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Abstract: The spectrum sensing problem has augmented new scenarios with cognitive radio and opportunistic 
spectrum access concepts. Further, it becomes one of the most challenging issues in cognitive radio systems when 
primary user signal characteristics at secondary level are unavailable. In this paper, we present a novel technique to 
sense, blindly infer signal features (FFT size, cyclic prefix (CP) length) and detect OFDM signal based on second 
order cyclostationarity analysis. First, we infer accurate FFT size and CP length from the sensed signal based on 
cross correlation through considering FFTs of different size (2L) and CPs length. In our experimental study, we 
assume that CP length in the sensed OFDM signal could be 5% to 15% of the FFT size {64, 128, 256, 512, 1024, 
2048 and 4096} used at primary user level. We successfully estimate accurate FFT size and CP length and carryout 
performance analysis of the proposed approach at various channel conditions and effect of increase in sample length 
(frames) of the sensed signal. In addition to this, we derive recursive procedure to calculate cross-correlation at 
sample (l+1) using cross-correlation value at sample (l) and few mathematical operations. We have also tested MAX 
values distribution for FFT size and CP whether inferred parameters are valid or not by finding confidence of 
estimation. Experimental results show that the proposed approach can be successfully used to measure unknown 
OFDM signal parameters and to detect OFDM signal blindly in cognitive radio at 0 % false alarm rate with 
detection rate 100%.  
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1. Introduction 

In the last few years, the growing success of 
wireless communication standards and the inefficient 
use of the licensed bands [1] have induced the 
regulation commissions to consider more flexible 
strategies for the wireless spectrum management. 
Further, given the limitations of the natural frequency 
spectrum, it becomes obvious that current static 
frequency allocation schemes cannot accommodate 
the requirements of an increasing number of higher 
data rate devices [2]. As a result, innovative 
techniques that can offer new ways of exploiting the 
available spectrum are needed. Cognitive radio arises 
to be an attracting solution to the spectral 
overcrowding problem by introducing opportunistic 
usage of the frequency bands that are not heavily 
occupied by licensed users [3], [4]. 

One of the most important components of the 
cognitive radio concept is the ability to measure, sense, 
learn, and be aware of the parameters related to the 
radio channel characteristics, availability of spectrum 
and power, radio’s operating environment, user 
requirements and applications, available networks 

(infrastructures) and nodes, local policies and other 
operating restrictions. In cognitive radio terminology, 
primary users can be defined as the users who have 
higher priority or legacy rights on the usage of a 
specific part of the spectrum. On the other hand, 
secondary users, which have lower priority, exploit 
this spectrum in such a way that they do not cause 
interference to primary users. Therefore, secondary 
users need to have cognitive radio capabilities, such as 
sensing the spectrum reliably to check whether it is 
being used by a primary user and to change the radio 
parameters to exploit the unused part of the spectrum. 

Different approaches can be applied in order to 
guarantee an adaptive opportunistic spectrum (OS) 
allocation for secondary users: one of the most 
promising strategies in this scenario is the cognitive 
radio. In such approach, the opportunistic spectrum is 
a common resource which has to be dynamically 
shared among the secondary users. One of the most 
suitable techniques to carry out an effective OS 
strategy is the Orthogonal Frequency Division 
Multiplexing (OFDM) [5] since its flexibility allows 
efficient spectrum utilization by guaranteeing a 
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dynamic adaptation of the spectral occupancy of the 
transmitted signal [6]. In an OS model each secondary 
user has to verify the availability of the radio resource 
(i.e. primary user absent) before transmitting, and to 
know which transmission mode is to be used. 

The determination of empty spectrum is typically 
done by spectrum sensing and is a critical challenge in 
cognitive radios. In particular, (i) spectrum sensing 
has to reliably determine the presence or absence of 
ongoing licensed transmissions, and (ii) sensing of 
multiple radio channels (possibly spanning several 
hundreds of MHz) has to be done as fast as possible. 

