0.4656 -1.3804 0.2562 -0.3804 0.4587 

20 MLE -0.1273 0.0676 -1.1273 1.1293 0.1345 0.0684 1.1345 1.1365 

 CB -0.1305 0.0991 -1.1305 1.1349 0.1323 0.1013 1.1323 1.1369 

 DLGBB 1.0316 0.2120 0.0316 0.2144 -1.0319 0.2140 -0.0319 0.2163 

  WLGBP 1.3879 0.2592 0.3879 0.4665 -1.3746 0.2704 -0.3746 0.4620 
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Table 7. Bootstrap estimates for three covariates with 100n  . 

% Estimation 2
̂  

3
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 

0 MLE -1.0588 0.3173 -0.0588 0.3227 0.0054 0.2832 0.0054 0.2833 

 CB -1.1538 0.5082 -0.1538 0.5309 0.0130 0.4259 0.0130 0.4261 

 DLGBB -1.1538 0.5082 -0.1538 0.5309 0.0130 0.4259 0.0130 0.4261 

  WLGBP -1.1538 0.5082 -0.1538 0.5309 0.0130 0.4259 0.0130 0.4261 

5 MLE 0.0432 0.1583 1.0432 1.0552 0.0022 0.2277 0.0022 0.2277 

 CB 0.0105 0.2701 1.0105 1.0460 0.0014 0.3392 0.0014 0.3392 

 DLGBB -1.1500 0.5421 -0.1500 0.5625 0.0177 0.4425 0.0177 0.4428 

  WLGBP -1.6569 0.8123 -0.6569 1.0446 0.0019 0.5640 0.0019 0.5640 

10 MLE 0.0888 0.1570 1.0888 1.1000 0.0062 0.2193 0.0062 0.2194 

 CB 0.0993 0.2395 1.0993 1.1251 0.0015 0.3301 0.0015 0.3301 

 DLGBB -1.1933 0.5594 -0.1933 0.5918 -0.0185 0.4479 -0.0185 0.4482 

  WLGBP -1.6917 0.8949 -0.6917 1.1311 0.0074 0.5556 0.0074 0.5557 

15 MLE 0.1171 0.1666 1.1171 1.1295 0.0022 0.2213 0.0022 0.2213 

 CB 0.1180 0.2565 1.1180 1.1470 -0.0085 0.3400 -0.0085 0.3401 

 DLGBB -1.2152 0.6602 -0.2152 0.6944 -0.0209 0.4738 -0.0209 0.4743 

  WLGBP -1.6681 0.8140 -0.6681 1.0531 -0.0172 0.5528 -0.0172 0.5531 

20 MLE 0.1357 0.1673 1.1357 1.1479 0.0043 0.2304 0.0043 0.2305 

 CB 0.1471 0.2539 1.1471 1.1748 -0.0004 0.3490 -0.0004 0.3490 

 DLGBB -1.1965 0.5865 -0.1965 0.6185 0.0064 0.4858 0.0064 0.4858 

  WLGBP -1.7170 1.0910 -0.7170 1.3055 -0.0181 0.6345 -0.0181 0.6347 
  

Table 8. Bootstrap estimates for three covariates with 300n  . 

