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Abstract: This article documents the performance assessment of main genomic assemblers based upon De Bruijn 

Graphs and their respective stages. The objetive is to identify and compare computational requirements,  advantages 

and bottlenecks on each of the assembly algorithms steps for every tool evaluated with the purpose to provide a 

reference frame and detect future computational challenges to  improve these techniques. 

The assessed assemblers were: Abyss, Velvet, SOAPdenovo2, Minia and EPGA2. The dataset used to perform 

the assessment was: 64587949 reads of  101bp corresponding to the 14th human chromosome. The measured 

variables were: read and write operations, use of main memory (RAM), parallelization (number and percentage of 

used cores) and processing time. All measures were taken with two kmer sizes: k=31 and k=55. The results show: 

the assemblers that use partitioning techniques for kmers counting reduces considerably the memory use, but 

increase the amount of I/O operations; the use of techniques for graph simplification by parts allows to reduce 

substantially the memory requirement in the contigs generation step, however they increase the processing time, the 

use of error removal reduce the amount of necessary memory in future stages; the data structures used to represent 

the graph directly affect the RAM use, as an example, Minia reduces substantially the used RAM peak through the 

use of bloom filters in cascade.   
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1. Introduction 

The rapid fall of sequencing costs since the 

arrival of the next generation sequencing (NGS) 

allowed the possibility to sequence complete genomes 

of different organisms with the aim to ease the study 

of their genes. One of the main problems and 

challenges is in the de-novo assembly stage [1-3], in 

this stage short reads are used ( between 100bp and 

500bp)  from machines with Illumina or Roche 454 

technology and are assembled in contigs and 

metacontigs in such a way that as a result a complete 

assembled genome is obtained without need to count 

with a reference genome. For the assembly of small 

genomes, such as the bacterial genome assembly, 

these tools has good performance and most of the time 

require a little computation time. However as the 

genome size increases (eg the chromosome of a 

mammal) the computing requirements increases to 

perform this process [4-6]. 

Computational intensity required to perform an 

assembly without a reference genome ( de-novo) has 

been addressed in the last decade using techniques 

based on De Bruijn graphs [7,8]. Actually, the most 

used genomic assemblers are based on this approach, 

such as [9,10]. 

The assemblers that use De Bruijn graphs 

generally have similar workflows. Below the tipical 

stages of these workflows are described: 

Kmer generation and counting: During this stage, 

the reads are divided in shorter fragments of k size, 

called kmers, to perform a counting of ocurrences of 

each of these. This is one of the stages with the more 

RAM demand because it is necessary to store these 

kmer in main memory [11]. 

De Bruijn graph construction: From the found 

kmers a De Bruijn graph is built which later will be 

used to determine the contigs. 

Sequence determination using the De Bruijn 

graph: Once De Bruijn graph is built and stored in 

main memory a simplification of itself done with the 

purpose to find contigs and metacontigs. Some 

assemblers do a first simplication of the graph to 

generate the contigs and then make use of the paired-

end information to link these contigs in metacontigs 

with more size. 

In previous works such as Assemblathon [12], 

and Genome Assembly Gold-Standard Evaluations 

http://www.lifesciencesite.com/
http://www.lifesciencesite.com/
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(GAGE) [13] performance tests were conducted to the 

assemblers regarding to their results, that is, the 

number of generated contigs and their statistics. 

However in these works few mentions or none about 

the variables such as read/write operations, the RAM 

use and the parallelization of these assemblers. 

Moreover, some of the performance assessments 

available focus in the general performance analysis 

without focusing on each of its stages [14-18]. 

In this article approach to assess several genomic 

assemblers based on De Bruijn graphs, they were 

selected on two criteria: high use and variety of 

techniques used to reduce the computational 

requirement of building, representing and graph 

processing. For each assembly stage data related to 

read and write operation, main memory use (RAM), 

parallelization (number and percentage of used cores) 

and processing time are measured with the purpose to 

verify which tools has greater computational 

requirements [19,20]. 