In the communication spectrum, a number of 
primary users and as well as secondary users may 
exist. Further, each primary user may have its own 
communication characteristics for signal transmission 
like bandwidth, modulation type and transmitter 
power to achieve various transmission data rates. 
Spectrum sensing is traditionally understood as 
measuring the spectral content or measuring the radio 
frequency energy over the spectrum. Whereas, 
cognitive radio is considered as a more general term 
that involves obtaining the spectrum usage 
characteristics across multiple dimensions such as 
time, space, frequency, and code. It also involves 
determining what types of signals are occupying the 
spectrum including the modulation, waveform, 
bandwidth, carrier frequency, etc. However, this 
requires more powerful signal analysis techniques 
with additional computational complexity [2]. 

This paper makes the following contributions; 
 Development and validation of FFT size and 

CP length inference method from OFDM signal in 
cognitive radio. 

 Derivation of recursive procedure to 
calculate cross-correlation between two signals for a 
specified time range (CP length) to reduce 
computational cost. 

 Finding confidence level for possibly used 
FFT size and CP length considering many different 
combinations of FFT size and CP length. 

 Analysis of Max operator distribution for 
various FFT size and by varying CP length from 5-
15% of considered FFT size. 

 Validating theoretical and experimental 
results by varying alpha (ratio between frame length 
and sensed signal length). 

 OFDM signal detection in cognitive radio by 
measuring 2nd order cyclostationarity properties.  

The remaining paper is organized as follows; we 
present literature review about the OFDM signal 
detection techniques in cognitive radio in section II. 
Section III contains detail about the proposed OFDM 
signal detection technique. In section IV, we provide 
results and discussion. Section V concludes the 
carried out current research work. 

 
2. OFDM Signal Detection Methods in Cognitive 
Radio 

At present, spectrum sensing is still in its early 
stages of development. A number of different methods 
have been proposed for identifying the presence of 
signal transmissions which can be categorized based 
on energy detection, matched filter and 
cyclostationarity based methods. Since most of 
emerging and next-generation communications and 
broadcasting systems are orthogonal frequency 
division multiplexing (OFDM) based, detecting 
OFDM waveforms is of great importance [7]. 
Therefore, the detection method separating OFDM 
signal from other single carrier signal or random noise 
is very essential. Some of the most common spectrum 
sensing techniques used in cognitive radio include 
energy based filters, match filters, and 
cyclostationarity feature detection methods. 

Energy detector based spectrum sensing 
approach is the most common used because of its low 
computational and implementation complexities 
including OFDM signal [8]-[12]. Further, it is more 
advantageous as receivers do not need any knowledge 
on the primary users’ signal. The primary signal is 
detected by comparing the output of the energy 
detector with a threshold which depends on the noise 
present in the signal [13]. Some of the challenges with 
energy detector based sensing include selection of the 
threshold for detecting primary users. Further, its 
performance is not robust to noise and is known to be 
poor at low SNRs [14]. Moreover, energy detectors do 
not work efficiently for detecting spread spectrum 
signals [15]. 

 

 
Figure 1. Representative of OFDM signal with cyclic prefix. 
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Matched filter based techniques detect the signal 
more reliably and outperform any detection method at 
hand. But, these methods are applicable to systems 
with known signal patterns and their main advantage 
is to achieve a certain probability of false alarm in 
short time [16]-[17]. In the presence of a known 
pattern, sensing can be performed by correlating the 
received signal with a known copy of itself [10], [16]. 
In practical spectrum sensing scenarios, however, we 
seldom have full knowledge of the primary 
transmitter’s signal at the detecting receiver. In an 
OFDM system, one can use the pilots embedded in the 
symbols and attempt to detect the signal using a filter 
matched to these pilot tones. The limitation of this 
strategy in real systems is that pilot tone values are 
usually pseudo randomly coded and hence not known 
to the receiver. Thus, simply adding the output of the 
matched filter from consecutive symbols will not 
necessarily improve performance. In fact, it could 
have a negative impact on the detection performance 
of the system. A similar detection strategy proposed in 
[18] auto-correlates consecutive OFDM symbols to 
exploit identical pilot sequences that are embedded 
within each symbol. This method is also not practical 
as deployed systems seldom repeat identical pilot 
sequences from one OFDM symbol to the next. 

