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Abstract: The use of modern techniques in the field of nanotechnology is one of the important recent trends for 

improving active constituents production in the field of tissue culture, for using on a commercial scale. Therefore, in 

this study we examined the effect of three types of nanoparticles (FeNPS, CuNPS and SiNPS) at different 

concentrations on the production of active constituents in Stevia rebaudiana L. callus. In light of the obtained 

results, treatment with nanoparticles had a positive effect on dry weights at all concentrations. GSH level changes in 

stevia callus represent a good indicator of response to treatment with nanoparticles. A slight decrease occurred in the 

GSH content when stevia callus treated with FeNPS and CuNPS at most concentrations. While, it was increased 

after treatment with all concentrations of SiNPS (except 8 ppm). With respect to antioxidant enzymes, it noticed a 

slight effect on enzymes activity when stevia callus treated with FeNPS and CuNPS. While, there was a clear 

positive effect when using SiNPS, where a new band for SOD appeared at 0.5 ppm as well as a clear increase in 

bands intensity at the other concentrations. Also, SiNPS had effective influence on CAT activity, especially at high 

concentrations. FeNPS and CuNPS had inhibitory effect on active constitute production in stevia callus with the 

exception of 2 and 8 ppm FeNPS and 8 ppm CuNPS, which recorded the highest values of stevioside content. 

While, the low concentrations of SiNPS affected positively on stevioside content, the maximum value was recorded 

when SiNPS applied at rate of 2 ppm. The effect of nanoparticles on minerals content in stevia callus depends on the 

nanoparticles type and the concentrations used, but in general, SiNPS had a negative effect on the accumulation of 

some minerals such as Si and Cu. The researchers in this study recommended activating the application of 

nanotechnology in the agricultural field for the production of active constituents in stevia callus, because of their 

medical and industrial importance. The study confirms the effectiveness of SiNPS (in some low concentrations), 

FeNPS and CuNPS (in some high concentrations) for the production of active constituents and associated with 

antioxidants (enzymatic and non enzymatic). Also, this study draws attention for the need to complete the work on 

these nanoparticles with new concentrations and new particle sizes.  
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1. Introduction 

In recent years remarkable progress has been 

made in developing nanotechnology. This science has 

emerged into the limelight and become the focus of the 

most countries and it will enable us to get the materials 

which are characterized by high quality, purity and free 

of impurities. The growth of nanotechnology has led to 

the rapid development of commercial application 

which involves the use of a great variety of 

manufactured nanoparticles and which have the ability 

to revolutionize the agriculture and food industry. 

Although, there is a crucial urgency to perform further 

studies on the use of nanoparticles in the agricultural 

field. It is worth noting that knowledge gaps and 

associated uncertainties remain unaddressed on the 

effects of nanoparticles on plants. Nanoparticles with a 

size of between 1 and 100 nanometers (Ball, 2002; 

Roco, 2003 and Monica and Cremonini, 2009) fall in 

the transitional zone between individual atoms (or 

molecules) and the bulk material. Because the 

physicochemical properties of material on this scale 

can greatly differ from the corresponding bulk material, 

these nanoparticles can have the potential to generate 

unknown biological effects in living cells. In this 

connection, Monica and Cermonini (2009) showed 

that nanomaterials because of their tiny size show 

unique characteristics (change in the physic–chemical 

properties) and have great surface area compared to 

their bulk materials, therefore increasing solubility and 

surface reactivity. The effect of nanoparticles on plants 

depending on the concentration, size, shape and other 

physicochemical properties as well as the kind of 
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genotypes. There are many researches used 

nanoparticles like nano silicon (Suriyaprabha et al., 

2012; Kalteh et al., 2014 and Siddiqui and Al-

Whaibi, 2014), nano iron (Afshar et al., 2012; Afshar 

et al., 2013 and Dhoke et al., 2013) and nano copper 

(Lee et al., 2008; Dimkpa et al., 2012 and Sahar, 

2014) on plant species. However, the production of 

active constituents in tissue culture (like Stevia 

rebaudiana L.) using nanotechnology technique takes 

center late (or limited) in the uses list of this science. 