 

2. Material and Methods 

2.1 Tools to assess 

The tools to assess are the assemblers based on 

De Bruijn Graphs that only use short paired-end reads 

to determine contigs. Assemblers were chosen in such 

a way that diversity would be present on the k-mers 

counting algorithms in the structures to represent the 

graph in memory and these had greater use during the 

last decade. Note that assemblers such as ALL-

PATHS-LG were not taken in count in this assesment 

because this one requires long fragments as an 

additional to short fragments to be executed [21]. 

ABySS: Is a de novo parallel assembler for paired 

sequences, specifically designed for short reads. 

Roughly the algorithm used by this tool has the 

following stages: First, without using the paired-end 

information, contigs are extended until either they 

cannot be unambiguously extended or come to a blunt 

end due to a lack of coverage. In the second step the 

paired-end information is used to resolve ambiguities 

and merge contigs [14].  ABySS is implemented in 

C++ and use the  openmpi library (in some of its 

stages) with the purpose to allow the comunication 

bewteen several computer nodes and ease its execution 

on a cluster. Additionally AbySS use the google-

sparsehash library to decrease the RAM requirement 

in the kmers counting [22,23]. 

Velvet: Is a de novo assembler for short reads. 

The Velvet’s algorithm mainly has two stages: Hash 

production (hashing) and graph construction; these 

stages are done by velveth and velvetg respectively. 

Velveth reads the sequences files and builds a 

dictionary with all the words of size k, along with the 

local aligments definition between these lectures.  

Subsequently, velvetg read these aligments, builds the 

De Bruijn graph, remove erros, simplify the graph and 

resolve the repetition based on the parameters supplied 

by the users. Velvet is implemented in C++ and use 

the OpenMP library with the purpose that some 

assembly stages can be run in paralallel in the same 

computational node [24,25]. 

SOAPdenovo2: Is a novel short-read assembly 

method that can build a de novo draft assembly for the 

human-sized genomes.  This algorithm has the 

following steps: De Bruijn Graph (DBG) construction, 

contig assembly, paired-end (PE) reads mapping, 

scaffold construction, and gap closure. SOAPdenovo2 

is implemented in  C++ and for some of its processing 

stages use several threads. 

Minia: Is a short-read assembler based on a De 

Bruijn graph, capable of assembling a human genome 

on a desktop computer in a day. The output of Minia is 

a set of contigs. The main stages for Minia’s algorithm 

are: kmers counting, graph construction route and 

simplification of it. For the kmers counting stage 

Minia use bloom filters to reduce the RAM memory. 

Minia is implemented in C++. Note that unlike Velvet 

and AbySS, Minia does not use the available paired-

end information to build metacontigs. 

EPGA2: Is a  genomic assembler oriented to 

efficient memory use. To achieve this purpose uses 

BLESS [26,27] to fix reads errors, DSK [28,29] for  

kmers counting  and BCALM [19] to simplify De 

Bruijn graph nodes. Once the nodes are simplified and 

contigs generated EPGA2 merge the contigs in a 

parallel way [30]. 

 

2.2 Datasets 

The dataset used to this assessment corresponds 

to 64587949 short reads (101bp), paired-end of the 

14th Homo Sapiens chromosome. 

 

2.3 Computer Equipment 

The computer where this assessment was in place 

has the following described characteristics [31]: 

Operating System: Debian Wheezy (AMD64).  

Processor: Intel(R) Xeon(R) cpu E7450 @ 2,40GHz, 

24 cores. RAM: 64GB. Hard Disk: 160GB  HDD. 

 

3. Results 

3.1 Results by tool 

Velvet performance by stages 
Below is described each of the Velvet’s 

execution stages, highlighting the relevant aspects 

regarding to its computational requirements for k=31 

(Figure, 1) and k=55 (Figure, 2). 

Kmer load: Velveth read the files with reads and 

generates a hash table of them. This stage has the 

greatest I/O use (with a peak of 8000 Kb/s), the RAM 

use during this stage is inversely proportional to the 

kmer size used. 

http://www.lifesciencesite.com/
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Pregraph, bubbles popping and splurs remotion: 

The hash table previously created by velveth is loaded, 

splurs and bubbles are removed because of possible 

sequencing errors. This stage is the one with less 

execution time for k=31, k=55. 

 
Figure 1. Velvet execution and its stages (k=31), in the right side zoom from minute 1 to 60. 

 

  
Figure 2. Velvet execution and its stages (k=55). 