Cyclostationarity feature detection method 
exploits the cyclic stationary features of the received 
signals for detecting primary user transmissions [19]-
[20]. Periodicity in the signal or in its statistics like 
mean and autocorrelation results in cyclostationarity 
features [21]. Further, cyclic features can be induced 
deliberately to assist spectrum sensing like the cyclic 
prefix inserted in the OFDM signal and detection 
reliability increases as the cyclic prefix length of the 
signal increases [22]. However, many OFDM systems 
do not add a cyclic prefix or a sufficiently long one 
due to spectral flatness and throughput considerations 
[23]. 

Some researchers in [24]-[25] tries to extract the 
cyclic frequency corresponding to the sampling rate 
for the OFDM systems. These both OFDM signal 
detection techniques are based on the cyclostationarity 
of the signal. They treat the OFDM signal like a 
pulse-amplitude-modulated waveform which degrades 
the performance of these methods upto 5 dB in some 
cases [26]. In contrast, authors of [27] and [28] aim to 
exploit the cyclostationary signatures of an OFDM 
symbol realized from its embedded pilots. However, 
they assume that the pilot signal is unchanged over 
consecutive OFDM symbols. 

Cyclostationarity feature based OFDM signal 
detection methods work well but primary user 
transmission characteristics are essentially needed at 
secondary user receiver. Currently, many standards 
are being used in OFDM signal transmission systems 

and to keep knowledge/information of system 
characteristics for all standards in use is very difficult 
at secondary level. Further, it would increase the 
computational complexity as well as cost of the 
secondary user spectrum sensing and signal 
transmission system. 

In this paper, we focus ourselves to first infer 
accurate FFT size and CP length from sensed signal 
and then detect primary user OFDM signal in 
cognitive radio based on cyclostationarity features 
with more confidence in presence of various channel 
conditions. In our experimental study, we assume that 
the primary user is employing OFDM based 
communication system for signal transmission. 
Further, it is supposed that no information is available 
at secondary receiver about primary user OFDM 
signal characteristics including synchronization, 
sampling rate, symbol size (FFT size and cyclic prefix 
length). Our aim in this paper is to sense the spectrum 
for detection of an OFDM signal based on cyclic 
features by employing periodic correlation function. 
Based on cyclic features analysis, first we determine 
accurate size of FFTs and CP length from the sensed 
signal which is essentially required to divide the 
sensed signal in frames of correct symbol size (FFT + 
CP). Further, we also estimate confidence level for 
each possible combination of used FFT size and CP 
length from the sensed OFDM signal in cognitive 
radio. Based on identified accurate FFT size and CP 
length, we predict the presence or absence of primary 
user OFDM signal with more confidence by 
considering adverse channel conditions. 

In our experimental study, we intend to detect 
WIBRO OFDM signal and assume that primary user 
is employing the following OFDM transmission 
characteristics; IEEE 802.16e, frequency bandwidth 
2.3 GHz, max mobility 60 km/hr, cell coverage ~ 1 
Km, data rate about 25 Mbps and modulation scheme 
QAM. Further, cyclic prefix is inserted in OFDM 
symbols to avoid inter symbol interference. We also 
study the performance of the proposed approach in 
various adverse channel conditions. 

