## Impact of Implementing Surgical Safety Checklist on Patients' Health Outcomes in a Public Hospital in Kuwait

Samaa Zenhom Ibrahem<sup>1,2</sup>, Buthaina Al Mudaf<sup>1</sup>, Talal Al Fadalah<sup>1</sup>, Maha AlMajed<sup>1</sup>, Hesham Kalender<sup>1</sup> and Hanan Badr<sup>1,2</sup>

<sup>1</sup>Ministry of Health, Kuwait City, Kuwait

<sup>2</sup>Department of Health Management, Planning and Policy, High Institute of Public Health, Alexandria University,

Alexandria, Egypt

Email: samaazenhom@gmail.com

Abstract: Background: Surgical care is an integral part of healthcare throughout the world. Moreover, studies have estimated that about 50% to 66% of hospital adverse events are attributable to surgical care. It appears that it is not only technical skills and technological innovation but also the behavioral patterns and nontechnical skills of the surgeon that affect surgical outcomes. **Objective:** To examine the impact of applying the surgical safety checklist on surgical outcomes andsafety attitudes of operating room professionals. **Methods:** An interventional study was carried out in a randomly selected public hospital in Kuwait using a specially designed form to collect data on each operation. A total number of 600 patients was enrolled during both the baseline period and after implementation of the checklist. All surgical team members working in the study operating rooms were included to assess their safety attitudes using Safety Attitudes Questionnaire. **Results:** Adherence to the items of surgical safety checklist increased significantly after checklist implementation. Moreover, introduction of the Checklist into operating rooms was associated with improvement in surgical outcomes. There was no statistically significant difference in safety attitudes after implementation of checklist. **Conclusions:** To successfully manage the surgical safety checklist, the support of senior staff is very important. This study serves as a starting point for initiating policy changes to address several issues such as improving job satisfaction and working conditions.

[Samaa Zenhom Ibrahem, Buthaina Al Mudaf, Talal Al Fadalah, Maha AlMajed, Hesham Kalender and Hanan Badr. Impact of Implementing Surgical Safety Checklist on Patients' Health Outcomes in a Public Hospital in Kuwait. *Life Sci J* 2018;15(10):21-35]. ISSN: 1097-8135 (Print) / ISSN: 2372-613X (Online). http://www.lifesciencesite.com. 3. doi:10.7537/marslsj151018.03.

Keywords: Kuwait, Public hospital, surgical safety checklist, safety attitudes

#### 1. Introduction

Large proportion of hospital adverse events are attributable to surgical care. A systematic review has shown that 1 in every 150 patients admitted to a hospital dies as a consequence of an adverse event and that almost two thirds of in-hospital events are associated with surgical care. (De Vries et al., 2008)

Prevention of complications and incidents of iatrogenic harm are deemed feasible for nearly 50% of such incidents. (Gawande et al, 1999 and Kableetal,2002) several interventions have been proposed to increase patient safety and introduction of checklists in surgery can intercept and prevent such incidents. (Arriagaetal,2013, Blissetal,2012 and De Vries et al, 2012) and may reduce both morbidity and mortality. (De Vriesetal,2010, Haynesetal,2009, Van Klei et al, 2012 and Weiseretal,2010, a)

In 2008, the World Health Organization (WHO) introduced the Surgical Safety Checklist (SSC) designed to improve consistency of care. (Weiseretal,2010, b) The checklist was pilot-tested in a global study across 8 hospitals in the developed and developing world. The results were published in January 2009 and showed that, implementation of the 19-item World Health Organization (WHO) Surgical Safety Checklist substantially reduced the rate of surgical complications, from 11.0% to 7.0%, and reduced the rate of in-hospital death from 1.5% to 0.8%. (Haynes et al, 2009) Insufficient use of and/or missing items in the WHO checklist may provide a false sense of security for the operating team. (Rydenfalt et al,2014)

To reduce complications and improve results after surgery both technical and non-technical skills are required. (Flin et al, 2008) A number of subsequent studies to date have reported improved patient outcomes with use of checklists. (Borchard et al, 2012) Furthermore, checklists have also been shown to improve communication, (Fudickar et al, 2012, Kearns et al,2011, Nilsson et al, 2010 and Takaletala,2011), preparedness, (Bohmer et al,2013) teamwork, (Bohmer et al, 2012 and Helmio et al, 2011) and safety attitudes. (Haynes et al, 2011) Objectives

## Objectives

The study aimed at examining the impact of applying the surgical safety checklist on the surgical outcomes in non-casualty operations in a randomly selected governmental hospital in Kuwait. Furthermore, the study assessed the attitudes and opinions toward surgical safety among operating room professionals before and after implementation of surgical safety checklist.

### 2. Material and Methods

This interventional study utilized a specially designed form to collect data on each operation and Safety Attitudes Questionnaire (SAQ) which has been customized to fit the context of Kuwait.

Setting and participants

The study carried out in a randomly selected governmental hospital (757 beds) in Kuwait. Eight operating rooms in the selected hospital were identified as study rooms.

According to a hospital report, a monthly average number of surgeries was considered for preintervention phase (before applying surgical safety checklist) and a similar number of surgeries was considered for post-intervention phase (after applying surgical safety checklist).

A total number of 600 patients was enrolled during the baseline period and 600 patients after implementation of the checklist. Enrolment included all non-Cardiac operations for patients 16 years age or older in which the checklist was used.

All surgical team members including surgeons, anaesthesia providers and nurses working in the study operating rooms in the selected hospital were included in the study.

## Study tools

1- A specially designed form to collect data on each operation was developed. It includes the following items: Demographic characteristics of patients, Procedure data, Type of anaesthesia used, Items of the three parts of WHO surgical safety checklist (Kuwait version), Post-operative complications and length of stay for all patients.

2- Safety Attitudes Questionnaire (SAQ): this tool was used to assess the surgical team safety attitudes and opinions regarding the implementation of surgical safety checklist as a standard care for all surgeries. The questionnaire comprise two parts: The first part contains questions that address health professionals' perceptions of surgical safety in the operating rooms. The second part contains questions about participants' characteristics including age, gender, position and experience in current job.

SAQ contains six domains includingTeamwork climate. (6 items), Safety climate. (9 items), Job satisfaction. (5 items), Stress recognition. (4 items), Perceptions of management. (10 items), Working conditions. (3 items) As well as some questions about communication and collaboration between surgical staff. (3 items).

#### Data collection

Three trained quality nurses together with the circulating nurse in the surgery department in the study hospital were assigned to collect data from the 8 study operating rooms.

The observers attended and monitored the surgeries performed by the surgical team and collected the data on each operation using a specially designed form to monitor the degree of adherence of the surgical team members to the use of WHO surgical safety checklist (Kuwait version) and to measure outcomes related to patients' morbidities and mortalities during both pre-intervention (before implementation of surgical safety checklist) and postintervention (after implementation of surgical safety checklist) phases.

• Each patient undergone a monitored surgery, will be followed up on daily basis by the trained nurse to check for any post-operative adverse events on a predesigned "post-operative adverse events checklist". The post-operative follow up period will be up to either patient release from the hospital or for 30 days whichever the earliest.

• Complications were defined as they are in the American College of Surgeons' National Surgical Quality Improvement Program including acute renal failure, blood transfusion, cardiac arrest requiring cardiopulmonary resuscitation, coma of 24 hours' duration or more, deep-vein thrombosis, myocardial infarction, unplanned intubation, pneumonia, pulmonary embolism, disruption of wound, infection of surgical site, unplanned return to the operating room, fever, ICU, peripheral nerve injury, and death.

• Self-admitted questionnaire "SAQ" distributed to all surgical team members participated in all monitored surgeries in both phases of the study to assess their attitudes towards safety procedure in their operating rooms.

## Intervention

♦ After collecting baseline data (before implementation of WHO surgical safety checklist, Kuwait version), Quality and Accreditation Directorate, Ministry of Health in Kuwait support the implementation of surgical safety checklist and increase awareness among staff regarding safe surgery. The process of implementation was as follow:

• A "surgical safety checklist team" was formed consisting of a representative from each of the following departments namely General Surgery, Urology, Obstetrics and Gynecology, Orthopedics, ENT, Dental, Anesthesia and Nursing who are primarily responsible to follow implementation of the surgical safety checklist in coordination of the quality department of the study hospital.

• The supporting team from the Quality and Accreditation Directorate provided training for the

implementation of the Surgical Safety checklist in the form of lectures with the use of handouts, CDs, audiovisual presentations and open discussions.

The official use of the surgical safety checklist for surgeries started on one elective OT room. After successful implementation, it was decided to add one elective OT room weekly to facilitate continuity of the implementation until all the elective OT rooms were included.