% Estimation 2
̂  

3
̂  

HLP Methods  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 
0 MLE -1.0262 0.1773 -0.0262 0.1792 0.0057 0.1367 0.0057 0.1369 
 CB -1.0495 0.2471 -0.0495 0.2520 0.0096 0.2036 0.0096 0.2038 
 DLGBB -1.0495 0.2471 -0.0495 0.2520 0.0096 0.2036 0.0096 0.2038 
  WLGBP -1.0495 0.2471 -0.0495 0.2520 0.0096 0.2036 0.0096 0.2038 
5 MLE 0.0423 0.0832 1.0423 1.0456 0.0016 0.1175 0.0016 0.1176 
 CB 0.0370 0.1208 1.0370 1.0440 -0.0035 0.1789 -0.0035 0.1790 
 DLGBB -1.0492 0.2545 -0.0492 0.2593 0.0064 0.2173 0.0064 0.2174 
  WLGBP -1.4130 0.3385 -0.4130 0.5340 0.0126 0.2633 0.0126 0.2636 
10 MLE 0.0931 0.0865 1.0931 1.0965 0.0007 0.1255 0.0007 0.1255 
 CB 0.0938 0.1278 1.0938 1.1013 -0.0057 0.1785 -0.0057 0.1786 
 DLGBB -1.0449 0.2651 -0.0449 0.2689 0.0131 0.2224 0.0131 0.2228 
  WLGBP -1.4318 0.3568 -0.4318 0.5601 0.0205 0.2637 0.0205 0.2645 
15 MLE 0.1174 0.0875 1.1174 1.1208 -0.0045 0.1280 -0.0045 0.1281 
 CB 0.1153 0.1272 1.1153 1.1226 -0.0060 0.1864 -0.0060 0.1865 
 DLGBB -1.0553 0.2734 -0.0553 0.2789 0.0013 0.2340 0.0013 0.2340 
  WLGBP -1.4243 0.3448 -0.4243 0.5467 -0.0142 0.2716 -0.0142 0.2719 
20 MLE 0.1285 0.0946 1.1285 1.1325 -0.0019 0.1337 -0.0019 0.1337 
 CB 0.1289 0.1319 1.1289 1.1366 0.0026 0.1907 0.0026 0.1907 
 DLGBB -1.0732 0.2840 -0.0732 0.2933 -0.0067 0.2328 -0.0067 0.2329 
  WLGBP -1.4336 0.3642 -0.4336 0.5662 -0.0114 0.2763 -0.0114 0.2765 
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Table 9. Bootstrap estimates for three covariates with 500n  . 
 

% Estimation 2
̂  

3
̂  

HLP Method  Value Std.Err Bias RMSE Value Std.Err Bias RMSE 

0 MLE -1.0122 0.1301 -0.0122 0.1306 0.0028 0.1046 0.0028 0.1046 

 CB -1.0244 0.1879 -0.0244 0.1895 0.0000 0.1470 0.0000 0.1470 

 DLGBB -1.0244 0.1879 -0.0244 0.1895 0.0000 0.1470 0.0000 0.1470 

  WLGBP -1.0244 0.1879 -0.0244 0.1895 0.0000 0.1470 0.0000 0.1470 

5 MLE 0.0453 0.0660 1.0453 1.0473 0.0022 0.0930 0.0022 0.0930 

 CB 0.0425 0.0955 1.0425 1.0469 0.0039 0.1333 0.0039 0.1333 

 DLGBB -1.0204 0.1871 -0.0204 0.1882 0.0014 0.1617 0.0014 0.1618 

  WLGBP -1.3733 0.2556 -0.3733 0.4524 0.0006 0.1965 0.0006 0.1965 

10 MLE 0.0963 0.0680 1.0963 1.0984 0.0033 0.0955 0.0033 0.0956 

 CB 0.0941 0.0967 1.0941 1.0984 0.0055 0.1374 0.0055 0.1375 

 DLGBB -1.0194 0.1980 -0.0194 0.1989 -0.0006 0.1719 -0.0006 0.1719 

  WLGBP -1.3813 0.2551 -0.3813 0.4588 0.0019 0.2056 0.0019 0.2056 

15 MLE 0.1137 0.0670 1.1137 1.1157 -0.0008 0.0997 -0.0008 0.0997 

 CB 0.1167 0.0965 1.1167 1.1208 0.0006 0.1397 0.0006 0.1397 

 DLGBB -1.0242 0.2011 -0.0242 0.2025 0.0045 0.1701 0.0045 0.1701 

  WLGBP -1.3857 0.2554 -0.3857 0.4626 -0.0030 0.2034 -0.0030 0.2034 

20 MLE 0.1350 0.0687 1.1350 1.1371 0.0003 0.1023 0.0003 0.1023 

 CB 0.1295 0.0983 1.1295 1.1337 -0.0011 0.1407 -0.0011 0.1407 

 DLGBB -1.0335 0.2130 -0.0335 0.2156 0.0044 0.1834 0.0044 0.1834 

  WLGBP -1.3844 0.2762 -0.3844 0.4733 0.0072 0.2090 0.0072 0.2091 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Life Science Journal 2021;18(9)                                                    http://www.lifesciencesite.comLSJ  

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  60

 
 
 

Table 10. Lower coverage (LC), upper coverage (UC), coverage probability (CP), confidence interval (CI) and 

average interval length (Length)  of  
0
̂   and  

1
̂  on bootstrap procedures for  500n  . 