 
3. The Proposed OFDM Signal Detection 
Technique 

Cyclostationarity based methods offer superior 
performance as compared to other techniques to detect 
OFDM signal in the presence of high channel 
degradations. But, these cyclostationarity based 
techniques also require OFDM signal transmission 
system information at secondary user receiver 
(sampling rate, symbol length, FFT size, CP length, 
symbol level synchronization). Nowadays, many 
practical OFDM signal transmission systems exist and 
are employing different standards. Further, because of 
dynamic spectrum access policy, a primary user may 
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exist in sub-spectrum of interest with dynamic 
transmission characteristics and secondary user may 
not be aware of this change. Resultantly, secondary 
user may not be able to detect the OFDM primary user 
signal in the sensed spectrum and may declare empty. 
This act of secondary user may increase false alarm 
rate (FAR) which may not be allowed in cognitive 
radio. Further, it is very difficult and expensive to 
keep knowledge of all OFDM transmission standards 
at secondary level. Considering the above mentioned 
facts, the key point is that if primary user OFDM 
signal characteristics can be measured from the sensed 
signal at secondary level then using these 
characteristics, sensed primary OFDM signal can be 
detected with more confidence. This is one of the 
important objectives in this research work. To tackle 
this problem, we propose an intelligent inference 
method to first estimate accurate FFT size and CP 
length from sensed primary signal to divide the signal 
into frames of appropriate length. Figure 1 shows a 
structure of captured OFDM signals. Based on these 
measured essential features, we perform OFDM signal 
detection in cognitive radio based on cyclostationarity 
properties. The schematic flow chart of the proposed 
technique to estimate appropriate size of FFTs and CP 
is shown in Figure 2. 

 
Figure 2. Flowchart of the proposed procedure to 
estimate. 

 

Since, OFDM communication signal has a cyclic 
prefix means copying last samples of the symbol into 
the beginning of each OFDM symbol. Further, 
number of FFTs in OFDM signal can be expressed by 
2L (L is length of data in a symbol). According to the 
properties of OFDM signal mentioned above, OFDM 
characteristic parameters inference method can be 
achieved as follows;  

 Loop: for FFT size {32, 64, 256, 512, 1024, 
2048, 4096}  

 Choose input signal within the range of 2L 
from the sensed signal 

 If there is CP in the chosen FFTs, estimate 
the CP length and confirm its existence through cross 
correlation 

 Loop: for CP length {5-15%} of chosen FFT 
size 

o Calculate cross-correlation of the sensed 
signal for the considered CP length in each frame by 
shifting it through k symbols 

o Calculate confidence value for each possible 
CP length at selected FFT size 

 End 
 Maximum of measured confidence for all 

considered CP lengths at a fixed FFT size 
 End 
 Determination of FFTs and CP length at 

which confidence is maximum 
 Perform cyclostationarity analysis on the 

sensed signal by employing estimated FFT size and 
CP length to detect OFDM signal 
 

 
Figure.3 Schematic procedure to calculate cross-
correlation. 

 
Similarly, for the existence of the prefix, number 

of FFTs can be estimated. Further, it can be assumed 
that CP can exist within 5% to 15% range of FFT. 
Let’s assume X (n) and Y (n) are two OFDM signals 
shifted through length k (Y (n) is a copy of shifted 
signal X (n) by length k). FFT size used in OFDM 
signal transmission by primary user can be estimated 
by calculating cross-correlation between these two 
signals by varying ‘l’ and ‘k’ using equation (2). 

0

( ) ( ) ( )
M

l
n

R k x l n y l n k


   
  (2) 

To estimate cross-correlation for time L, window 
range M is specified, k represents specified time 
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interval as shown in Figure 3. In accordance with time 
characteristics considered in Figure. 3, cross-
correlation is calculated through M+1 samples by 

fixing time lag ‘k’ between two signals (x (n), y (n)). 
Mathematical derivation is given below to calculate 
cross-correlation, recursively.  