Stevia is a natural non calorie sweetener plant. 

Stevia leaves contain sweet components (steviol 

glycosides) and it varies between 4 and 20% in the dry 

leaves. The main sweet component in stevia is 

stevioside and tastes about 300 times sweeter than 

sucrose. Stevioside is a diterpenic carboxylic alcohol 

with three glucose molecules (Kohda et al., 1976 and 

Shibata et al., 1991) and mainly used commercially as 

sugar substitute. In addition to its interesting 

sweetening property, stevia extract shows many 

pharmacological properties (Gregersen et al., 2004; 

Din et al., 2006 and Ferri et al., 2006). Other sweet 

compounds present in stevia leaves but in lower 

concentration are: steviolbioside, rebaudioside A, B, C, 

D, E, F and dulcoside A (Kennelly, 2002 and Starrat 

et al., 2002). Stevia seeds are small in size and very 

low germination percentage (infertile), so the 

production of stevia through seeds is not fruitful 

(Savita et al., 2004) and the seeds propagation is given 

great variability in sweetening levels and composition 

(Nakamura and Tamura, 1985 and Jadeja et al., 

2005). Due to the above mentioned difficulties, plant 

tissue culture or micropropagation can be used for 

rapid propagation and conservation of such valuable 

and endangered plant species (Nalawade et al., 2002 

and Debnath et al., 2006), which are difficult to 

propagate by conventional methods. Also, tissue 

culture technique used in modern laboratories for the 

production of some active constituents in large 

quantities and short time for plants that have a problem 

to propagate them by traditional methods. The present 

study examined the effects of three types of 

nanoparticles (iron oxide, copper oxide and silicon 

dioxide) on the production of active constituents in 

Stevia rebaudiana L. callus. 

 

2. Materials and Methods  
Stevia plants were obtained from Sugar Crop 

Institute, Agricultural Research Center, Giza, Egypt. 

The plants were maintained under greenhouse 

conditions of the Desert Research Center, Cairo, Egypt, 

for at least 30 days prior to removal of material for 

culture. Leaves were removed from the branches and 

transferred immediately to the laboratory for 

sterilization. The leaves were washed for 15 minutes in 

running tap water then rinsed in sterile distilled water 

and sterilized under aseptic conditions by immersion 

for 20 minutes in 20% (v/v) commercial bleach 

(Clorox) followed by 3 minutes in 0.1% (w/v) mercuric 

chloride solution then washed 6 times with sterile 

distilled water to remove the traces of mercuric 

chloride. Callus was induced from leaves of stevia 

plant according to procedures described by Hendawey 

and Abo El Fadl (2014). All sterilized leaves were 

cultured on basal MS medium (Murashige and Skoog, 

1962) (Duchefea, Haarlem, Netherlands) supplemented 

with 2 mg/l dichlorophenoxy acetic acid (2,4-D), 0.5 

mg/l naphthalene acetic acid (NAA) and 0.5 mg/l 6-

benzyl aminopurine (BAP) (Sigma Cell Culture, min. 

90%, St. Louis, USA), 30 g/l sucrose and solidified 

with 3 g/l phytagel (Duchfea, Haarlem, Netherlands). 

The cultures were then incubated at approximately 

24ºC with 16-hours photoperiod under cool white 

florescent tubes (F140 t9d138, Toshiba). After six 

weeks callus was formed, then a piece of sub cultures 

callus (100mg) was placed on various concentrations of 

nanoparticles. The experiment included three 

treatments of nanoparticles with six levels compared 

with control as follows: 

 Control (without nanoparticles application). 

 Nano iron oxide (Fe3O4) at 0.1, 0.5, 1, 2, 4 and 8 

ppm. 

 Nano copper oxide (CuO) at 0.1, 0.5, 1, 2, 4 and 8 

ppm. 

