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Abstract: Potential functions and Fourier series method in the cylindrical coordinate system are employed to solve 
the problem of moving loads on the surface of a cylindrical bore in an infinite elastic medium. The steady-state 
dynamic equations of medium are uncoupled into Helmholtz equations, via given potentials. It is used that because 
of the superseismic nature of the problem, two mach cones are formed and opened toward the rear of the front in the 
medium. The stresses and displacements are obtained by using integral equations with certain boundary conditions. 
Finally, the dynamic stresses and displacements for step loads with axisymmetric and nonaxisymmetric cases are 
obtained and discussed in details via a numerical example. Moreover, effects of Mach numbers and poisson's ratio 
of medium on the values of stresses are discussed. 
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1. Introduction 
1.1 General Remarks 

Moving loads on the surfaces have been 
investigated by many researchers. Investigation on 
dynamic stresses in solids is very significant in the 
study of dynamic strength of materials and in the 
design of underground structures subject to ground 
blasting waves. A related but considerably simpler 
problem has been treated by Biot (1952), who 
considered space- harmonic axisymmetric standing 
waves and obtained a closed form solution. Another 
related problem was treated by Cole and Huth (1958), 
who considered a line load progressing with a 
velocity V on the surface of an elastic half- space. 
Because of the simpler geometry, they were able to 
obtain a solution in closed form. Adrianus (2002) 
investigated the moving point load problem in soil 
dynamics with a view to determine the ground 
motion generated by a high-speed train traveling on a 
poorly consolidated soil with low shear wave speed. 
M.C.M. Bakker (1999) revisited the nonaxisymmet-
rical boundary value problem of a point load of 
normal traction traveling over an elastic half-space. 
M. Rahman (2001) considered the problem of a line 
load moving at a constant transonic speed across the 
surface of an elastic half-space and derived solution 
of the problem by using the method of Fourier 
transform. Iavorskaia (1964) also studied diffraction 
of a plane longitudinal wave on circular cylinder. 
One basic method has been used for the solution of 
these problems, the solution is obtained by using an 
integral transform of the displacement potentials. The 
resulting transformed equations are then solved in 

terms of Hankel functions, and finally the stresses 
and displacements are found by inversion of the 
transformed quantities. In this paper the coefficients 
of the stresses and displacements are found by 
solving sets of coupled integral equations. 

The waves are expanded into Fourier series in 

terms of the angle,  , around the opening. The stress 
field of the wave is written in terms of potential 
functions which satisfy the equations of motion. 
These equations decoupled via introducing the 
potential functions and reduced to Helmholtz 
equations that the potentials satisfy. 

These potential functions are in integral form 
with unknown functions in the integrands. Therefore 
the Fourier series coefficients of the stresses and 
displacements are also in integral form with unknown 
integrands. The applied boundary tractions (the step 

loads) are expanded into a Fourier series in   and 
expressions for the stress and displacement 
components at points in the medium are derived for 
each term of the Fourier series as functions of the 
radial distance r from the cavity axis and the distance 
z behind the wave front. 

The following three cases of step loads are 
considered: normal to the surface, tangential to the 
surface in the direction of the axis of the bore, and 
tangential to the circle of load application. These 
results can be used, by superposition, to determine 
the effects of other load patterns moving with the 
velocity V in the direction of the axis of the bore. 

Numerical solution of these equations gives the 
values of the unknown functions. These values can 
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then be used to find the stresses and displacements on 
the boundary and also anywhere in the medium. 
1.2 Problem Description 

The object of this work is to obtain stresses and 
displacements in an elastic medium in the vicinity of 
a cylindrical cavity which is engulfed by a plane 
stress wave of dilatational travelling parallel to the 
axis of the cylinder, as shown in Figure 1. 

The step load has an arbitrary distribution P (θ) 
along the circumference of the circle and moves with 

a velocity 21 CCV 
; therefore, the speed is 

superseismic with respect to both the dilatational and 
shear waves in the medium. Consequently, the 
disturbances which were initiated far behind the front 
on the boundary of the cavity cannot reach the 
vicinity of the wave front for some time after the 
incident wave passes. 

 
Figure 1. Moving step load 

 
Moreover, because of the super seismic nature 

of the problem, it should be expected that two mach 
cones will be formed in the medium, as shown in 
Figure 2. These cones should open toward the rear of 
the front. Furthermore, there can be no stresses or 
displacements ahead of the leading front. 

 
Figure 2. Geometry of the problem and the 
coordinate systems 
 

If a coordinate system is assumed to move along 
the cylinder with the wave front, it is seen that the 
state of stress at points close behind the wave front 
depends only on relative position of them with 
respect to the front. Thus, in the vicinity of the wave 
front, provided that the end of the cavity is far away, 
the problem may be treated as a steady-state case. In 
other words, in the moving coordinate system, the 
state of stress and displacement is independent of 
time. 