 

����(�) = ��(� + 1 + �)�(� + 1 + � + �)

�

���

 

= � �(� + 1 + �)�(� + 1 + � + �) + �(� + 1 + �)�(� + 1 + �+ �) + �(�)�(� + �) − �(�)�(� + �)

���

���

 

= ��(� + �)�(� + � + �) + �(� + 1 +�)�(� + 1 +� + �) + �(�)�(� + �) − �(�)�(� + �)

�

���

 

= ��(� + �)�(� + � + �) + �(� + 1 +�)�(� + 1 +� + �) − �(�)�(� + �)

�

���

 

= ��(�) + �(� + 1 +�)�(� + 1 +� + �) 
−�(�)�(� + �) 

 
����(�) = ��(�) + �(� + 1 +�)�(� + 1 +� + �) − 	�(�)�(� + �)    (3) 
 
This recursive step in equation (3) to find cross-

correlation for sensed signal time L plays a crucial 
role to estimate FFT size and CP length in a very short 
time which makes it feasible to blindly detect OFDM 
signal in cognitive radio using the proposed technique. 
If ��(�) is known, only two multiplication operations 
are needed to estimate ����(�) . Considering both 
OFDM signals same (y (n) = x (n)), the cross-
correlation converts to auto-correlation. In equation 
(3), k means FFT size selected in experiment because 
prefix length will be based on selected FFT and here 
M is 15% of FFT size.  

In the following section, we infer various 
parameters from sensed signal and make analysis of 
the OFDM signal corrupted through AGWN at 
various SNRs based on these estimated features. We 
calculate confidence measure for each considered FFT 
size and CP length in experiment and choose the best 
one based on confidence. We also investigate the 
effect of number of frames in estimating FFT size and 
CP length in severe channel conditions. 

 
4. Results and Discussion 

In this section, we perform analysis of the infer 
method on a simulated signal to estimate FFT size and 
CP length by increasing number of frames and at 
various SNRs. In our experimental study, we do not 
need any information about the primary user OFDM 
signal communication system (FFT size, CP length, 
synchronization, etc.). This aspect of the proposed 
method to infer accurate estimate of FFTs and CP 
length from the sensed signal differentiates it from 
other well-known techniques in cognitive radio which 
assume both primary user transmitter and secondary 
user receiver are synchronized at symbol level. 

4.1 Cross-Correlation based Signal Analysis 

 
Figure 4. Plot of real coefficients of simulated Wibro 
OFDM signal corrupted through -5dB AWGN. 

 
Figure 5. Plot of cross-correlation ��(�)  of Wibro 
OFDM signal (FFT size 1024 and CP 128) corrupted 
through 0dB AWGN. 

 



 Life Science Journal 2018;15(9)       http://www.lifesciencesite.com 

 

81 

A typical example of WIBRO OFDM signal 
generated through FFT size 1024 and CP length 128, 
and corrupted through 0dB AGWN is shown in Figure 
4. We find cross-correlation by considering various 
FFTs size and CP length to perform analysis of the 
sensed signal. At each considered FFT size (‘k’), M is 
15% of used FFT size, and by varying ‘l’ cross-
correlation of two signals x (n) and y (n) is calculated. 
Signal y (n) is a shifted version of the sensed signal x 
(n) by ‘k’. Obtained cross-correlation results using 
equation (2) and the procedure depicted in Figure 3 by 
varying ‘l’ and ‘k’ are plotted in Figure 5. From 
results shown in Fig. 4, if the sensed signal owns 
OFDM characteristics and comprises CP in each 
symbol then a big peak can be observed from the 
cross-correlation plot at time axis L. This ��(�) peak 
occurs (at FFT + CP) when the actual number of FFTs 

used to generate OFDM signal and FFT size used in 
experiment are same. We estimate FFT size by 
exploiting the coordinates of the obtained big peak 
along k-axis which represents number of FFTs used in 
OFDM signal communication system. 
4.2 Cyclic Prefix (CP) Length Estimation 

In this section, we find accurate length of cyclic 
prefix used in the OFDM signal by estimating cross-
correlation through fixing FFT size and varying CP 
length. Cross-correlation is estimated by setting M 
equals to 15% of the FFT size in equation (2). 

We estimate CP at each possible prefix by taking 
the mean of the reshaped cross-correlation and then 
applying max operation. Matlab function ‘reshape’ is 
employed to reshape the cross-correlated signal as 
given in equation (4). 