 Nano silicon dioxide (SiO2) at 0.1, 0.5, 1, 2, 4 and 

8 ppm. 

Nanoparticles were prepared at different 

concentrations using distilled water. Nano iron oxide 

(50-100 nm), nano copper oxide (< 50 nm) and nano 

silicon dioxide (5-15 nm) were purchased from Sigma-

Aldrich. Also, fresh and dry weights of stevia callus (g) 

were recorded after 10 weeks of cultures. 

Chemical analysis 

Glutathione content  

The glutathione content (GSH) was measured by 

the method of Moron et al. (1979). 

Antioxidant enzymes 

Superoxide dismutase (SOD) was estimated 

according to Weydert and Cullen (2010). Also, 

catalase activity (CAT) was determined according to 

the method described by Maxwell and Bateman 

(1967). 

Sweet component (stevioside content)  

Stevia callus was extracted by mortaring in 

methanol according to the method of Brandle (1998) 

and Nikolai et al. (2001). The stevioside obtained by 

methanol extract analyzed by High Performance Liquid 

Chromatography (HPLC) as described by Nishiyama 

et al. (1992) and Hendawey and Abo El Fadl (2014). 

The HPLC system was a Dionex Ultimate 3000 

equipped with an auto-sampler, quaternary pump and a 
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diode array detector. The analytical column was BDS 

Hypersil C8 column. Separation was performed with 

acetonitrile and water (85: 15 v/v) as the elusion 

solvent at flow rate of 0.7 ml/min and the detection 

wavelength was 205/210 nm. Under these analytical 

conditions, the typical retention time of stevioside was 

2.32 min. It is worth mentioning that the standard 

addition was done using stevioside pure material to 

confirm the results, before the analysis of stevioside in 

samples of stevia callus. Standard addition is a 

technique that helps qualify dubious test results. The 

reason for using the standard addition of stevioside is 

due to the samples of stevia contain other components 

that interfere with the stevioside causing inaccuracy in 

the determined concentration. In addition, the 

separation of stevioside carried out using column C8, 

which differed from column C18 in their separation. 

The idea is to add known volume of stevioside (known 

concentration) to the sample and the change in peak 

area was noticed. The change in peak area between the 

sample and the sample with standard is assumed. 

Minerals content  

Constant weight of stevia callus samples were 

digested in nitric acid and hydrogen peroxide using 

Microwave Digestion Labstation closed system, Ethos 

Pro, Milestone, Italy. Then, raise the digested to a 

known volume using distilled water. Fe, Cu and Si 

were determined by Inductively Coupled Argon 

Plasma, ICAP 6500 Duo, Thermo Scientific, England. 

Also, 1000 mg/L multi-element certified standard 

solution, Merck, Germany was used as stock solution 

for instrument standardization. 

Statistical analysis  

The experiment was subjected to completely 

randomized design. Analysis of variance (ANOVA) 

and Duncan’s multiple range test (1955), as modified 

by Snedecor and Cochran (1982), were performed to 

analyze the obtained data. 

 

3. Results and Discussion 

Effect of nanoparticles on callus growth 

Data recorded in Figs. (1 and 2) and Table (1) 

showed the effect of some nanoparticles on growth of 

Stevia rebaudiana L. callus. It was clear from the data 

that treatment with nano iron oxide (FeNPS) had a 

positive effect on fresh weight when stevia callus 

treated only with 0.25 and 0.5 ppm compared with the 

control. On the other hand, FeNPS had a positive effect 

on dry weight at all concentrations, but the highest 

value was recorded at 0.5 ppm. The positive role of 

FeNPS on stevia callus may be due to it plays a key 

role in growth and development (Miller et al., 1995 

and Sheikhbaglu et al., 2014). 