Implementation of the surgical safety checklist progressed to the evening schedule of surgeries and later further included the emergency cases as well.

For the commencement of the phase II of the study, head of supporting team from Quality and Accreditation Directorate provided a lecture to the team designated to collect data to measure the percentage of post-operative complications after implementation of surgical safety checklist.

#### Ethical issues

Ethical approval to conduct the study was provided by the standing Committee for Coordination of Health and Medical Research inKuwait.

### Data management and analysis

Data was analyzed using SPSS 20.0. The items of SAQ are both positively and negatively worded and scored using a five –point scale reflecting respondent agreement (including a neutral category).

Negatively worded items were reversed prior to conducting analysis.

Descriptive statistics using frequency distribution tables were carried-out. Characteristics of the study subjects including patients, health professional and procedures conducted in the study operating rooms were compared between both pre- intervention and post – intervention phases using Pearson exact X2 test (categorical data). Whenever chi-square test was not valid (more than 20% of expected values have count less than 5), Fisher's exact test was used instead.

Z test was used for comparing two proportions. Non-parametric tests (Mann-Whitney and Kruskal-Wallis H tests) were used as tests of significance for comparison of means.

Difference in No. of complication per category was calculated between the two study phases using pearsons exact X2 test. Comparing rates of postoperative complications and death before and after surgical safety checklist implementation was done using Pearson exact X2 test.

Comparison of length of stay before and after surgical safety checklist implementation was done using Mann-Whitney test.

SAQ domains mean scores compared before and after surgical safety checklist implementation using independent sample t- test. Association between compliance with WHO surgical safety checklist items, Kuwait version and post-operative complications rates and length of stay was estimated using the Spearman correlation coefficient.

#### 3. Results

We enrolled 600 patients during the baseline period and 600 patients after implementation of the checklist.188 healthcare providers during preintervention phase and 196 healthcare providers during post-intervention phase were included in the study.

Measuring adherence to selected process measures and rates of post-operative complications, death and length of stay before and after the implementation of surgical safety checklist.

Table 1 lists characteristics of the patients; there were significant differences between the patients in the two phases of the study for all items except preoperative ICU and type of surgery. The higher percentage of patients were females in both preintervention (60.5%) and post-intervention (52.8%) phases. Majority of patients did not admitted to ICU before the operation in both pre-intervention (87.1%) and post-intervention (95.8%) phases. In addition, most of patients undergo elective surgery in both preintervention (66.7%) and post-intervention (66.8%) phases with around 80% of them received general anesthesia in both phases. Patients in both preintervention and post-intervention phases were more likely to undergo surgery for Obstetrics and gynecology conditions or for general conditions and less likely to undergo surgery for ophthalmic, thoracic or vascular conditions.

Total compliance with the elements of the surgical safety checklist was significantly (p=0.000) increased from the median of 5 before the implementation of the surgical safety checklist to the median of 27 after the implementation of the surgical safety checklist. (Table 2).

Changes in the percentages of patients for whom checklist items were checked after the implementation of the surgical safety checklist are fully detailed in Tables (3-5).

Post-operative length of stay decreased significantly (p=0.000) from the median of 3 during pre-intervention phase to the median of 2 during post-intervention phase. (Figure 1)

The post-operative rate of death dropped from 0.9% before implementation of surgical safety checklist to 0.3% after implementation of surgical safety checklist. The rates of post-operative admission to ICU, blood transfusion, fever and unplanned return to surgery also declined significantly after implementation of surgical safety checklist (p=0.006, p=0.000 and p=0.011 respectively) The rates of remaining post-operative complications including infection of incision, acute renal failure, cardiac arrest,

unplanned intubation, ventilator use for 24hrs or more, pneumonia, Pulmonary embolism, peripheral nerve injury and systematic sepsis declined insignificantly after implementation of surgical safety checklist. (table 6)

| Table (1): General info | rmation of the participant | s before and after | · implementation of surgical safety |
|-------------------------|----------------------------|--------------------|-------------------------------------|
| checklist.              |                            |                    |                                     |

| Variable                   | Pre-interven<br>(n=583) | tion phase |          |      | Test                             | р    |  |
|----------------------------|-------------------------|------------|----------|------|----------------------------------|------|--|
|                            | n                       | %          | n        | %    |                                  | -    |  |
| Gender                     |                         |            |          |      |                                  |      |  |
| Male                       | 181                     | 31.0       | 240      | 40.2 | $x^2 = 10.020$                   | 0.00 |  |
| Female                     | 353                     | 60.5       | 315      | 52.8 | $\chi^2_{(1)} = 10.029$          | 2    |  |
| Age (years)                |                         |            |          |      |                                  |      |  |
| Median                     | 33.00                   |            | 31.00    |      | M W 7-5 4(0                      | 0.00 |  |
| (Q1-Q3)                    | (26-42)                 |            | (21-39)  |      | M-W Z=5.460                      | 0    |  |
| Pre-operative ICU          |                         |            |          |      |                                  |      |  |
| Yes                        | 5                       | 0.9        | 10       | 1.7  | $x^2 = 1.116$                    | 0.29 |  |
| No                         | 508                     | 87.1       | 572      | 95.8 | $\chi^2_{(1)} = 1.116$           | 1    |  |
| Surgical Specialty         |                         |            |          |      |                                  |      |  |
| None                       | 6                       | 1.0        | 10       | 1.7  |                                  |      |  |
| General surgery            | 205                     | 35.2       | 171      | 28.6 |                                  |      |  |
| Orthopaedic surgery        | 67                      | 11.5       | 66       | 11.1 |                                  |      |  |
| Urology                    | 40                      | 6.9        | 21       | 3.5  |                                  |      |  |
| Colon and rectal surgery   | 10                      | 1.7        | 12       | 2.0  |                                  |      |  |
| Dental surgery             | 0                       | 0.0        | 10       | 1.7  | $I I D r^2$                      | 0.00 |  |
| Obstetrics and gynaecology | 207                     | 35.5       | 216      | 36.2 | LLR $\chi^{2}_{(11)=}$<br>40.967 | 0.00 |  |
| Ophthalmic surgery         | 1                       | 0.2        | 1        | 0.2  |                                  |      |  |
| Otolaryngology             | 35                      | 6.0        | 78       | 13.1 |                                  |      |  |
| Plastic surgery            | 9                       | 1.5        | 9        | 1.5  |                                  |      |  |
| Thoracic surgery           | 1                       | 0.2        | 1        | 0.2  |                                  |      |  |
| Vascular surgery           | 2                       | 0.3        | 2        | 0.3  |                                  |      |  |
| Type of surgery            |                         |            |          |      |                                  |      |  |
| Elective                   | 389                     | 66.7       | 399      | 66.8 | $\chi^2_{(1)} = 0.006$           | 0.93 |  |
| Urgent                     | 189                     | 32.4       | 192 32.2 |      | χ (1) <sup>-</sup> 0.000         | 8    |  |
| Type of anaesthesia        |                         |            |          |      |                                  |      |  |
| General                    | 477                     | 81.8       | 534      | 89.4 |                                  | 0.00 |  |
| Spinal                     | 86                      | 14.8       | 50       | 8.4  | $\chi^2_{(2)} = 18.021$          | 0.00 |  |
| Local                      | 12                      | 2.1        | 3        | 0.5  | . /                              | U    |  |

| Table (2): Compliance with surgical safety checklist items before and after implementation of surgical safety |
|---------------------------------------------------------------------------------------------------------------|
| checklist.                                                                                                    |

| Stage                                |     | phase p        |     | -intervention<br>se | Mann-  | Whitney | Р     |
|--------------------------------------|-----|----------------|-----|---------------------|--------|---------|-------|
|                                      |     | Median (Q1-Q3) | n   | Median (Q1-Q3)      | Z      |         |       |
| Before induction of anesthesia       | 582 | 2 (1-3)        | 594 | 12 (11-12)          | 28.385 |         | 0.000 |
| Before skin incision                 |     | 1 (0-2)        | 596 | 11 (11-11)          | 28.577 |         | 0.000 |
| Before patient leaves operating room | 583 | 1 (1-2)        | 596 | 5 (4-5)             | 25.144 |         | 0.000 |
| Total compliance                     | 582 | 5 (3-7)        | 594 | 27 (26-28)          | 27.900 |         | 0.000 |