 
��(�������) = ���ℎ���(��(����), (���� + �������), �)  (4) 

 

where 

L
J f i x

N F F T N p r e f i x

 
  

   and ‘L’ 
represent total signal length. 

Location of maximum value in CP (Nprefix) 
vector represents the CP length used in OFDM signal 
and the value itself signifies confidence about the 
estimated CP. Reshaped cross-correlated signals for 
CP (128) and CP (140) are shown in Figure 6 and 7. 

A CP (Nprefix) vector is generated against each 
fixed FFT based on reshaped cross-correlation as 
shown in Figure 8. From Figure 8, a big peak may be 
observed at Nprefix 128 with FFT size 1024. This is 
because in our experimental study, we have generated 
an OFDM signal employing FFT 1024 and CP length 
128. So, Nprefix from the experimental results can be 
defined through the following relation; 

( )estimated NprefixCP ArgMax CP Nprefix
  (5)  

 

 
Figure 6. Reshaped correlated signal CP (128) at 
Nprefix = 128. 

 

 
Figure 7. Reshaped correlated signal CP (140) at 
Nprefix = 140. 

 

 
Figure 8. Plot of estimated CP vector for FFT size 
1024. 
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Calculating the mean and standard deviation 
from CP (Nprefix) vector for a fixed FFT size, we can 
evaluate the worth of the inferred CP length by 
finding its confidence. Confidence regarding 
estimated CP length can be calculated using the 
following formula; 

m ax ( ) ( )

( )

C P m ean C P
C on fidence

std C P




 
 (6) 

We find confidence for inferred CP length 
against each possible FFT size used in OFDM signal 
communication system using equation (6) and the 
obtained results are presented in table 1. 

 
Table 1. Confidence of inferred FFTs and CP length. 

FFT Size CP length Confidence 

64 13 1.2 
128 19 3.1 
256 9 2.2 
512 59 3.0 
1024 128 16.8 
2048 151 3.1 

 

 
Figure 9. Confidence of estimated FFT size (1024) 
verses channel noise (dB) by varying number of 
frames. 

 
From Table 1, we may detect the credibility of 

inferred CP length when FFT is 1024. Large value of 
confidence against inferred FFTs and CP length 
shows the possible parameters used in OFDM signal 
communication by the primary user. Based on these 
estimated parameters, we detect the primary user 
OFDM signal in cognitive radio by exploiting 2nd 
order cyclostationarity properties measured from the 
sensed signal. 
4.3 Effect of Number of Frames on Confidence for 
Estimated FFT Size and CP Length 

We also perform experimental analysis to see the 
effect of number of frames on FFT size and CP length 
estimation by varying channel conditions (0dB to -

20db). Further, we run the simulations for 1000 times 
and average out the results. Obtained results for FFTs 
and CP length by increasing number of frames and at 
various Signal-to-Noise Ratios (SNR)) channel 
conditions are plotted in Figure 9 and 10, respectively. 
From Figure 9 and 10, it may be observed that 
confidence level improves by increasing number of 
frames to compute signal parameters. On the other 
hand, confidence level regarding estimated FFT and 
CP length reduces in adverse channel conditions. 

 

 
Figure 10. Plot of normalized confidence value of 
Estimated CP length (128) verses channel noise (dB) 
by varying number of frames. 

 
4.4 Effect of Number of Frames on ROC curve for 
Estimated FFT Size and CP Length 
 

 
Figure 11. ROC curve for estimated correct FFT size 
(1024) verses channel noise (dB) by varying number 
of frames. 