 

Fig. 1: Subculture of Stevia rebaudiana L. callus after treatment with (1) 0.5 ppm FeNPS (2) 1 ppm CuNPS (3) 

8 ppm SiNPS 

 

The results showed that fresh weight was 

increased when nano copper oxide (CuNPS) applied 

(except 4 and 8 ppm), while there was a clear increase 

in dry weight at all concentrations of CuNPS. The 

highest value of fresh and dry weights was obtained 

when stevia callus treated with 1 ppm compared with 

the control. In this regard, copper contributes in many 

important physiological processes within the plants, as 

well as the high concentrations of copper had many 

adverse effects on plants (Weckx and Clijsters, 1996; 

Hall, 2002 and Monnet et al., 2006 ). 

 

Table 1: Effect of some nanoparticles on Stevia rebaudiana L. callus culture 

Treatments 
Callus 

properties 
SiNPS (ppm) CuNPS (ppm) FeNPS (ppm) 

Con 8 4 2 1 0.5 0.25 8 4 2 1 0.5 0.25 8 4 2 1 0.5 0.25 

C C C C C C F F F F F F F F F F F F F Texture 

Cr Cr Cr Cr Cr Cr B B B G G G B B B L L L Cr Colour 

Where; 

Con= Control, F= Friable, C= Combact, L= Light green, B= Brown, G= Green and Cr= Creamy to yellow 
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Although, copper is an essential micronutrient, it 

may become phytotoxic when present in excess in the 

growth medium. Exposure of plants to excess Cu 

generates oxidative stress, leading to cellular damage 

generated by reactive oxygen species, elevations in 

H2O2 and significant DNA impairment (Lequeux et 

al., 2010; Cuypers et al., 2011 and Iseri et al., 2011). 

Given that copper undergoes complexation with 

organic compounds that could modify its toxicity 

(Jumg et al., 2003). 

Data in the same figure describes the effect of 

nano silicon dioxide (SiNPS) on fresh and dry weights 

of stevia callus. Treatment with 4 and 8 ppm led to 

increase of fresh weight compared with the control. 

While, dry weight of stevia callus was increased with 

the increasing of SiNPS. The positive effect of silicon 

on growth of stevia callus may be due to it prevents the 

structural and functional deterioration of cell 

membranes (Agarie et al., 1998), also reduced 

osmolyte leakage and lipid peroxidation (Shen et al., 

2010). 

 

 

Fig.2: Effect of some nanoparticles on fresh and dry weights in Stevia rebaudiana L. callus 
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Effect of nanoparticles on biochemical constituents 

Glutathione content  

Effect of three types of nanoparticles (FeNPS, 

CuNPS and SiNPS) at different concentrations on 

glutathione content (GSH) in Stevia rebaudiana L. 

callus is presented in Fig. (3). A slight decrease 

occurred in GSH content when stevia callus treated 

with FeNPS at all concentrations, except 2 ppm which 

recorded the highest value of GSH content compared 

with the control (without nanoparticles). 

 

Fig.3: Effect of some nanoparticles on glutathione content (µ mol /g FW) in Stevia rebaudiana L. callus 

 

In this regard, GSH is an important antioxidant in 

plants, preventing damage to important cellular 

components caused by reactive oxygen species 

(Pompella et al., 2003). It is a tripeptide with a gamma 

peptide linkage between the carboxyl group of the 

glutamate side-chain and the amine group of cysteine 

(which is attached by normal peptide linkage to a 

glycine). In addition, Zaharieva and Abadia (2003) 

and Salama et al. (2009) found marked increases in 

GSH content in cucumber, sugar beet and flax under 

iron deficiency. 

From the results in the previous figure, treatment 

with CuNPS at rates 0.25, 0.50, 2 and 4 ppm led to a 

slight decrease in GSH content in stevia callus 

compared with the control. While, the maximum values 

were recorded when CuNPS applied at rates of 1 and 8 

ppm. Antioxidants like glutathione plays an important 

role in detoxification of toxic metal ions (Singh and 

Sinha, 2005). Also, Garrido et al. (2010) showed that 

the change in levels of reduced glutathione may 

represent a good indicator of the early plant response to 

stress due to excessive Cu supply. In this regard, De 

Vos et al. (1992) showed that copper caused a marked 

decrease glutathione in Silene cucubalus. While, Aly 

and Mohamed (2012) showed that level of glutathione 

in maize was increased with increasing of Cu stress. 