| 1-4-4                             |               | Pre-inter | Pre-intervention phase (n=583) Po |     | rvention phase (n=597) | $\chi^{2}_{(1)}$ | -     |
|-----------------------------------|---------------|-----------|-----------------------------------|-----|------------------------|------------------|-------|
| 1st stage Items                   |               | n         | %                                 | n   | %                      | χ (1)            | р     |
|                                   | performed     | 65        | 11.1                              | 571 | 95.6                   | 849,138          | 0.000 |
| Patient identity confirmation     | Not performed | 517       | 88.7                              | 25  | 4.2                    | 849.138          | 0.000 |
| Detient was a laws and from the s | performed     | 39        | 6.7                               | 572 | 95.8                   | 940,985          | 0.000 |
| Patient procedure confirmation    | Not performed | 544       | 93.3                              | 24  | 4.0                    | 940.983          | 0.000 |
| Patient site confirmation         | performed     | 583       | 100.0                             | 596 | 100.0                  | -                | -     |
| Patient consent                   | performed     | 41        | 7.0                               | 571 | 95.6                   | 930.366          | 0.000 |
| Patient consent                   | Not performed | 542       | 93.0                              | 25  | 4.2                    | 930.300          | 0.000 |
| Site Marked                       | performed     | 130       | 22.3                              | 545 | 91.4                   | 575,718          | 0.000 |
| Sile Markeu                       | Not performed | 453       | 77.7                              | 51  | 8.5                    | 5/5./18          | 0.000 |
| Anaesthesia machine check         | performed     | 146       | 25.0                              | 570 | 95.5                   | (15.95(          | 0.000 |
|                                   | Not performed | 437       | 75.0                              | 26  | 4.4                    | 615.856          | 0.000 |
| Pulse oximeter used               | performed     | 222       | 38.1                              | 556 | 93.1                   | 400.254          | 0.000 |
| Puise oximeter used               | Not performed | 361       | 61.9                              | 40  | 6.7                    | 400.254          | 0.000 |
| Deffect allower                   | performed     | 37        | 6.3                               | 564 | 94.6                   | 919,166          | 0.000 |
| Patient allergy                   | Not performed | 546       | 93.7                              | 32  | 5.4                    | 919.100          | 0.000 |
|                                   | performed     | 45        | 7.7                               | 563 | 94.5                   | 887.916          | 0.000 |
| Difficult Airway evaluation       | Not performed | 538       | 92.3                              | 33  | 5.5                    | 887.910          | 0.000 |
| Risk Blood loss evaluation        | performed     | 30        | 5.1                               | 558 | 93.6                   | 922.865          | 0.000 |
| Risk Blood loss evaluation        | Not performed | 553       | 94.9                              | 38  | 6.4                    | 922.805          | 0.000 |
|                                   | performed     | 197       | 33.8                              | 432 | 72.6                   | 170 275          | 0.000 |
| Antibiotic given appropriately    | Not performed | 386       | 66.2                              | 163 | 27.3                   | 178.275          | 0.000 |
| V                                 | performed     | 166       | 28.5                              | 472 | 79.3                   | 306.741          | 0.000 |
| enous thromboembolism             | Not performed | 417       | 71.5                              | 123 | 20.6                   |                  | 0.000 |

# Table (3): Adherence rates to "Before induction of anaesthesia" stage elements before and after implementation of surgical safety checklist.

Table (4): Adherence rates to "Before skin incision" stage elements before and after implementation of surgical safety checklist.

| 2 million and items                    |                  | Pre-intervention phase (n=583) Pos |      | Post | -intervention phase (n=597) | $\chi^{2}_{(1)}$ |       |
|----------------------------------------|------------------|------------------------------------|------|------|-----------------------------|------------------|-------|
| 2nd stage items                        |                  | n                                  | %    | n    | %                           | χ (1)            | р     |
| The team introduced themselves         | performed<br>Not | 26                                 | 4.5  | 533  | 89.3                        | 853.404          | 0.000 |
| The team introduced themselves         | performed        | 557                                | 95.5 | 63   | 10.6                        | 855.404          | 0.000 |
|                                        | performed        | 77                                 | 13.2 | 567  | 95.0                        |                  |       |
| Team confirm Patient name              | Not<br>performed | 506                                | 86.8 | 29   | 4.9                         | 798.068          | 0.000 |
|                                        | performed        | 63                                 | 10.8 | 566  | 94.8                        |                  |       |
| Team confirm Patient procedure         | Not<br>performed | 520                                | 89.2 | 30   | 5.0                         | 838.744          | 0.000 |
|                                        | performed        | 31                                 | 5.3  | 562  | 94.1                        |                  |       |
| Team confirm incision site             | Not<br>performed | 552                                | 94.7 | 34   | 5.7                         | 933.343          | 0.000 |
|                                        | performed        | 1                                  | 0.2  | 553  | 92.6                        |                  |       |
| Critical steps to surgeon              | Not<br>performed | 582                                | 99.8 | 43   | 7.2                         | 1014.821         | 0.000 |
| II and an a the case of II take her    | performed        | 11                                 | 1.9  | 554  | 92.8                        |                  |       |
| How long the case will take by surgeon | Not<br>performed | 572                                | 98.1 | 42   | 7.0                         | 979.324          | 0.000 |
|                                        | performed        | 2                                  | 0.3  | 554  | 92.8                        |                  |       |
| Blood loss by surgeon                  | Not<br>performed | 581                                | 99.7 | 42   | 7.0                         | 1014.335         | 0.000 |
|                                        | performed        | 4                                  | 0.7  | 552  | 92.5                        |                  |       |
| Patient concerns to anaesthetist       | Not<br>performed | 579                                | 99.3 | 44   | 7.4                         | 999.523          | 0.000 |
|                                        | performed        | 319                                | 54.7 | 566  | 94.8                        |                  |       |
| Nursing staff confirm sterility        | Not<br>performed | 264                                | 45.3 | 30   | 5.0                         | 255.069          | 0.000 |
| Fauinment concerns to proving          | performed        | 13                                 | 2.2  | 537  | 89.9                        |                  |       |
| Equipment concerns to nursing staff    | Not<br>performed | 570                                | 97.8 | 59   | 9.9                         | 914.334          | 0.000 |
|                                        | performed        | 300                                | 51.5 | 556  | 93.3                        |                  |       |
| Imaging displayed                      | Not<br>performed | 283                                | 48.5 | 40   | 6.7                         | 259.263          | 0.000 |

| Table (5): Adherence rates to "Before patient leaves operating room" stage elements | before and after |  |
|-------------------------------------------------------------------------------------|------------------|--|
| implementation of surgical safety checklist.                                        |                  |  |

| 3 <sup>rd</sup> stage items                                 |               | Pre-intervent | tion phase (n=583) | phase (n=583) Post-intervention phase (n= |      | w <sup>2</sup> |       |
|-------------------------------------------------------------|---------------|---------------|--------------------|-------------------------------------------|------|----------------|-------|
| 5 stage items                                               |               | n             | %                  | n                                         | %    | χ (1)          | р     |
| N                                                           | performed     | 121           | 20.8               | 528                                       | 88.4 | 5 4 9 0 5 0    | 0.000 |
| Nurse verbally confirms procedure name                      | Not performed | 462           | 79.2               | 68                                        | 11.4 | 548.059        | 0.000 |
| urse verbally confirms instruments count                    | performed     | 413           | 70.8               | 540                                       | 90.5 | 74 205         | 0.000 |
|                                                             | Not performed | 170           | 29.2               | 56                                        | 9.4  | 74.295         | 0.000 |
| X7 I II (* * I I II)                                        | performed     | 255           | 43.7               | 527                                       | 88.4 | 263.467        | 0.000 |
| Nurse verbally confirms specimen labelling                  | Not performed | 328           | 56.3               | 69                                        | 11.6 | 203.407        | 0.000 |
| NY 1 11 (* 1071 * 7 11                                      | performed     | 4             | 0.7                | 526                                       | 88.1 | 012 290        | 0.000 |
| Nurse verbally confirms if there are any equipment problems | Not performed | 579           | 99.3               | 70                                        | 11.7 | 913.289        | 0.000 |
|                                                             | performed     | 13            | 2.2                | 449                                       | 75.2 | ((0.052        | 0.000 |
| recovery concerns to surgical team                          | Not performed | 570           | 97.8               | 147                                       | 24.6 | 660.953        | 0.000 |