% Estimation 0
̂  

1
̂  

HLP Methods  LC CP UC (CI), Length LC CP UC (CI), Length 
0 MLE 0 100 0 (0.2941 - 0.7261) 0 100 0 (0.7743 - 1.2762) 
     0.4320    0.5019 
 CB 0 100 0  (0.2098 - 0.8268) 0 100 0 (0.6891 - 1.4092) 
     0.6170    0.7201 
 DLGBB 0 100 0  (0.2098 - 0.8268) 0 100 0 (0.6891 - 1.4092) 
     0.6170    0.7201 
 WLGBP 0 100 0  (0.2098 - 0.8268) 0 100 0 (0.6891 - 1.4092) 
     0.6170    0.7201 
5 MLE 0 0 100 (0.1052 - 0.4757) 0 0 100 (-0.1722 - 0.0839) 
     0.3706    0.2561 
 CB 0 100 0 (0.0312 - 0.5606) 0 0 100 (-0.2285 - 0.1455) 
     0.5295    0.3740 
 DLGBB 0 100 0 (0.2008 - 0.8375) 0 100 0 (0.6759 - 1.4297) 
     0.6367    0.7538 
 WLGBP 0 100 0 (0.3053 - 1.1032) 0 100 0 ( 0.9307 - 1.9282) 
       0.7979    0.9975 
10 MLE 0 2 98 (0.0909 - 0.4829) 0 0 100 (-0.2207 - 0.0417) 
     0.3920    0.2625 
 CB 0 100 0 (0.0135 - 0.5701) 0 0 100 (-0.2782 - 0.0976) 
     0.5566    0.3760 
 DLGBB 0 100 0 (0.1931 - 0.8511) 0 100 0 (0.6678 - 1.4404) 
     0.6580    0.7727 
 WLGBP 0 100 0 (0.2982 - 1.1140) 0 100 0 (0.9252 - 1.9379) 
          0.8158       1.0126 
15 MLE 0 8 92 (0.0839 - 0.4889) 0 0 100 (-0.2498 - 0.0207) 
     0.4050    0.2704 
 CB 0 100 0 (-0.0009 - 0.5769) 0 0 100 (-0.3093 - 0.0772) 
     0.5779    0.3865 
 DLGBB 0 100 0 (0.1867 - 0.8619) 0 100 0 (0.6617 - 1.453941) 
     0.6753    0.7923 
 WLGBP 0 100 0 (0.2931- 1.1220) 0 100 0 (0.9202 - 1.9483) 
     0.8289    1.0281 
20 MLE 0 28 72 (0.0727 - 0.4935) 0 0 100 (-0.2708 - 0.0070) 
     0.4208    0.2778 
 CB 0 100 0 (-0.0131 - 0.5923) 0 0 100 (-0.3325 - 0.0659) 
     0.6054    0.3984 
 DLGBB 0 100 0 (0.1749 - 0.8745) 0 100 0 (0.6522 - 1.4704) 
     0.6997    0.8183 
 WLGBP 0 100 0 (0.2853 -1.1334) 0 100 0 (0.9112 - 1.9597) 

          0.8481       1.0485 
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Table 11. Lower coverage (LC), upper coverage (UC), coverage probability (CP), confidence interval (CI) and 

average interval length (Length)  of  
2
̂   and  

3
̂  on bootstrap procedures for  500n  . 