 
In this subsection, we perform experimental 

analysis to see the effect of number of frames on true 
positive rate (TPR) for correctly estimated FFT size 
1024 and CP length 128 at various channel conditions 
by plotting receiving operating characteristic (ROC) 
curve. Obtained results for correctly inferred FFTs 
1024 and CP length 128 from unknown sensed signal 
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in cognitive radio are plotted in Figure 11 and 12, 
respectively. From Figure 11 and 12, it may be 
observed that TPR at estimated FFTs size and CP 
length increases by increasing number of frames of 
sensed signal to compute signal parameters. Further, 
from our experimental results, the proposed approach 
at 0% FAR can successfully estimate FFT size and CP 
length in very severe channel conditions (snr = -17dB) 
by increasing number of frames of sensed signal 
which proves the efficacy of the method. 
4.5 Mathematical Verification of the Proposed 
Signal Detection Method 

The inference algorithm to estimate FFT size and 
CP length can be summarized as; 

 Calculate correlation function ��(�) 
 Generate transformation matrix for 

correlation function ��(�) and average out ��������� 

 Determine the location of maximum in 
��������� vector (i.e. CP length) 

According to central limit theorem, ��������� 

results have characteristics of Gaussian distribution. 
Max function calculus of a Gaussian random sequence 
can determine the credibility of inferred CP length.  

 Let X1, X2,……., Xn be random sequence 
vectors. So, in order to get the maximum of Gaussian 
random variable, probability distribution of Y = {X1, 
X2,……., Xn} should be known. Whereas, {X1, 
X2,……., Xn} has identical probability distribution 
(Gaussian distribution) and each Xk distribution can 
be represented through the following formula; 

 

 
Figure 12. ROC curve for accurately estimated CP 
length (128) verses channel noise (dB) by varying 
number of frames. 
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Cumulative distribution function (CDF) of 
maximum Y’s can be denoted using the mathematical 
expression given in equation (8). 
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( )
x

XF in the above equation (8) is CDF of 
irregular variable x. CDF of this type of variable in 
Gaussian distribution can be shown as follows; 
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So, using equation (9), CDF of maximum Y’s 

can be written as; 
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By taking derivative of equation (10), we can get 

probability distribution function (PDF) of Y’s. 

  
Figure 13. Max value probability distribution 
histogram for random sequence of length ‘N’ based on 
800,000 simulations. 
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The above PDF can be obtained by applying 
MAX function on random sequences {X1, X2,……., 
Xn} containing various numbers of coefficients (N). In 
current research, this distribution histogram can be 
realized by performing each experiment for 800,000 
times as shown in Figure 13. 

From histogram data plotted in Figure 13, 
obtained mean and standard deviation of Max 
probability distribution for N = 64 , 128, 256, 512, 
1024, 2048 is presented in Table 2. From results 
presented in Table 2, it may be observed that mean 
increases and standard deviation decreases by 
increasing random sequence length, i.e. sharp 
distribution is obtained. Further, we compare the 
experimental results of Max probability distribution 
and theoretical probability distribution. The graphical 
representation of both experimental and theoretical 
distributions is shown in Figure 14. 
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Figure 14. Probability distribution histograms for 
random sequence of length ‘N’ based on 800,000 
simulations, theoretical (red color) and Max function 
(blue color). 

 
14. From Figure 14, it may be observed that both 

distribution curves overlap each other and also verify 
the suitability of the proposed inferred method to 
estimate FFT size and CP length from the sensed 
signal in cognitive radio. 

Assume that the sensed signal is only noise 
signal and from inferred results, FFT and Nprefix is 
not present. In this scenario, we can still measure 
mean and standard deviation from Max value 
probability distribution (for only noise signal). Further, 
we can derive mathematical model from probability 
distribution of transformed cross-correlation proposed 
in this experimental study. Considering the statistical 

distribution of correlation ��(�)  for a signal of 
arbitrary length L whether it has prefix or not can be 
modeled as follow;  

 
Table 2. Mean and standard deviation of Max 
distribution. 

N mean std 

64 2.3435 0.4510 
128 2.5940 0.4182 
256 2.8267 0.3918 
512 3.0440 0.3696 
1024 3.2487 0.3513 
2048 3.4419 0.3341 

 
Let X1(n) and X2(n) are two OFDM signals 

given in equation (12). 