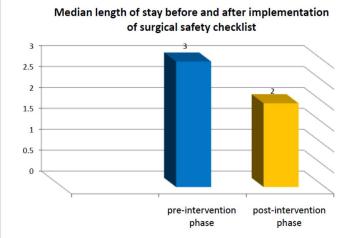



Fig. 1 Median length of stay before and after implementation of surgical safety checklist

| T-11. (A) D-4                  |                         | J . C                  |                                 |
|--------------------------------|-------------------------|------------------------|---------------------------------|
| I able (6): Post-operative com | nucation rate before an | a affer implementatio  | n of surgical safery checklist. |
| Table (6): Post-operative com  | pheadon rate servic an  | a alter implementation | i of surgreat surety encethist  |

| Germalisetiene                   | Pre- interv | ention phase (n=583) | Post-interv | vention phase (n=597) | Test                    | D     |  |
|----------------------------------|-------------|----------------------|-------------|-----------------------|-------------------------|-------|--|
| Complications                    | n           | %                    | n           | %         Test        |                         | Р     |  |
| I.C.U.                           | 24          | 4.1                  | 6           | 1.0                   | $\chi^{2}_{(1)}=11.494$ | 0.001 |  |
| Blood Transfusion                | 14          | 2.4                  | 3           | 0.5                   | $\chi^{2}_{(1)}=7.471$  | 0.006 |  |
| Fever                            | 36          | 6.2                  | 11          | 1.8                   | $\chi^{2}_{(1)}=14.432$ | 0.000 |  |
| Infection of incision            | 7           | 1.2                  | 2           | 0.3                   | FET                     | 0.104 |  |
| Acute renal failure              | 2           | 0.3                  | 0           | 0.0                   | FET                     | 0.244 |  |
| Cardiac arrest                   | 1           | 0.2                  | 0           | 0.0                   | FET                     | 0.494 |  |
| Coma for 24hrs or more           | 0           | 0.0                  | 0           | 0.0                   |                         |       |  |
| DVT                              | 0           | 0.0                  | 0           | 0.0                   |                         |       |  |
| MI                               | 0           | 0.0                  | 0           | 0.0                   |                         |       |  |
| Unplanned intubation             | 2           | 0.3                  | 0           | 0.0                   | FET                     | 0.244 |  |
| Ventilator use for 24hrs or more | 8           | 1.4                  | 3           | 0.5                   | $\chi^{2}_{(1)}=2.407$  | 0.121 |  |
| Pneumonia                        | 1           | 0.2                  | 0           | 0.0                   | FET                     | 0.494 |  |
| Pulmonary embolism               | 1           | 0.2                  | 0           | 0.0                   | FET                     | 0.494 |  |
| Peripheral nerve injury          | 1           | 0.2                  | 0           | 0.0                   | FET                     | 0.494 |  |
| Systematic sepsis                | 2           | 0.3                  | 0           | 0.0                   | FET                     | 0.244 |  |
| Stroke                           | 0           | 0.0                  | 0           | 0.0                   |                         |       |  |
| Wound disruption                 | 1           | 0.2                  | 1           | 0.2                   | FET                     | 1.000 |  |
| Unplanned return to surgery      | 9           | 1.5                  | 1           | 0.2                   | FET                     | 0.011 |  |
| Death                            | 5           | 0.9                  | 2           | 0.3                   | $\chi^{2}_{(1)}=1.361$  | .243  |  |

Figure (2) shows that, the change in the number of complications per patient from the preimplementation period to the post-implementation period was statistically insignificant (p=0.191). Review of the table reveals that, the number of patients with two or more complications decreased from 3.3 % before implementation of surgical safety checklist to 1.8% after implementation of surgical safety checklist.

Compliance with surgical safety checklist items was negatively correlated with rate of post-operative complications during both phases except for "Before induction of anaesthesia stage" during pre-intervention phase (r=.015) and for "Before skin incision stage" during post-intervention phase. (table 7)

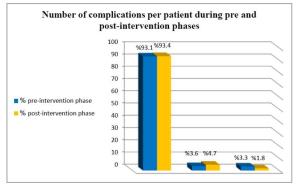



Fig. 2 Number of complications per patient during pre and post-intervention phases

Table (7): Correlation between compliance with surgical safety checklist items and rate of complication per patient before and after implementation of surgical safety checklist.

|                                                            | Pre-intervention phase |                                              |       | Post-intervention phase |                                              |       |
|------------------------------------------------------------|------------------------|----------------------------------------------|-------|-------------------------|----------------------------------------------|-------|
| Compliance                                                 |                        | Correlation<br>Coefficient<br>Spearman's rho | р     | n                       | Correlation<br>Coefficient<br>Spearman's rho | р     |
| Compliance with Before induction of anaesthesia stage      | 506                    | 0.015                                        | 0.732 | 546                     | -0.029                                       | 0.502 |
| Compliance with Before skin incision stage                 | 507                    | -0.049                                       | 0.270 | 548                     | 0.039                                        | 0.368 |
| Compliance with Before patient leaves operating room stage | 507                    | -0.036                                       | 0.418 | 548                     | -0.020                                       | 0.644 |
| Total Compliance                                           | 506                    | -0.016                                       | 0.717 | 546                     | -0.021                                       | 0.619 |

#### Assessment of the attitudes and opinions toward surgical safety among operating room professionals before and after implementation of surgical safety checklist.

Table 8 shows characteristics of the participating healthcare providers; there were no significant differences between the healthcare providers in the two phases of the study for all items exceptfor gender (p=0.000). The higher percentage of participating healthcare providers were males in both preintervention (70.2%) and post-intervention (50.0%) phases. Regarding age, "40 to less than 50" was the age group of the highest frequency in both preintervention (41.0%) and post-intervention (38.3%) phases followed by "30 to less than 40" age group in both pre-intervention (33.0%) and post-intervention (32.1%) phases. The highest percentage of participants were surgeons in both pre-intervention (46.8%) and post-intervention (35.7%) phases followed by scrub nurses in both pre-intervention (23.9%) and postintervention (18.9%) phases. Concerning experience in current job, the highest percentage of participants had the experience of 11 to 20 years (38.8%) followed by 5 to 10 years in 26.6% of participants in preimplementation phase. In post-implementation phase highest percentage of participants had the experience of 5 to 10 years (38.8%) followed by the experience of 11 to 20 years in 31.6% of participants. On the other hand, the lowest percentage of participants had the experience of less than 1 year in both pre-intervention (2.1%) and post-intervention (0.5%) phases.

Table 9 displays mean scores of the different safety attitudes domains before and after implementation of surgical safety checklist. Mean score of all domains increased after implementation of surgical safety checklist. This increase was insignificant except for stress recognition domain (p=0.000). Perception of management had the highest mean score compared with other domains in both preintervention (mean=38.94) and post-intervention (mean=39.75) phases. On the other hand, working condition had the lowest mean score compared with other domains in both pre-intervention (mean=11.99) and post-intervention (mean=12.12) phases.

Changes in mean scores of the different items of safety attitudes domains after the implementation of the surgical safety checklist are fully detailed in tables (10-16).

| Variable                | Pre-inter<br>(n=188) | vention phase | post-intervention phase<br>(n=196) |      | Test | Value            | р          |      |
|-------------------------|----------------------|---------------|------------------------------------|------|------|------------------|------------|------|
|                         | n                    | %             | n                                  | %    |      |                  |            | -    |
| Gender                  |                      |               |                                    |      |      |                  |            |      |
| Male                    | 132                  | 70.2          | 98                                 | 50.0 |      | $\chi^{2}_{(1)}$ | 14.44      | 0.00 |
| Female                  | 54                   | 28.7          | 91                                 | 46.4 |      | χ(1)             | 4          | 0    |
| Age                     |                      |               |                                    |      |      |                  |            |      |
| 20 to less than 30      | 8                    | 4.3           | 20                                 | 10.2 |      |                  |            |      |
| 30 to less than 40      | 62                   | 33.0          | 63                                 | 32.1 |      | M                |            | 0.20 |
| 40 to less than 50      | 77                   | 41.0          | 75                                 | 38.3 |      | M-W<br>Z         | -1.256     | 0.20 |
| 50 to less than 60      | 25                   | 13.3          | 26                                 | 13.3 |      | L                |            | 9    |
| 60 and more             | 9                    | 4.8           | 7                                  | 3.6  |      |                  |            |      |
| Position                |                      |               |                                    |      |      |                  |            |      |
| surgeon                 | 88                   | 46.8          | 70                                 | 35.7 |      |                  | 12.10      |      |
| Surgical trainee        | 6                    | 3.2           | 4                                  | 2.0  |      |                  |            |      |
| Anesthesia professional | 17                   | 9.0           | 19                                 | 9.7  |      |                  |            | 0.07 |
| Anesthesia trainee      | 5                    | 2.7           | 10                                 | 5.1  |      | $\chi^{2}(1)$    | 13.19<br>5 | 0.06 |
| Circulating nurse       | 14                   | 7.4           | 32                                 | 16.3 |      |                  | 5          | /    |
| Scrub nurse             | 45                   | 23.9          | 37                                 | 18.9 |      |                  |            |      |
| Recovery nurse          | 13                   | 6.9           | 15                                 | 7.7  |      |                  |            |      |
| Experiencein current    |                      |               |                                    |      |      |                  |            |      |
| job                     |                      |               |                                    |      |      |                  |            |      |
| Less than 1 year        | 4                    | 2.1           | 1                                  | 0.5  |      |                  |            |      |
| 1-2 years               | 9                    | 4.8           | 5                                  | 2.6  |      |                  |            |      |
| 2-5 years               | 30                   | 16.0          | 31                                 | 15.8 |      | M-W<br>Z         | -0.824     | 0.41 |
| 5-10 years              | 50                   | 26.6          | 76                                 | 38.8 |      |                  | -0.824     | 0    |
| 11-20 years             | 73                   | 38.8          | 62                                 | 31.6 |      |                  |            |      |
| More than 20 years      | 22                   | 11.7          | 18                                 | 9.2  |      |                  |            | I    |

Table (8): Characteristics of participating surgical team members before and after implementation of surgical safety checklist.