In light of the results obtained, GSH content was 

increased in stevia callus after treatment with all 

concentrations of SiNPS (except 8 ppm) compared 

with the control. These results are in agreement with 

Ali et al. (2013), reporting that Si has a key role in the 

enhancement of plant antioxidant potentials such as 

GSH content in sunflower. Also, Saqib et al. (2008) 

showed that GSH content enhances with applications 

of Si in wheat. 
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Antioxidant enzymes  

Superoxide dismutase  

Superoxide dismutase (SOD) constitutes the first 

and one of the main links of the defense process against 

free radicals. Superoxide ion is the starting point in the 

chain production of free radicals. At this early stage, 

SOD inactivates the superoxide ion by transforming it 

into hydrogen peroxide. The latter is then quickly 

catabolised by catalase and peroxidases into oxygen 

and water (Menvielle-Bourg, 2005 and Angaji et al., 

2012). 

 

Table 2: Effect of some nanoparticles on superoxide dismutase (SOD.) in Stevia rebaudiana L. callus 

Band 

Number 

Treatments 

Band intensity  

FeNPS (ppm)  

Control 0.25 0.50 1 2 4 8 

1 00 00 00 00 00 00 00 

2 2.99 3.61 4.04 2.90 1.66 2.72 1.80 

  

 

 

 

 

 

Band 

Number 

CuNPS (ppm) 

Control 0.25 0.50 1 2 4 8 

1 00 00 00 00 00 00 00 

2 2.99 2.22 3.07 2.44 3.30 3.03 2.73 

  

 

 

 

 

 

Band 

Number 

 SiNPS (ppm) 

Control 0.25 0.50 1 2 4 8 

1 00 00 1.00 00 00 00 00 

2 2.99 4.00 2.98 4.48 3.51 3.69 4.24 

  

 

 

 

 

 

Where; 00= refers to no band, 1.00= refers to lowest band intensity and 4.48 = refers to highest band 

intensity 

 

Data in the Table (2) showed the effect of some 

nanoparticles on SOD banding patterns in stevia callus 

and revealed the presence of about 2 bands. Band 

(No.2) is presented in all stevia samples after treatment 

with all nanoparticles and the control. However, band 

(No.1) was detected only in stevia callus when treated 

with SiNPS at rate of 0.5 ppm. Concerning band 

intensity, band number 2 was increased when FeNPS 

applied at rates 0.25 and 0.50 ppm compared with the 

control. Also, there was increasing in band intensity 

after treatment with CuNPS at rates 0.50, 2 and 4 ppm. 

In the same direction, treatment of SiNPS at all 

concentrations (except 0.50 ppm) showed increased of 

band intensity compared with the control. In addition, 

band No.2 was recorded the maximum value of band 

intensity when SiNPS applied at rate 1 ppm, while 

band No.1 was recorded the lowest value after 

treatment with the same nanoparticles at rate 0.5 ppm 

compared with the control. There are many researches 

that studied SOD in stevia such as Ahmad et al. 

(2011), Sabah and Rasha (2013) and Arnold (2015). 

In addition, Salama et al. (2009) showed that 

antioxidant enzymes activity can be used as reliable 

biochemical biomarkers for assessing the iron 

efficiency in flax cultivars. In the same direction, 

Tewari et al. (2005) and Esfndiari and Sabaghnia 

(2012) showed that SOD activity significantly 

decreased under iron deficiency conditions. The trace 

element copper is required as a cofactor for several 

processes; Asada (1999) found that Cu/ZnSOD 

requires Cu, along with Zn, as cofactors to catalyze the 

dismutation of superoxide radicals into hydrogen 
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peroxide in the chloroplast stroma. Also, Cohu and 

Pilon (2007) found that regulation of superoxide 

dismutase expression by copper availability in some 

plants. In another study, Azooz et al. (2012) showed 

that SOD could serve as important components of 

antioxidative defense mechanism against copper 

toxicity. Concerning the effect of silicon on SOD 

activity, Ahmad and Haddad (2011) found that Si 

enhanced SOD activity, also prevent the oxidative 

membrane damage. On the other hand, Al-aghabary et 

al. (2004) and Luxova et al. (2009) showed that SOD 

activity was decreased after treatment with silicon in 

maize and tomato plants under salt stress. 