 
2. Governing equations and general 
solutions 

Consider a cylindrical cavity of radius r = a in a 
linearly elastic, homogeneous, and isotropic medium 

referred to a fixed coordinate system 
 z,θ,r  whose 

origin lies on the axis of the cavity. 

A step load along the circle at z = -vt 
progresses along the interior of the cavity with a 
velocity V such that the stresses on the boundary r=a 
are: 

 vt)z(U)θ(1σ
ar rrσ =

=  
(1) 

 vt)z(U)θ(2σ
arrθσ =

=  
(2) 

 vt)z(U)θ(3σ
arrzσ =

=  
(3) 

Where the functions 
(θθ)σk  define the 

distribution of the applied load. To determine the 
steady state solution, a moving coordinate system (r,
θ ,z) is introduced such that: 

Vtzz,θθ,rr ===  
(4) 

The following treatment is restricted to the case 
where the velocity V is greater than C1 and C2, the 
respective propagation velocities of dilatational and 
equivoluminal waves in the medium. Hence 
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The equations of motion in cylindrical 

coordinates, r,  , z, for an elastic medium, may be 
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Where the dilatation, Δ , and the laplacian 

operator, 
2 , are given by: 
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As mentioned earlier, the assumption of the 
existence of a steady-state case and trans-formation 

form r,  , z coordinates to r,  , z results in 
elimination of the time variable, t, from the equations 
of motion. This transformation is performed by the 
following relations, as given in relations (4): 

z
V

t
,

zz

Vtzz
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=




=

 
Therefore equations (7) may be expressed as 

follows: 
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Stress components are given by 
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Displacement components θu,ru
 and zu

 may 
be expressed in Fourier series: 




=
=




=
=




=
=

0n
z)cosnθ(r,zn,uz)θ,(r,zu

1n
z)sinnθ(r,θn,uz)θ,(r,θu

0n
z)cosnθ(r,rn,uz)θ,(r,ru

 

(11) 

Three potential functions are now introduced, 
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The displacement components 
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 are defined as follows: 
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(13) 

These equations may be obtained from the 
vector equation 

= curlφgradu
 

Where   is the sum of two independent vectors 
as follows: 

ψcurl=
 

The vectors 
ψand

 have only one non- zero 
component which is in the z- direction in both cases. 

ψzψz

0θψ0θ

0rψ0r

==
==
==





 
By substitution of the values given in equations 

(13) into the equations (9), it can be shown that the 
potential functions satisfy the modified wave 
equations. 
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(14) 

Stress components are expressed in Fourier 
series form as follows: 
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(15) 

Equations (11) and (15) may be substituted into 
equations (10), and as a result stress- displacement 
relations may be written for each term of the series: 
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Substitution of equations (13) into equations 

(16) and application of the differential equations (14) 
result in the following equations for stress 
components: 
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Where the second set of subscripts of 

nnn andψ,φ 
 represent the partial derivatives of 

these functions. R and Z are the dimensionless 
variables form: 
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The values M1 and M2 are defined as follows: 
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The differential equations (14) may be written 
in the following form: 
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(20) 

It is seen that these equations have the same 
general form as the differential equations of the 
cylindrical waves obtained in reference (13). 
Therefore solutions of equations (20) may be 
obtained in a manner similar to that in reference (13). 
These solutions are given in integral form as follows 
(see Appendix A for verification of the solutions): 
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(21) 

From consideration of the fact that the 
disturbances are zero ahead of the wave front, it is 
seen that the functions fn, gn and hn are zero for the 
values of their arguments less than

2Rβand2Rβ,1Rβ 
,respectively. 

Therefore the upper limits of the integrals may 
be changed from   to the following values: 
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The integrals are then written with these limits: 
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3. Expressions of stresses and displacements 

Substitution of equations (23) into equations 
(17) gives the following expressions for stress 
components. 



 Life Science Journal 2015;12(9)       http://www.lifesciencesite.com 

 

59 

 

 



 =

2

2

1

u

u
0

2
2

2
2

22
1

2
21

u
0

rrn,
2

dunucosh2u)sinh2(ηh2
2β

dunucoshu)cosh(ηg2 β

dunuu]coshsinh2β

2)[M(ηf
μ

σa

0  

(24a) 

dunu2ucosh)sinhη(hβ

dunucoshu)sinh(ηg2β

dunucoshu]cosh2β

2)[M(ηf
μ

σa

2
2

2

2
2

2
2

22
1

2
21

u
0

θθn,
2

1

 

 



 =

2

2

0

0
u

u

 

(24b) 

 