Table (9): Mean scores of Safety attitudes' domains before and after implementation of surgical safety checklist.

|                          | pre-in | tervention phase   | post-ii | ntervention phase |        |       |
|--------------------------|--------|--------------------|---------|-------------------|--------|-------|
| Domain                   | n      | Mean (SD) n Mean ( |         | Mean (SD)         | t-test | р     |
| Teamwork climate         | 181    | 23.11±3.50         | 188     | 23.43 ±2.77       | 0.962  | 0.337 |
| Safety climate           | 172    | 33.82±4.64         | 179     | $34.96 \pm 3.42$  | 2.617  | 0.009 |
| Job satisfaction         | 181    | 21.09± (3.73       | 190     | $21.72 \pm 3.51$  | 1.671  | 0.096 |
| Stress recognition       | 182    | 13.89±4.76         | 186     | $15.60 \pm 3.69$  | 3.861  | 0.000 |
| Perception of management | 165    | $38.94 \pm 5.82$   | 181     | 39.75 ±5.23       | 1.367  | 0.173 |
| Working conditions       | 186    | 11.99±2.47         | 195     | $12.12 \pm 2.23$  | 0.555  | 0.579 |

|                                                                                                       |         | rvention<br>se | post<br>inter<br>phas | ervention t-   |           | р         |
|-------------------------------------------------------------------------------------------------------|---------|----------------|-----------------------|----------------|-----------|-----------|
|                                                                                                       | n       | Mean<br>(SD)   | n                     | Mean<br>(SD)   | e         |           |
| 1. Nurse input is well received in this operation room                                                | 18<br>8 | 3.90±1.10<br>0 | 196                   | 4.19±0.77<br>8 | 2.93<br>6 | 0.0<br>04 |
| 2. In this operation room, it is difficult to speak up if I perceive a problem with patient care      | 18<br>7 | 3.19±1.34<br>1 | 195                   | 3.49±1.18<br>1 | 2.36<br>2 | 0.0<br>19 |
| 3. Disagreements in this operation room are resolved appropriately                                    | 18<br>6 | 3.91±1.07<br>2 | 195                   | 4.06±0.82<br>0 | 1.46<br>1 | 0.1<br>45 |
| 4. I have the support I need from other personnel to care for patients                                | 18<br>6 | 4.15±1.03<br>4 | 195                   | 4.17±0.81<br>9 | 0.25<br>0 | 0.8<br>03 |
| 5. It is easy for personnel here to ask questions when there is something that they do not understand | 18<br>5 | 4.18±0.91<br>8 | 192                   | 4.17±.790      | 0.07<br>4 | 0.9<br>41 |
| 6. The physicians and nurses here work together as a well-<br>coordinated team                        | 18<br>7 | 4.07±0.95<br>9 | 195                   | 4.23±0.74<br>6 | 1.71<br>9 | 0.0<br>86 |

Table (10): Mean scores of teamwork climate dimension' items before and after implementation of surgical safety checklist.

Table (11): Mean scores of safety climate dimension' items before and after implementation of surgical safety checklist.

|                                                                                                   |     | rvention<br>se | post<br>inter<br>Pha | rvention       | t         | р         |
|---------------------------------------------------------------------------------------------------|-----|----------------|----------------------|----------------|-----------|-----------|
|                                                                                                   | n   | Mean<br>(SD)   | n                    | Mean<br>(SD)   |           |           |
| 1. I would feel being treated here as a patient                                                   | 186 | 3.99±0.89<br>1 | 191                  | 4.16<br>±0.792 | 1.8<br>71 | 0.0<br>62 |
| 2. Briefing operation room personnel before a surgical procedure is important for patient safety  | 186 | 4.36±0.84<br>7 | 194                  | 4.42<br>±0.739 | 0.7<br>67 | 0.4<br>44 |
| 3. Medical errors are handled appropriately in this operating room                                | 185 | 4.02±0.99<br>4 | 194                  | 4.20<br>±0.757 | 1.9<br>25 | 0.0<br>55 |
| 4. I know the proper channels to direct questions regarding patient safety in this operation room | 187 | 3.95±0.96<br>3 | 195                  | 4.19<br>±0.760 | 2.6<br>86 | 0.0<br>08 |
| 5. I receive appropriate feedback about my performance                                            | 183 | 3.43±1.22<br>0 | 193                  | 3.80±<br>1.012 | 3.2<br>68 | 0.0<br>01 |
| 6. In this operation room, it is difficult to discuss errors                                      | 184 | 3.26±1.24<br>9 | 194                  | 3.61±<br>1.166 | 2.7<br>97 | 0.0<br>05 |
| 7. I am encouraged by my colleagues to report any patient safety concerns I may have              | 182 | 4.05±0.96<br>8 | 192                  | 4.02<br>±0.924 | 0.4<br>02 | 0.6<br>88 |
| 8. Personnel frequently disregard rules or guidelines that are established for the operation room | 184 | 3.39±1.36<br>3 | 194                  | 3.66<br>±1.283 | 1.9<br>73 | 0.0<br>49 |
| 9. The culture in this operation room makes it easy to learn from the errors of others            | 187 | 3.82±1.00<br>3 | 193                  | 4.00<br>±0.952 | 1.7<br>59 | 0.0<br>79 |

| Tab and | :                                                 | pre-in | tervention phase | 4           | -          |       |       |
|---------|---------------------------------------------------|--------|------------------|-------------|------------|-------|-------|
| JOD SAU | Job satisfaction items                            |        | Mean (SD)        | n Mean (SD) |            | ι     | р     |
| 1.      | I like my job                                     | 186    | 4.41±0.860       | 195         | 4.47±0.762 | 0.760 | 0.448 |
| 2.      | Working here is like being part of a large family | 187    | 4.29±0.952       | 194         | 4.49±2.288 | 1.112 | 0.267 |
| 3.      | This is a good place to work                      | 188    | 4.18±0.979       | 196         | 4.30±0.767 | 1.344 | 0.180 |
| 4.      | I am proud to work in operation room              | 187    | 4.17±0.963       | 196         | 4.34±0.798 | 1.893 | 0.059 |
| 5.      | Morale and ethics in this operation room is high  | 184    | 4.01±0.899       | 193         | 4.12±0.798 | 1.238 | 0.216 |

Table (12): Mean scores of Job satisfaction dimension' items before and after implementation of surgical safety checklist.