1 1 1( ) ( ) ( )X n s n n 
 and  

2 2 2( ) ( ) ( )X n s n n 
  (12) 

Where, s1(n), s2(n) are OFDM signal terms, and 

1 ( )n
, 2 ( )n

are noise terms. Assuming the case 
when both s1(n) and s2(n) possess same cyclic prefix 
length which means L1 overlaps exist in OFDM signal. 
We can estimate the expected value of correlation of 
two functions (signals) as follows;  

1

1 2
0

1
( ) ( )

L

r
n

r x n x n
L






     
 

 

1 2 2 1 1 2 1 2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s n s n s n n s n n n n

L
        

  
 
When, s1(n) and s2(n) have same L1 overlaps and 

to simplify the equation, put 
1L

L
 

 and 
2 2

1

1
( )r s sL

L
    

.  (13) 
Similarly, we can derive mathematical 

expression to estimate standard deviation of 
correlation function. 

2 2 2 2( ) 2r r r rr r r               
2 2 2
r rr          

2 2 2 4
2 ( )s n s
r

L L

   



 

   (14) 
In order to validate the above derivation, for 

instance, when
4 24 , 1, 300s n L    , obtained 

results for standard deviation by varying   through 
equation (14) are depicted in Figure 15. 

Experimental standard deviation result shown in 
figure 14 can be modeled by a linear equation

2 0 .0538 0.0883   . Both graphs overlap 
each other and validate our derivation and estimated 
results to detect OFDM signal in cognitive radio. 

 

 
Figure 15. Variance of correlation function ‘r’ with 
respect to alpha. 
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Table 3. Mean and standard deviation of CPNprefix function for empty (H0) and occupied (H1) sensed spectrum. 

Sensed Signal Features H0 (empty) 
H1  
(occupied) 

Ideal Channel r
 0 

2

s
  

Noisy Channel 
2

r  
 

22

n

L


 

 
22 2 4

s n s

L L


  


 
  
 

Similarly, for noise signal only (i.e. 
2 0s  ), 

we can estimate 0r  and

2 2
2 ( )n
r

L


 

using 
equation (13) and equation (14), respectively. From 
the above discussion, we may conclude that mean and 
standard deviation of function CPNprefix can be 
calculated using equation (13) and equation (14) in 
both scenarios i.e. sensed spectrum empty or occupied. 
Further, based on measured mean and standard values, 
we can classify the sensed spectrum as occupied or 
empty. For only noise signal (AWGN), the measured 
mean value will be zero and variance =1. And for 
OFDM signal case, mean and variance values will be 
high. Second order cyclostationarity properties 
calculated from sensed signal based on the proposed 
method to decide the fate of sensed spectrum are 
summarized in Table 3. 

 
5. Conclusions 

An intelligent novel technique to infer 
accurate FFT size, cyclic prefix (CP) length with 
100% accuracy is analyzed. Based on estimated FFTs 
and CP, the sensed OFDM primary user signal is 
blindly detected in cognitive radio using 2nd order 
cyclostationarity properties. A recursive procedure to 
calculate cross-correlation at sample (l+1) using cross-
correlation value at previous sample has been derived 
to reduce the computational cost of the proposed 
method. MAX values distribution of the conducted 
experiments has been tested whether inferred 
parameters are valid or not by finding confidence. 
Further, performance analysis of the proposed 
approach is carried out at various channel conditions 
and by increasing sample length (frames) of the 
sensed signal. From experimental results, it may be 
observed that detector performance (at 0% FAR) 
increases with increase in sample length (frames) of 
the sensed signal to estimate the signal parameters 
blindly and successfully detect the primary user 
OFDM signal. Promising detection results for OFDM 
signal shows the efficacy of the proposed approach. In 
future, we intend to extend our approach to further 
study validation of NFFT and CP statistics from the 
unknown sensed signal in cognitive radio. 
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