Catalase activity  

Catalase (CAT) is involved in the destruction of 

hydrogen peroxide that is generated in cells. This 

enzyme catalyzes the decomposition of hydrogen 

peroxide to O2 and water and thus provides protection 

against the toxic effects of hydrogen peroxide. As 

shown in Fig. (4), it is obvious that treatment with 

FeNPS tended to increase CAT activity in stevia callus 

(except 0.5 and 8 ppm) compared with the control. The 

maximum value was recorded when FeNPS applied at 

rate of 4 ppm. There are many researches that studied 

CAT enzyme in stevia such as Ahmad et al. (2011), 

Sabah and Rasha (2013) and Arnold (2015). Also, 

Esfndiari and Sabaghnia (2012) showed that CAT 

was decreased in wheat leaves under iron deficiency 

conditions. Regarding the effect of CuNPS on CAT 

activity, it was noticed that a positive effect on the 

activity of enzyme when stevia callus treated with 2 

and 8 ppm. Also, application of 2 ppm gave the highest 

value of CAT activity compared with the control. In 

this regard, CAT can serve as an important component 

of antioxidative defense mechanism against copper 

toxicity (Azooz et al., 2012). Also, Lombardi and 

Sebastiani (2005) showed that CAT activity and 

expression can be modulated in response to copper 

excess. In addition, there is a clear correlation between 

CAT and copper concentrations in Jatropha curcas L. 

seedlings, also differed between plant tissues (Gao et 

al., 2008). It is quite clear from results that treatment 

with SiNPS enhanced CAT activity (except 0.25 ppm). 

In addition, the highest value of CAT activity was 

obtained by stevia callus after treatment with 1 ppm 

compared with the untreated callus. In light of the 

previous results, nano silica particles prevent oxidant 

damages via increasing of antioxidant enzymes activity 

and decreasing of free radicals, as well as, protect the 

plant’s physiological processes against stresses 

(Roohizadeh et al., 2014). Also, Ahmad and Haddad 

(2011) found that Si enhanced CAT activity, also 

prevent the oxidative membrane damage. 
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Fig. 4: Effect of some nanoparticles on catalase activity (Δ240/mg protein/ 1min) in Stevia rebaudiana L. callus 
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Stevioside content 

The effect of some nanoparticles on stevioside 

content in stevia callus is presented in Fig. (5). Data 

showed that stevioside content was increased when 

callus treated with the high concentrations of FeNPS. 

The highest value was recorded at rate of 8 ppm 

compared with the control. On the other hand, a clear 

reduction occurred in stevioside content at low 

concentrations (0.25, 0.50, 1 and 4 ppm). Iron is 

needed in very small quantities for adequate plant 

growth and production, their deficiency may cause 

great disturbance in physiological and metabolic 

processes involved in the plant. According to 

Brittenham (1994), iron is a cofactor for 

approximately 140 enzymes that catalyze unique 

biochemical reactions. In this regard, iron fills many 

essential roles in plant growth and development 

(Miller et al., 1995 and Sheikhbaglu et al., 2014). 

Regarding the effect of CuNPS on stevioside 

content, the results showed that it had inhibitory effect 

on active constitute production in stevia callus with the 

exception of high concentration (8 ppm), where it 

recorded the highest value of stevioside content 

compared with the control. Copper is an essential 

element for plants because it is involved in a number of 

physiological processes, but in excess it is also a 

proven inhibitor of various physiological functions 

(Monnet et al., 2006). In other words, Weckx and 

Clijsters (1996) and Hall (2002) found that copper 

toxicity led to the generation of harmful reactive 

oxygen species, which can damage biological 

molecules and membranes. In the same direction, 

Hansch and Mendel (2009) showed that excess of Cu 

concentrations may induce a significant toxic effect by 

altering the protein function and enzymes activity. 