Table (13): Mean scores of stress recognition dimension' items before and after implementation of surgical safety checklist.

|                                                                   |     | ntervention | post-i<br>phase | intervention<br>e | on<br>T   |           |
|-------------------------------------------------------------------|-----|-------------|-----------------|-------------------|-----------|-----------|
|                                                                   | n   | Mean (SD)   | n               | Mean (SD)         |           |           |
| 1. When my workload becomes excessive, my performance is impaired | 187 | 3.69±1.299  | 192             | 3.96±1.072        | 2.19<br>6 | 0.02<br>9 |
| 2. I am less effective at work when fatigued                      | 186 | 3.60±1.333  | 194             | 4.08±1.023        | 3.95<br>2 | 0.00<br>0 |
| 3. I am more likely to make errors in tense or hostile situations | 187 | 3.34±1.402  | 192             | 3.82±1.186        | 3.60<br>8 | 0.00<br>0 |
| 4. Fatigue impairs my performance during emergency situations     | 186 | 3.28±1.403  | 196             | 3.71±1.241        | 3.13<br>4 | 0.00<br>2 |

Table (14): Mean scores of perception of management dimension' items before and after implementation of surgical safety checklist.

| Perception of management                                                                           |     | rvention<br>se<br>Mean | post<br>inter<br>phas | rvention       | Т         | р         |
|----------------------------------------------------------------------------------------------------|-----|------------------------|-----------------------|----------------|-----------|-----------|
|                                                                                                    | n   | (SD)                   | n                     | (SD)           |           |           |
| 1. Managements supports my daily efforts (unit management)                                         | 186 | 3.96±0.92<br>6         | 196                   | 4.01±0.87<br>7 | 0.5<br>18 | 0.6<br>04 |
| 2. Managements supports my daily efforts (hospital management)                                     | 182 | 3.77±0.95<br>7         | 193                   | 3.94±0.93<br>3 | 1.6<br>71 | 0.0<br>96 |
| 3. Management doesn't knowingly compromise patient safety (unit management)                        | 185 | 3.55±1.28<br>1         | 194                   | 3.80±1.00<br>6 | 2.1<br>44 | 0.0<br>33 |
| 4. Management doesn't knowingly compromise patient safety (hospital management)                    | 183 | 3.56±1.23<br>8         | 186                   | 3.78±0.97<br>4 | 1.9<br>64 | 0.0<br>50 |
| 5. Management is doing a good job (unit management)                                                | 186 | 4.22±0.85<br>6         | 191                   | 4.13±0.85<br>1 | 0.9<br>57 | 0.3<br>39 |
| 6. Management is doing a good job<br>(hospital management)                                         | 175 | 4.03±0.92<br>8         | 193                   | 4.14±0.87<br>0 | 1.1<br>27 | 0.2<br>61 |
| 7. Problem personnel are dealt with constructively by our (unit management)                        | 183 | 3.96±0.88<br>6         | 194                   | 3.93±0.84<br>0 | 0.3<br>24 | 0.7<br>46 |
| 8. Problem personnel are dealt with constructively by our (hospital management)                    | 178 | 3.77±0.97<br>3         | 191                   | 3.90±0.88<br>6 | 1.3<br>52 | 0.1<br>77 |
| 9. I get adequate timely info about events that might affect<br>my work, from<br>(unit management) | 185 | 4.01±0.86<br>0         | 193                   | 3.98±0.81<br>3 | 0.3<br>06 | 0.7<br>60 |
| 10. I get adequate timely info about events that might affect my work, from (hospital management)  | 179 | 3.72±0.98<br>4         | 192                   | 4.01±0.82<br>2 | 3.0<br>89 | 0.0<br>02 |

|                                                                                                        | pre-interventio | on phase       | post-interver | ntion phase | Т         | р         |
|--------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|-------------|-----------|-----------|
| Working conditions                                                                                     | n               | Mean<br>(SD)   | n             | Mean (SD)   |           |           |
| 1. The level of staffing in this clinical area are sufficient to handle the number of patients         | 187             | 3.86±1.1<br>15 | 196           | 3.89±1.001  |           | 0.7<br>67 |
| 2. This hospital does a good job of training new personnel                                             | 187             | 3.96±1.0<br>44 | 196           | 4.08±0.902  | 1.1<br>96 | 0.2<br>32 |
| 3. All the necessary information for diagnostic and therapeutic decisions is routinely available to me | 186             | 4.15±0.8<br>50 | 195           | 4.15±0.929  | 0.0<br>36 | 0.9<br>71 |

## Table (15): Mean scores of working conditions dimension' items before and after implementation of surgical safety checklist.

Table (16): Mean scores of other safety attitudes' items before and after implementation of surgical safety checklist.

|                                                                                 |     | intervention<br>se | post-intervention<br>phase |                  | Т         | р         |
|---------------------------------------------------------------------------------|-----|--------------------|----------------------------|------------------|-----------|-----------|
|                                                                                 | n   | Mean (SD)          | n                          | Mean (SD)        |           |           |
| 1. I experience good collaboration with nurses in this operation room           | 188 | $4.23 \pm 0.850$   | 195                        | $4.24 \pm 1.049$ | 0.1<br>26 | 0.9<br>00 |
| 2. I experience good collaboration with staff physicians in this operation room | 187 | $4.25 \pm 0.785$   | 196                        | 4.23±0.788       | 0.1<br>40 | 0.8<br>88 |
| 3. Communication breakdowns that lead to delays in delivery of care are common  | 186 | 3.45 ±1.226        | 196                        | 3.66 ±1.206      | 1.7<br>00 | 0.0<br>90 |

Table 17 indicates that, during pre-intervention phase a significant difference was found between the mean scores of surgeons, anesthesia providers and nurses for job satisfaction (p=0.000), stress recognition (p=0.000), working conditions (p=0.000) and safety climate subscales (p=0.003). The results did not show any significant difference between the mean scores of surgeons, anesthesia providers and nurses with regard to the teamwork climate (p=0.183) and perception of management subscales (p=0.617). During post-intervention phase, there was no any significant difference between the mean scores of surgeons, anesthesia providers and nurses with regard to all safety attitudes subscales except for job satisfaction (p=0.015). Review of table reveals that, nurses anddoctors differed in their safety attitudes perception. Overall, the nurses perceived higher job satisfaction compared with doctors.

Table (17): Mean scores of safety attitudes' domains for surgeons, anesthesiologists, and nurses before and after implementation of surgical safety checklist.

|                          |                  | Pre | -intervention ph | ase         | Pos | Post-intervention phase |                |  |
|--------------------------|------------------|-----|------------------|-------------|-----|-------------------------|----------------|--|
|                          |                  | n   | Mean (SD)        | F (p)       | n   | Mean (SD)               | F (p)          |  |
| Teamwork climate         | Surgeon team     | 90  | 22.96±3.32       | 1.714       | 67  | 23.84±3.31              | 1.494          |  |
|                          | Anaesthesia team | 21  | 22.10±3.55       | (.183)      | 29  | 22.83±2.00              | (.227)         |  |
|                          | Nursing team     | 70  | 23.61±3.66       |             | 92  | 23.32±2.51              |                |  |
|                          | Surgeon team     | 89  | 20.81±3.38       | 14.011      | 72  | 20.88±3.08              | 1.265          |  |
| Job satisfaction         | Anaesthesia team | 22  | 18.00±4.91       | 14.011      | 29  | 21.52±2.29              | 4.265          |  |
|                          | Nursing team     | 70  | 22.41±3.06       | (.000)      | 89  | 22.46±3.99              | (.015)         |  |
|                          | Surgeon team     | 89  | 15.53±2.97       | 21 (27      | 67  | 15.76±3.63              |                |  |
| Stress recognition       | Anaesthesia team | 21  | 15.81±4.41       | 21.627      | 29  | 16.14±2.92              | .644           |  |
| -                        | Nursing team     | 72  | 11.31±5.48       | (.000)      | 90  | 15.31±3.96              | (.526)         |  |
|                          | Surgeon team     | 83  | 38.92±6.09       | 40.4        | 66  | 39.94±5.57              | 516            |  |
| Perception of management | Anaesthesia team | 16  | 40.25±6.59       | .484 (.617) | 27  | 40.48±5.29              | .516<br>(.598) |  |
|                          | Nursing team     | 66  | 38.65±5.30       | (.017)      | 88  | 39.39±4.98              | (.398)         |  |
|                          | Surgeon team     | 93  | 11.18±2.35       | 17.((1      | 74  | 12.24±2.20              | 1 424          |  |
| Working conditions       | Anaesthesia team | 21  | 11.29±3.20       | 17.661      | 29  | 12.62±1.80              | 1.424          |  |
| 0                        | Nursing team     | 72  | 13.24±1.82       | (.000)      | 92  | 11.87±2.37              | (.243)         |  |
| Safety climate           | Surgeon team     | 83  | 33.16±4.87       | 6.170       | 64  | 34.94±3.87              | 0.003          |  |
| Safety chinate           | Anaesthesia team | 20  | 31.80±4.83       | (.003)      | 29  | 34.93±2.69              | (.997)         |  |
|                          | Nursing team     | 69  | 35.20±3.91       | (.003)      | 86  | 34.98±3.33              | (.997)         |  |

Table 18 presents the inter-correlations among

the safety attitudes subscales before implementation of

surgical safety checklist. The table shows that the correlation ranged from -0.117 to.567 and that five of the six factors correlations were significant. Safety attitudes subscales were positively correlated with each other. Teamwork climate was more positively correlated to with the perceptions reported for management (r=0.402) job satisfaction (r=0.411), safety climate (r=0.522). Safety climate was more

positively correlated with job satisfaction (r=0.567) and working conditions (r=0.545). Stress recognition subscale was negatively correlated to teamwork climate (r=-.138), safety climate (r=-.117) and job satisfaction subscales (r=-.186). Moreover it was not significantly related to teamwork climate (p=0.068) and safety climate (p=0.135).