 =

2u
0

2
2

11
u
0

2
1

2
2

zzn,
2

dunu)cosh2(ηg2β

dunu)cosh(ηf2)2M(M
μ

σa

 

(24c) 

 

 

 =

2

2

u
0 2

2
2

u
0 2

2
2

11u
0

2
1

rθn,
2

dunucosh2u)cosh(ηhβ

dunusinh2u)sinh(ηgβ 

dunusinh2u)sinh(ηfβ
μ

σa

 

(24d) 

 

 

 =

2

2

1

u
22

u
0 2

2
22

1
u

1
rzn,

2

dunusinhu)sinh(ηhβ

dunucoshu)cosh(ηg2)(Mβ

dunucoshu)cosh(η
0

f2β
μ

σa

0  

(24e) 

 

 

 =

2
0
u dunucoshu)cosh(ηhβ

dunusinhu)sinh(ηg2)(Mβ

dunusinhu)sinh(ηf2β
μ

σa

22

u
0 2

2
22

1
u
01

θzn,
2

2

1

 

(24f) 

Substitution of equations (23) into equations 
(13) gives the following expressions for displacement 
components, 
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and primes represent the derivatives of the functions 
with respect to their arguments. 

 
4. Boundary conditions 

In order to satisfy the condition of a traction 
boundary at the face of the cavity, r=a, three of the 
stress components must satisfy the following 
boundary conditions: 
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These equations are satisfied for each term n. 

The coefficients of the stress, rzn,rθn,rrn, σandσ,σ
 are 

expressed in equations (24) in integral form. These 
integrals include the unknown functions 

)(ηhand)(ηg),(ηf 221 
 which are to be found by 

solving the set of three simultaneous integral 
equations. These values then may be substituted back 
into the equations (24) and (25) to find the stress 
components and displacement components of the 
waves at any point on the boundary or in the medium 
behind the move front. 

 
5. Solution of the Boundary Equations 

Numerical solution of the boundary equations 
requires finding numerical values of the functions 

)(ηhand)(ηg),(ηf 221 
.In the following para-

graph, the changes in variables are used. At the 
boundary, the radius R is fixed, R=1. Therefore the 

arguments of the functions 
handg,f 

 are: 

hucosβZ2η
coshuβZ1η

2

1
=
=

 
(27) 

1kξ
2β

Z
2ξ,

1β

Z
1ξ:letWe ===

 

(28) 

Where 21/ββK =
. Equations (27) may be 

written as: 
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following relations: 
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The limits of the integrals with this variable are 

as follows: 
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The upper limits are linear functions of Z and 

1ξ
; therefore, in order to perform numerical 

integration, the longitudinal axis 1ξ
 is divided into 

small steps. At every point along this axis the 
numerical integration is performed and at each step 
only one new value of the functions 

)(ηhand)(ηg),(ηf 221 
 enters into the 

computations. 
As an example of the procedure of the 

numerical integration, the component of the stress in 
the radial direction is given symbolically below: 
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expressed by using the convolution theorem in 
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Where (f), (g) and (h) are the unknown 

functions to be evaluated. 
At this stage of integration the values (f)m, (g)m, 

(h)m are known for m=0 to p-1.The only unknowns in 
these expressions are (f)p, (g)p, and (h)p. Similar 
expressions are written for the other components of 
stress, at the pth step. The boundary conditions are 
now in the form of a set of three simultaneous linear 
equations. Solution of this set results in the values of 
(f)p, (g)p, and (h)p. The procedure is then carried on to 
the (P+1)th step; Similar operations are performed to 
find the values of (f)p+1, (g)p+1, and (h)p+1. 

As mentioned previously, when the values f, g 
and h are found at each step, these values are 

substituted into the expressions for zn,uandθn,u,rn,u,
 

θzn,σ,zzn,σ,θθn,σ
to compute the numerical 

values of these stresses and displacements in the 
medium. 

 
 

6. Numerical Results and Conclusion 
For the non-axisymmetric loadings 

characterized by n > 0, numerical values of the stress 

components zθn,
σandzzn,σ,

θθn,
σ

 at the cavity 
boundary r=a are presented in this section. These 
stresses are given for the cases n=1, 2 for each of the 
three step- traction loading indicated below: 
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The curves are shown for two sets of prameters: 
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The values of M1 were chosen for application of 

the results to problems of some practical interest. The 
stress components in each case approach the static 
plain strain solution as Z approaches infinity, 
indicating that mathematical model produces correct 
results for propagation of waves in the isotropic 
medium. For those cases in which the static solutions 
do not vanish, a typical overshoot above the value of 
the static (long term) solutions is observed. 
Moreover, a decrease in the Mach number M1 
appears to compress the stress response curve into a 
smaller range of Z such that the asymptotic values of 
the lower value M1=1,033 are obtained for smaller 
values of Z. Figures 12 and 13 show the stress 

components zz0,σandσ
θθ0,  at the cavity boundary 

r=a for the axisymmetric loading case, n=0, for the 
mach numbers M1=1.033, 1.5 and 2. As in the cases 

where n  0, the stress components in each case 
approach the static plain solutions as Z approaches 
infinity. Figures 14 through 19 show the 

displacement components Zn,θn,rn, uandu,u
 (n=1, 

2, 3, 4) for each of the three loading cases, k=1, 2, 3. 