Graph and contig merging: The final  graph is 

processed to generate the contigs. This stage was the 

one with the more execution time, it is remarkable in 

the case when k=31 because it needed to use the 

swap memory ( in addition to the 64 GB of the 

available RAM it required 10 GB of swap). Some 

sections in this stage are executed in parallalel 

[32,33]. 

ABySS performance by Stages. 

The Figure 3 shows the execution of ABySS for 

k=31 and k=55. Below are described each of the 

http://www.lifesciencesite.com/
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AbySS execution stages, highlighting relevant 

aspects regarding its computational requirements. 

Kmer load: Corresponds to the reads load and 

kmers extraction. It is the stage with major I/O 

transfer intensity (peak 10000KB/S) and major RAM 

requirement (for k=33 the peak is 7000MB, for k=55 

the peak is 8000MB). This stage has a low 

parallelization [34,35]. 

Bubbles popping and splurs remotion: Once 

kmers are detected in this stage, the bubbles and 

splurs are removed from the graph with the purpose 

to reduce the RAM requirement in the next stages 

and obtain major reliability due to the error removal. 

This is the stage that require less execution time and 

does not have parallelization [36,37]. 

Graph and merge contigs: Graph construction is 

done and the deduction of contigs and metacontigs. 

This stage use less memory than the previous stages 

because of the use of the library sparsehash and show 

major parallelization. 

Minia performance by stages. 

The Figure 4 shows the execution of Minia for 

k=31 and k=55. Below is described each of the 

Minia’s execution stages, highlighting the relevant 

aspects regarding to its computational requirements. 

Kmer load: This stage uses DSK (Rizk, 

Lavenier & Chikhi, 2015)  which is the kmer counter 

program oriented to low RAM use using the reads 

partitioning on disk technique. This stage is more 

intensive in terms of I/O with an average of  

5000KB/S and moderate RAM (a peak of 4000MB 

for k=31 and a peak of 4200MB for k=55). 

Additionally, it is noted that this stage is highly 

parallelized [38,39]. 

Bloom filter: The purpose of the use of this filter 

is to remove kmers with lower coverage. It is 

observed that this stage has an average paralellization 

and it is the one with less execution time requirement 

for both k values. 

Graph and assembly: Graph construction and 

contigs assembly. It is observed that this stage is the 

one with more time requirement and it has less 

parallelization. To represent the graph in memory 

bloom filters in cascade are used (Salikhov,  

Sacomoto  & Kucherov, 2013). It is to note that 

Minia does not use the paired-end information and 

for this reason has less execution time in this stage in 

contrast with the others assemblers [40]. 

 

 
Figure 3. ABySS execution and its stages (k=31 and k=55) 

http://www.lifesciencesite.com/
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Figure 4. Minia execution and its stages (k=31 and k=55) 

 

 
Figure 5. SOAPdenovo2 execution and its stages (k=31 y k=55) 

 

SOAPdenovo2 performance by steps 

The Figure 5 shows the execution of 

SOAPdenovo2 for k=31 and k=55. Below is described 

each of the SOAPdenovo2’s execution stages, 

highlighting the relevant aspects regarding to its 

computational requirements. 

Pregraph: Kmers are loaded in memory, possible 

errors are removed and finally counter kmers are 

dumped to disk. This stage has the greater I/O (with a 

peak of 10000KB/S for k=33 and 2000KB/S for k=55) 

and the greater RAM  (with a peak of 30GB) usage for 

both k values and a high parallelization [41]. 

Contig generation: Contigs are generated from 

the preprocessed graph. This stage has high 

paralellization and moderate RAM usage (5GB in 

average). 

Scaffolding: Generated contigs are used to 

superimpose them and obtain larger contigs. This is 

the stage less parallelized in the program execution 

and it has a moderate RAM usage (3GB in average). 

http://www.lifesciencesite.com/
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EPGA2 performance by stages. 

The Figure 6 shows the execution of EPGA2 for 

k=31, the execution for this tool was not possible for 

k=55 because it only supports a k size less than 32. 

Below is described each of the EPGA2’s execution 

stages, highlighting the relevant aspects regarding to 

its computational requirements . 