 Table (18): Correlation matrix for the Safety Attitudes Questionnaire (SAQ) subscales before implementation of surgical safety checklist.

|                             |                     | Teamwork | Safety  | Job          | Stress      | Perception of |
|-----------------------------|---------------------|----------|---------|--------------|-------------|---------------|
|                             |                     | climate  | climate | satisfaction | recognition | management    |
| Safety climate              | Pearson Correlation | .522**   |         |              |             |               |
|                             | Sig. (2-tailed)     | .000     |         |              |             |               |
|                             | n                   | 170      |         |              |             |               |
| Job satisfaction            | Pearson Correlation | .411**   | .567**  |              |             |               |
|                             | Sig. (2-tailed)     | .000     | .000    |              |             |               |
|                             | n                   | 175      | 166     |              |             |               |
| Stress recognition          | Pearson Correlation | 138      | 117     | 186*         |             |               |
|                             | Sig. (2-tailed)     | .068     | .135    | .013         |             |               |
|                             | n                   | 175      | 166     | 177          |             |               |
| Perception of<br>management | Pearson Correlation | .402**   | .435*** | .272**       | .201*       |               |
|                             | Sig. (2-tailed)     | .000     | .000    | .001         | .011        |               |
|                             | n                   | 160      | 154     | 159          | 159         |               |
| Working conditions          | Pearson Correlation | .288**   | .545**  | .546**       | 294**       | .440***       |
|                             | Sig. (2-tailed)     | .000     | .000    | .000         | .000        | .000          |
|                             | n                   | 179      | 171     | 179          | 180         | 165           |

Table19 presents the inter-correlations among the safety attitudes subscales before implementation of surgical safety checklist. The table shows that the correlation ranged from 0.076 to.490 and that most factors correlations were significant. Safety attitudes subscales were Positively correlated with each other. Stress recognition subscale was negatively correlated to teamwork climate (r=-.235) and job satisfaction (r=-0.062) subscales. Moreover it was not significantly related to safety climate (p=0.109) and job satisfaction

(p=0.408) subscales. Review of table reveals that, teamwork climate subscale was not significantly related to Perception of management (p=0.055) and Working conditions (p=0.301) subscales. Teamwork climate was more positively correlated to with the perceptions reported for safety climate (r=0.451). Working conditions subscale was more positively correlated to with the perceptions reported for management (r=0.490) and safety climate (r=0.423).

| Table (19): Correlation matrix for the Safety Attitudes Questionnaire (SAQ) subscales after implementation |
|------------------------------------------------------------------------------------------------------------|
| of surgical safety checklist.                                                                              |

|                    |                     | Teamwork<br>climate | Safety<br>climate | Job<br>satisfaction | Stress<br>recognition | Perception of<br>management |
|--------------------|---------------------|---------------------|-------------------|---------------------|-----------------------|-----------------------------|
|                    | Pearson Correlation | .451**              |                   |                     |                       |                             |
| Safety climate     | р                   | .000                |                   |                     |                       |                             |
|                    | n                   | 175                 |                   |                     |                       |                             |
|                    | Pearson Correlation | .274**              | .207**            |                     |                       |                             |
| Job satisfaction   | р                   | .000                | .006              |                     |                       |                             |
|                    | n                   | 183                 | 175               |                     |                       |                             |
|                    | Pearson Correlation | 235**               | .122              | 062                 |                       |                             |
| Stress recognition | р                   | .001                | .109              | .408                |                       |                             |
| Ū                  | n                   | 181                 | 173               | 181                 |                       |                             |
| D (* C             | Pearson Correlation | .145                | .316**            | .203**              | .330**                |                             |
| Perception of      | р                   | .055                | .000              | .007                | .000                  |                             |
| management         | n                   | 175                 | 168               | 176                 | 173                   |                             |
|                    | Pearson Correlation | .076                | .423**            | .188**              | .145*                 | .490**                      |
| Working conditions | р                   | .301                | .000              | .009                | .049                  | .000                        |
|                    | n                   | 187                 | 178               | 189                 | 185                   | 180                         |

#### 4. Discussion

This is the first study assessing the implementation of the surgical safety checklist in public hospitals in Kuwait. Study findings will act as baseline data regarding the implementation of the surgical safety checklist in Kuwait.

Introduction of the Surgical Safety Checklist into operating rooms in the study hospitals was associated with improvements in surgical outcomes. The reduction in the rates of death and complications suggests that the checklist implementation can improve the safety of surgical patients. Whereas the improvement in surgical outcomes is not substantial, the exact mechanism of improvement is less clear and most likely multifactorial.

Overall adherence to the elements of the surgical safety checklist was significantly (p=0.000) increased from the median of 5 before the implementation of the surgical safety checklist to the median of 27 after the implementation of the surgical safety checklist. The systemic and behavioral changes could account for the improvements observed. Another mechanism, however, could be the Hawthorne effect, an improvement in performance due to subjects' knowledge of being observed by the study personnel.

Results found no change in compliance with surgical safety checklist with regard to the type of surgery (elective or urgent), or type of anesthesia (general, local, spinal). This was consistent with the findings in the literature. (Haynesetal,2009)

According to the study results stress recognition subscale was negatively correlated to teamwork climate and job satisfaction subscales. These findings complement those of the psychometric testing for the original SAQ. (Gabranietal,2017) Previous study stated that, stress recognition did not show a relationship with the perceptionsof management, the teamwork climate, and job satisfaction. (Sextonetal, 2006)

During pre-intervention phase, a significant difference in the perceived patient safety attitudes was found between the nurses, physicians and anesthesia providers for the subscales of job satisfaction (p=0.000), stress recognition (p=0.000), working conditions (p=0.000) and safety climate subscales (p=0.003). However, there was no any significant difference with regard to the teamwork climate (p=0.183) and perception of management subscales (p=0.617). During post-intervention phase, there was no any significant difference between the mean scores of surgeons, anesthesia providers and nurses with regard to all safety attitudes subscales except for job satisfaction (p=0.015). Overall, the nurses perceived higher job satisfaction compared with doctors.

A study conducted in Albania revealed that, a significant difference in the perceived patient

safetyattitudes for the subscales of teamwork, safety climate, job satisfaction and working conditions was foundbetween the nurses and physicians, with the nursesscoring lower mean values. Overall, thenurses perceived lower job satisfaction. worse workingconditions, a lower level of teamwork and poorer perceptions of management compared with doctors. (Gabrani et al, 2017) Two studies in the USA that used the SAO showed that nurses anddoctors differed in their perceptions of safety culture, (Rosenetal, 2008 and Van Noordetal, 2010) possibly because of the personal characteristicsof the caregivers, such as their level of education, socioeconomic status and gender. The traditional hierarchy of physicians has often discouragednurses from speaking up to doctors. Nursesmay be hesitant to confront physicians on issues of patient care because they might have less training in orexperience with dealing with patients' medical conditions. (Van Noordetal, 2010).

Another study that examined nurses' jobsatisfaction showed that 41% of nurses were dissatisfied with their work in the USA; in England, 38.9% of nurses intended to abandon the profession. Generally, salary, professional growth and autonomy are some of the factors that influence the nursing professional's job satisfaction. (Needlemanetal, 2002)

The study findings revealed that, working conditions had the lowest mean score compared with other domains in both pre-intervention (mean=11.99) and post-intervention (mean=12.12) phases. Working conditions can be improved by ensuring sufficient level of staffing; identifying optimal provider to patient ratio, skill mix, skill requirement, scope of practice, and resources available (Cartmilletal,2012); training of new personnelto ensure that they gain the experience to provide better care to patients (McCullochetal,2011); and providing staff with necessary information required for diagnostic and therapeutic decisions.

About 30% of surgical team members in preintervention phase and 17% in post-intervention phase reported that, it is difficult to speak up if they perceive a problem with patient care. Moreover, around 50% of surgical team members reported that, it is difficult to discuss errors in operating rooms. Only 51.4% of surgical team members during pre-intervention phase and 65.3% during post-intervention phase stated that, they receive appropriate feedback about their performance. Therefore, creating an open climate where everyone is free to speak up and communicate with each other independent of status and profession is very important and can be done through active leadership and administrative support to enhance speak up behaviors of professionals (Open school, IHI,2015) and development of hospital policies which

openly support and encourage professionals to raise their concerns. (Okuyamaetal,2015) Also building a positive safety culture in the organization to encourage care provider to speak up in the team without fear of blaming or punishment (Jansen et al, 2015) and Speaking up training are important. (Martinez et al, 2015)

One limitation of the study is that the documentation of complicationswas limited to the period of admission. Data oncomplications and deaths occurring after dischargewere not collected, resulting in an underestimation of the rates of complications.