% Estimation 2
̂  

3
̂  

HLP Methods  LC CP UC (CI), Length LC CP UC (CI), Length 
0 MLE 0 100 0 (-1.2752 - -0.7731) 0 100 0 (-0.2113 - 0.2114) 
     0.5021    0.4227 
 CB 0 100 0 (-1.4094 - -0.6885) 0 100 0 (-0.3043 - 0.3030) 
     0.7208    0.6073 
 DLGBB 0 100 0 (-1.4094 - -0.6885) 0 100 0 (-0.3043 - 0.3030) 
     0.7208    0.6073 
 WLGBP 0 100 0 (-1.4094 - -0.6885) 0 100 0 (-0.3043 - 0.3030) 
     0.7208    0.6073 
5 MLE 100 0 0 (-0.0846 - 0.1712) 0 100 0 (-0.1803 - 0.1798) 
     0.2557    0.3601 
 CB 100 0 0 (-0.1449 - 0.2285) 0 100 0 (-0.2593 - 0.2573) 
     0.3735    0.5166 
 DLGBB 0 100 0 (-1.4288 - -0.6735) 0 100 0 (-0.3203 - 0.3213) 
     0.7553    0.6416 
 WLGBP 0 100 0 (-1.9221 - -0.9356) 0 100 0 (-0.3854 - 0.3840) 
       0.9864    0.7694 
10 MLE 100 0 0 (-0.0406 - 0.2212) 0 100 0 (-0.1845 - 0.1841) 
     0.2618    0.3686 
 CB 100 0 0 (-0.0971 - 0.2786) 0 100 0 (-0.2641 - 0.2635) 
     0.3757    0.5276 
 DLGBB 0 100 0 ( -1.4417 - -0.6682) 0 100 0 (-0.3275 - 0.3306) 
     0.7734    0.6581 
 WLGBP 0 100 0 (-1.9384 - -0.9251) 0 100 0 (-0.3959 - 0.3933) 
          1.0133       0.7892 
15 MLE 100 0 0 (-0.0200 - 0.2502) 0 100 0 (-0.1891 - 0.1895) 
     0.2703    0.3787 
 CB 100 0 0 (-0.0769 - 0.3101) 0 100 0 (-0.2722 - 0.2699) 
     0.3870    0.5421 
 DLGBB 0 100 0 ( -1.4567 - -0.6614) 0 100 0 ( -0.3345 - 0.3358) 
     0.7953    0.6703 
 WLGBP 0 100 0 (-1.9555 - -0.9220) 0 100 0 (-0.4012 -0.4010) 
       1.0335    0.8022 
20 MLE 100 0 0 (-0.0070 - 0.2712) 0 100 0 (-0.1953 - 0.1960) 
     0.2782    0.3913 
 CB 100 0 0 (-0.0638 - 0.3343) 0 100 0 (-0.2801 - 0.2812) 
     0.3981    0.5613 
 DLGBB 0 100 0 (-1.4723 - -0.6503) 0 100 0 (-0.3446 - 0.3461) 
     0.8220    0.6906 
 WLGBP 0 100 0 (-1.9654 - -0.9122) 0 100 0 (-0.4114 - 0.4081) 

          1.0532       0.8195 
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Table 12. Estimated coefficients, standard errors, and the goodness of fit for the modified coronary heart disease 
data. 

    Estimation Methods 

    MLE_100 MLE_97 CB DLGBB WLGBP 

Intercept Value -1.4834 -5.1882 -2.0039 -5.3996 -7.3367 

 Std. Err 0.6809 1.1540 1.3229 1.2925 1.5163 

Age Value 0.0254 0.1085 0.0370 0.1132 0.1535 

 Std. Err 0.0138 0.0244 0.0290 0.0272 0.0317 

  
2

arc
  233.1438 182.4641 229.9521 181.5726 206.1502 

 
Table 13. Estimated coefficients, standard errors, and the goodness of fit for the prostate cancer data. 

    Estimation Methods 

    MLE_53 MLE_50 CB DLGBB WLGBP 

Intercept Value 1.3281 -0.1352 0.8890 -0.2502 -1.1275 

 Std. Err 2.9030 3.3363 3.8591 3.9766 3.8480 

AP Value 0.0214 0.0414 0.0297 0.0450 0.0640 

 Std. Err 0.0125 0.0200 0.0236 0.0247 0.0256 

Age Value -0.0564 -0.0541 -0.0589 -0.0568 -0.0657 

  Std. Err 0.0483 0.0511 0.0575 0.0580 0.0617 

  
2

arc
  114.4234 102.1756 112.9089 101.6271 110.1880 

 
Table 14.Estimated coefficients, standard errors, and the goodness of fit for the intensive care unit  data. 

  Estimation Methods 

  MLE_200 MLE_198 CB DLGBB WLGBP 

Intercept Value -1.0613 -0.7550 -1.1137 -0.8019 -2.1044 

 Std. Err 1.2282 1.2750 1.2954 1.3623 1.7504 

Age Value 0.0284 0.0301 0.0303 0.0318 0.0580 

 Std. Err 0.0108 0.0112 0.0112 0.0126 0.0181 

SYS Value -0.0168 -0.0214 -0.0179 -0.0226 -0.0351 

 Std. Err 0.0059 0.0063 0.0075 0.0063 0.0088 

HRA Value 0.0009 0.0021 0.0012 0.0025 0.0081 

 Std. Err 0.0067 0.0068 0.0070 0.0070 0.0079 

 
2

arc
  300.443 286.6569 297.583 284.2126 277.2474 
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