Bless: during this stage, a Bloom filter is applied 

with the purpose of fixing the reads. The execution of 

this stage is done sequentially, it does not have a 

pronounced usage of RAM and greater intensity in I/O 

occurs when loading and write the readings. 

DSK: The same as Minia’s case, DSK has an 

intensive I/O usage because it does disk partitioning 

for the kmers counting, its execution is sequential. 

Bcalm: Bcalm is a tool for De Bruijn graph 

compacting focused to low memory use. Bcalm 

partition all kmers based on frequency of their 

minimizers. Finally uses each kmer as a node and 

compacts the simple paths of the graph. At the 

beginning of its execution Bcalm has high I/O 

intensity due to the kmer distribution on several files, 

it’s memory peak usage is 1.5GB of RAM and its 

execution is sequential. 

EPGA: During this stage all simple paths 

generated by Bcalm are integrated (contigs). This 

stage has low I/O intensity, a peak of RAM memory 

usage of 15 GB and it is totally paralellized. 

 

3.2 Comparison between tools. 

In the Table 1 average and peak of the 

computational requirements of the execution of each 

of the tools and their stages are compared. 

 

 
Figure 6. EPGA2 execution and its stages for k=31. 

 

Table 1. Average and peak values for each stage and variable (I/O, RAM, Number of CPUs) 

Tool Stage 

RAM (MB) Number of CPUs I/O (KB/S) Time (Mins) 

k=31 k=55 k=31 k=55 k=31 k=55 
k=31 k=55 

Peak Peak Avg Peak Avg Peak Avg Peak Avg Peak 

Velvet 

Kmer load 18458 20893 11 24 1 1 7000 25000 600 37000 15 63 

Pregraph, bubbles popping and  

splurs remotion 
9740 6781 2 22 1 1 250 30000 300 41000 17 12 

Graph and contig merging 63916 6781 2 24 1 1 400 40000 100 7000 2618 70 

Abyss 

Kmer load 8000 9230 1 3 1 1 450 40000 300 1300 83 70 

Bubbles popping and splurs remotion 8170 9315 1 1 1 1 80 12000 200 13500 23 20 

Graph and merge contigs 574 1733 1 2 2 2 90 13000 60 14000 224 155 

Minia 

Kmer load 3984 4492 2 20 2 23 5500 40000 5500 39000 15 15 

Bloom filter 2231 2201 3 11 4 10 700 22000 2300 37000 4 4 

Graph and assembly 2231 2206 1 1 1 2 270 33 60 8000 43 40 

SOAP 

Denovo2 

Pregraph 31739 30274 4 10 4 8 1300 33000 100 12500 51 36 

Contig generation 11324 7328 2 9 4 8 300 13000 200 1400 31 13 

Scaffolding 3049 1102 1 2 2 3 40 10000 20 1250 133 65 

EPGA2 

Bless 258 N/A 1 1 N/A N/A 800 35000 N/A N/A 289 N/A 

DSK 4924 N/A 1 1 N/A N/A 7500 43000 N/A N/A 54 N/A 

bcalm 1651 N/A 1 1 N/A N/A 1200 25000 N/A N/A 57 N/A 

EPGA 14671 N/A 23 24 N/A N/A 40 20000 N/A N/A 653 N/A 

 

 

4. Discussions 

4.1 Analysis by variable 

Analysis Based On RAM use. 

The stage that required major RAM usage in 

most assessed assemblers was the counting and kmers 

detection, however when this process use kmers 

partitioning in disk (technique used by Minia and 

EPGA2) it was observed a significant reduction in the 

memory usage. A previous processing of reads 

through bloom filters allows a reduction on memory 

usage because reads with possible sequencing errors 

are removed before graph generation (this was evident 

in the BLESS stage of EPGA2 and in the Bloom Filter 

stage of Minia). 

http://www.lifesciencesite.com/
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One of the stages with less RAM usage was the 

contig and metacontig generation, however in Velvet’s 

case this stage required more RAM because of the data 

structure used to represent the graph. The tool with 

less RAM usage in the contigs generation was 

EPGA2, due to the Bcalm tool use which use kmers 

partitioning on disk by minimizers frequency thus 

allowing graph simplification by parts. 