#### Conclusions

The implementation of surgical safety checklist can modify personal attitudes of professionals working in operating rooms and seen as a tool that improve the safety of surgical patients. To successfully manage the checklist, the support of staff in more senior positions is very important.

Measuring safety climate dimensions such as perceived teamwork climate, job satisfaction and the perception of management in hospitals can help to diagnose the underlying safety culture of an entire organization or work unit. Moreover, knowledge about the health care providers' attitudes towards patient safety can help health care planners and policymakers to plan for promoting patient safety in surgical and invasive procedures.

Interventions to improve the safety climate require strong commitment and support by the management and initial education and training of employees. Creating an open climate where everyone is free to speak up and communicate with each other independent of status and profession is very important.

This study serves as a starting point for initiating policy changes to address the issues such as improving job satisfaction, working conditions and providing staff with appropriate feedback about their performance to reduce the impact of these factors on the quality of hospital care.

#### Acknowledgements

Authors would like to thank the Ministry of Health, State of Kuwait for funding this research. Authors would also like to thank the administrator of the participating governmental health care organization in Kuwait for facilitating this work. Special thanks go to all health professionals and patients who participated in this study.

#### References

1. De Vries EN, Ramrattan MA, Smorenburg SM, Gouma DJ, Boermeester MA. The incidence and nature of in-hospital adverse events: a systematic review. Qual Saf Health Care 2008; 17:216-23.

- 2. Gawande AA, Thomas EJ, Zinner MJ, et al. The incidence and nature of surgical adverse events in Colorado and Utah in 1992. Surgery. 1999; 126:66–75.
- 3. Kable AK, Gibberd RW, Spigelman AD. Adverse events in surgical patients in Australia. Int J Qual Health Care. 2002;14:269–276.
- 4. Arriaga AF, Bader AM, Wong JM, et al. Simulation-based trial of surgical-crisis checklists. N Engl J Med. 2013;368:246–253.
- Bliss LA, Ross-Richardson CB, Sanzari LJ, et al. Thirty-day outcomes support implementation of a surgical safety checklist. J Am Coll Surg. 2012;215:766–776.
- 6. De Vries EN, Prins HA, Bennink MC, et al. Nature and timing of incidents intercepted by the SURPASS checklist in surgical patients. BMJ QualSaf. 2012;21:503–508.
- De Vries EN, Prins HA, Crolla RMPH, et al. Effect of a comprehensive surgical safety system on patient outcomes. N Engl J Med. 2010;363:1928–1937.
- 8. Haynes A, Weiser T, Berry W, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360:491–499.
- van Klei WA, Hoff RG, van Aarnhem EEHL, et al. Effects of the introduction of the WHO "Surgical Safety Checklist" on in-hospital mortality: a cohort study. Ann Surg. 2012;255:44–49.
- 10. Weiser TG, Haynes AB, Dziekan G, et al. Effect of a 19-item surgical safety checklist during urgent operations in a global patient population. Ann Surg. 2010, a;251:976–980.
- 11. Weiser TG, Haynes AB, Lashoher A, et al. Perspectives in quality: designing the WHO Surgical Safety Checklist. Int J Qual Health Care. 2010, b;22:365–370.
- Rydenfalt C, Ek A, Larsson PA. Safety checklist compliance and a false sense of safety: new directions for research. BMJ. 2014;23(3):183–6.
- Flin RH, O'Connor P, Crichton MD. Safety at the sharp end: a guide to non-technical skills. Burlington, VT; Aldershot, England: Ashgate, 2008.
- Borchard A, Schwappach DLB, Barbir A, et al. A systematic review of the effectiveness, compliance, and critical factors for implementation of safety checklists in surgery. Ann Surg. 2012;256:925–933.
- 15. Fudickar A HK, Wiltfang J, Bein B. The effect of the WHO Surgical Safety Checklist on complication rate and communication. Dtsch Arztebl Int. 2012;109:6.
- 16. Kearns RJ, Uppal V, Bonner J, et al. The

introduction of a surgical safety checklist in a tertiary referral obstetric centre. BMJ Qual Saf. 2011; 20:818–822.

- 17. Nilsson L, Lindberget O, Gupta A, et al. Implementing a pre-operative checklist to increase patient safety: a 1-year follow-up of personnel attitudes. Acta Anaesthesiol Scand. 2010;54:176–182.
- Takala RSK, Pauniaho SL, Kotkansalo A, et al. A pilot study of the implementation of WHO Surgical Checklist in Finland: improvements in activities and communication. Acta Anaesthesiol Scand. 2011;55:1206–1214.
- 19. Böhmer AB, Kindermann P, Schwanke U, et al. Long-term effects of a perioperative safety checklist from the viewpoint of personnel. Acta Anaesthesiol Scand. 2013;57:150–157.
- 20. Böhmer AB, Wappler F, Tinschmann T, et al. The implementation of a perioperative checklist increases patients' perioperative safety and staff satisfaction. Acta Anaesthesiol Scand. 2012;56:332–338.
- 21. Helmiö P, Blomgren K, Takala A, et al. Towards better patient safety: WHO Surgical Safety Checklist in otorhinolaryngology. Clin Otolaryngol. 2011;36:242–247.
- 22. Haynes AB, Weiser TG, Berry WR, et al. Changes in safety attitude and relationship to decreased postoperative morbidity and mortality following implementation of a checklist-based surgical safety intervention. BMJ Qual Saf. 2011;20:102–107.
- Haynes AB, Weiser TG, Berry WR, Lipsitz SR, Breizat AS, Dellinger EP, etal. For the Safe Surgery Saves Lives Study Group. N Engl J Med. 2009; 360:491-499.
- 24. Gabrani A, Hoxha A, Simaku A, Gabrani J. Application of the Safety Attitudes Questionnaire (SAQ) in Albanianhospitals: a cross-sectional study. bmjopen.bmj.com/ on May 16, 2017.
- 25. Sexton JB, Helmreich RL, Neilands TB. The safety attitudes questionnaire: psychometric properties, benchmarking data, and emerging research. BMC Health Serv Res. 2006;6:1–10.
- 26. Rosen AK, Gaba DM, Meterko M. Recruitment of hospitals for a safety climate study: facilitators and barriers. Jt Comm J Qual Patient Saf.

2008;34:275-84.

- 27. Van Noord I, de Bruijne MC, Twisk JW. The relationship between patient safety culture and the implementation of organizational patient safety defences at emergency departments. Int J Qual Health Care. 2010;22:162–9.
- 28. Needleman J, Buerhaus P, Mattke S. Nursestaffing levels and the quality of care in hospitals. N Engl J Med. 2002;346:1715–22.
- 29. Cartmill L, Comans TA, Clark MJ, Ash S, Sheppard L, Using staffing ratios for workforce planning: evidence on nine allied health professions, Human Resources for Health 2012, 10:2.
- 30. McCulloch P, Rathbone J, Catchpole K, Interventions to improve teamwork and communications among healthcare staff, British Journal of Surgery 2011; 98: 469–479.
- 31. Open School, Institute for Healthcare Improvement (IHI) Summary Sheet, Patient Safety 106: Introduction to Culture of Safety. Retrieved on October 19, 2015 from IHI available on http://app.ihi.org/lms/lessondetailview.
- Okuyama A, Wagner C, Bijnen B. Speaking up for patient safety by hospital-based health care professionals: a literature review. 2014. Retrieved from PubMed database on December 15, 2015 available on http://www-ncbi-nlm-nihgov.eproxy1.lib.hku.hk/pmc/articles/ PMC4016383/pdf/1472-6963-14-61.pdf.
- Jansen Lockett J, Barkley L, Stichler J, Palomo J, Kik B, Walker C, Donnelly J, Willon J, Sanborn J, O'Byrne N. Defining Peer-to-Peer Accountability From the Nurse's Perspective. 2015. Retrieved from Ovid database on December 9, 2015.
- 34. Martinez W, Etchegaray JM, Thomas EJ, Hickson GB, Lehmann LS, Schleyer AM, etal. 'Speaking up' about patient safety concerns and unprofessional behaviour among residents: validation of two scales. 2015. Retrieved from Quality and Safety BMJ on December 9, 2015 available on http://qualitysafety.bmj.com.eproxy1.lib.hku.hk/c ontent/24/11/671.full.pdf+html)

10/7/2018