Figures 20 through 22 show the r0,u
and Z0,u

displacement components for the case n=0. These 
displacement results are shown for the M1= 2, 

4/1=  case only. 
The only property of the material in the medium 

which enters into computations is its poisson's ratio. 
Figures 23 through 26 represent the effect of this 
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parameter on the values of stress components for the 
axisymmetric loading case, n=0. The following 
values of poisson's ratio are used in this study: 

0.35 and0.25,15.0,0υ =
 

It is noticed that the change in poisson's ratio 
does not have a large effect on the maximum value of 
longitudinal stress for the load case k=2 (Figure 26), 
while it affects considerably the value of longitudinal 
stress for the case load, k=1 (Figure 25), and hoop 
stress for the two cases, k=1,2 (Figures 23 and 24) for 
smaller values of Z. 
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Figure 8. Stress zzσ
 at boundary due to step load; 

2,1);(sinn3σrσ == nZun  
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 at boundary due to step load; 
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Figure 14. Boundary displacement rnu ,  due to step load 
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Figure 15. Boundary displacements due to step load;n=1,2,3,4
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Figure 16. Boundary displacements due to step load;n=1,2,3,4
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Figure 17. Boundary displacements due to step load;n=1,2,3,4
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Figure 18. Boundary displacements due to step load;n=1,2,3,4
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Figure 19. Boundary displacements due to step load;n=1,2,3,4
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Figure 20. Boundary displacement r0,
u

due to step load 01σ
; 

n=0
25.0,2
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M, =u=

 
 

 

Figure 21. Boundary displacement r0,
u

due to step load 02σ
; 

n= 0 z0,
u

due to step load 01σ
; n= 0
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Figure 22. Boundary displacement z0,
u

due to step load 02σ
; 

n= 0 
 

 
Figure 23. Comparision of Hoop stress for different values of 
poisson's ratio at boundary r=a due to axisymmetric step load 

01σ
; n= 0,M1=2 

 

 
Figure 24. Comparision of Hoop stress for different values of 
poisson's ratio at boundary r=a due to axisymmetric step load 
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; n= 0,M1=2 

 

 
Figure 25. Comparision of Longitudinal stress for different 
values of poisson's ratio at boundary r=a due to axisymmetric 

step load 01σ
; n= 0, M1=2 
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Figure 26. Comparision of Longitudinal stress for different 
values of poisson's ratio at boundary r=a due to axisymmetric 

step load 02σ
; n= 0, M1=2 

 

Appendix A 
Verification of the Solution of Wave Equation 

Consider the modified wave equations express-
ed in equations (20). A typical differential equation 
of this kind is expressed as: 

 

ZZφφ2 2M=  
Or 

0
R

n

R

1

β

2

2

RRRZZ
2 = φφφφ

 
(A.1) 

A solution of this differential equation was 
represented in the following form. 

du nu cosh u) cosh R-Z
1u

0

βf (φ =
 

(A.2) 

Where 

)
Rβ

Z
(11cosh1u =

 
In this section, the solution (A.2) is checked by 

substitution of φ into equation (A.1). 

Partial derivatives of φ  are: 

  =
1u

0
R dunucoshucoshηfβφ

 

  =
1u

0

22
RR dunucoshucoshηfβφ

 

  =
1u

0

dunucoshηfZZφ
 

(A.3) 

Where 

ucoshRβ-Zη =
 

The function φ  may be integrated by parts as 
follows: 

   

  

==

1
u

0

1
u1

u

0

dunuuηf
n
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nuηf
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sinhsinh
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sinh
1

φ
0

 

(A.4) 

The first term on the right hand side is zero, 

since 
 ηf

 is zero for values of u greater than 1u
. In a 

similar manner Rφ
 can be integrated by parts, 

  =
1u

0
R duucoshnucoshηfβφ

 

 

  

 =

1

1

u

0

u

0

2

dunuuηfβn
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sinhsinh

sinhRφ 2
R

 
It is easily seen that substitution of the values 

φ

, Rφ
, RRφ

and ZZφ
 into equation (A.1) satisfies this 

equation. 
Similar solutions are obtained for the functions 

ψ  and χ . 
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