The increase in the kmer length reduces the 

memory requirement in most stages of all the tools, 

except for the kmers load stage. 

Analysis Based On I/O 

The stage with greater I/O transfer observed in 

all assemblers was the kmers counting and detection 

stage because the reads should be loaded into memory 

and later the resulting kmers must be written to disk. It 

was further noted that the assemblers that use counting 

techniques based on partitioning on disk make more 

I/O transference due to a redistribution of kmers in 

intermediate files according to theirs minimizers. 

The stage with the less average I/O transfer in 

most assemblers is the contigs and metacontigs 

generation stage, since during this stage the data 

structure that represents the graph is already loaded in 

main memory and it is being processed, hence the 

requirements for this stage are mainly of CPU. Unlike 

of the rest of the assemblers, EPGA2 presented a 

major demand of I/O transference for contigs 

production because it makes use of disk partitioning. 

Analysis Based On Parallelization 
Analyzing the average of used CPUs for each 

stage in each tool it was observed a medium/low 

degree of paralellization, except for the metacontigs 

generation step in EPGA2. 

Analyzing the relation between the average and 

the peak of the used CPUs for each tool it became 

clear that for the vast majority of stages that presented 

medium or high paralellization values, these values 

only ocurred in moments that represent a low 

percentage of the total processing time of the stage. 

Only the metacontigs generation stage in EPGA2 

and the kmers load stage in Velvet (only for K=31) 

presented a high continuous parallelization. The kmers 

load stage and error removal on SOAPdenovo2 (for 

both K values) showed a high parallelization on the 

half of its processing time. 

Analysis Based On Execution Time 

The common stage in all the assemblers that 

required greater demand of processing time was the 

contigs and metacontigs generation because during 

this stage the simplification and traversal of the graph 

is done. 

The stages with less execution time demand in 

the majority of the tools were the kmers load and error 

removal. 

It was evident in all the tools that with a greater 

kmer size the less execution time is required. This is 

because there is a lower the amount of generated 

nodes in the graph. 

The assembler that used the less execution time 

was Minia because it does not use the paired-end 

information to do the metacontigs generation. 

 

4.2 General Conclusions 

The kmer size directly affects in the amount of 

RAM and processing time to make an assembly: the 

more kmer size the less RAM requirement and less 

execution time. 

The data structure used to represent the graphs 

directly affects the RAM memory usage; eg Minia has 

low demand due to the data structure used ( bloom 

filters in cascade) unlike ABySS that had a greater 

requirement due to the use of a Hash Table. 

The use of techniques of error removal reduces 

the amount of RAM required. This can be seen in 

assemblers like Velvet and ABySS (Pregraph, bubbles 

popping and splurs remotion) or Minia and EPGA2 

(through bloom filters). 

The use of partitioning in disk techniques in the 

kmer counting stage reduces the amount of RAM 

required but increase the I/O transfer. This can be 

noted in assemblers as Minia and EPGA2 that use 

DSK for this stage. 

The use of graph simplification by parts 

techniques allow to reduce substantially the memory 

requirement in the contigs generation stage, but 

increase the processing time. This can be seen in 

EPGA2 that use Bcalm . 

 

4.3 Challenges 

Below are listed the computational challenges 

that will allow improve the future genomic assemblers 

performance  based on De Bruijn graphs. Some of 

these challenges were observed in the assesed 

assembler shortcomings and some other by the 

strenght of the ones that are taking them in count: 

Design or adapt data structures to reduce memory 

requirement and execution time in the graph 

processing and representation. 

Design techniques for kmer partitioning on disk 

that generate homogeneous file sizes and group kmers 

in such a way that the analysis is favored. 

Design graph simplification techniques that 

reduce RAM requirement and execution time. 

Integrate the kmer counting techniques, 

simplification and graph construction such that a 

single partitioning process kmers disk is performed. 

Design error removal techniques that avoid graph 

overlaps hence reducing processing time. 

Condition the algorithms used in each stage of 

the assemblers so that the execution in parallel is 

http://www.lifesciencesite.com/
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enabled across heterogeneous platforms to make use 

of accelerators such as GPUs (Graphics Processing 

Units), DSPs (Digital Signal Processors), FPGAs 

(Field Programmable Gate Arrays), among others. 
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