 
Fig. 5:(A) Effect of some nanoparticles on stevioside content (g /100g fresh weight) in Stevia rebaudiana L. 

callus. (B) Increase and decrease (%) of stevioside content compared with the control (without nanoparticles) 
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Fig. 6: Effect of some nanoparticles on minerals content in Stevia rebaudiana L. callus 

 

Results in the same figure showed that the low 

concentrations of SiNPS (0.25, 1 and 2 ppm) affected 

positively on stevioside content, while the high 

concentrations (0.5, 4 and 8 ppm) affected negatively 

compared with the control. The maximum value was 

recorded when SiNPS applied at rate of 2 ppm. The 

important role of silicon in the plant cell is probably 

due to: i) The positive effect of silicon on growth 

where produced the greatest biomass yield (Eneji et 

al., 2008 and Bakhat et al., 2009). ii) Effect of silicon 

on tissue strength where it prevents the structural and 

functional deterioration of cell membranes (Agarie et 

al., 1998), also silicon reduced osmolyte leakage and 

lipid peroxidation (Shen et al., 2010). iii) Si may be 

involved in the metabolic or physiological and/or 

structural activity (Liang et al., 2003), as well as, 

increased antioxidant defense activities, alleviated 

oxidative damage and maintained many physiological 

processes (Gong et al., 2005). 

There are also researches that study the 

production of stevioside in stevia callus (Chen and Li, 

1993; Sivaram and Mukundan, 2003 and Das et al., 

2006). In the same direction, Hendawey and Abo El 

Fadl (2014) used some chemical inducers to produce 
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stevioside in stevia callus. They showed that treatments 

with inducers had a promotive role in enhancing active 

constituent (stevioside content) in stevia callus. 

Minerals content  

The results found in Fig. (6) describes the effect 

of some nanoparticles on minerals pattern in stevia 

callus. Under FeNPS treatment conditions, it was 

noticed a clear decrease in silicon content (except 4 

ppm) compared with the control. On the other hand, it 

was observed a positive effect on iron content (except 

treatment with 0.25 ppm). While, application of FeNPS 

had a clear negative effect on the content of Cu (except 

0.25 ppm) compared with the control. In this regard, 

Celik et al. (2010) showed that the highest 

concentrations of iron had a negative effect on some 

macronutrients element contents in maize. Also, 

Pooladvand et al. (2012) found that iron content in 

soybean plants increased with the increase of iron 

concentration. 

With respect the effect of CuNPS on minerals 

content in stevia callus, it was noticed a clear increase 

in copper content at all concentrations used. Also, there 

was increasing in iron content (except 0.5, 2 and 8 

ppm) compared with the control. In contrast, a clear 

reduction occurred in silicon content (except 1 ppm) 

after treatment with CuNPS. There are many researches 

that show the effect of copper on the minerals content 

in plants (Farias et al., 2013 and Azeez et al., 2015). 

Data presented in the same figure showed that 

iron content was increased in stevia callus after 

treatment with SiNPS at rates 0.25, 0.5 and 2 ppm 

compared with the control. On the other hand, SiNPS 

treatment had inhibitory effect on the accumulation of 

Si and Cu in stevia callus. There are many researches 

that show the effect of silicon on some minerals 

content in plants such as Matoh et al. (1986) and 

Rogalla and Römheld (2002). 
In this study, it is worth mentioning that there is 

no published researches on the effect of nanoparticles 

(FeNPS, CuNPS and SiNPS) on the accumulation of 

active constituents (stevioside content), antioxidants 

(GSH, CAT and SOD) and minerals (iron, copper and 

silicon) in Stevia rebaudiana L. callus. 
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